«Алгебра»

Алгебра в энциклопедиях

Значение слова «Алгебра»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Даля
  5. Толковый словарь Ожегова
  6. Малый академический словарь
  7. Толковый словарь Ушакова
  8. Толковый словарь Ефремовой
  9. Большой энциклопедический словарь
  10. Современная энциклопедия
  11. Энциклопедия Брокгауза и Ефрона
  12. Этимологический словарь русского языка Макса Фасмера
  13. Большой англо-русский и русско-английский словарь
  14. Англо-русский словарь технических терминов
  15. Русско-английский словарь математических терминов
  16. Большой немецко-русский и русско-немецкий словарь
  17. Большой немецко-русский и русско-немецкий словарь
  18. Большой немецко-русский и русско-немецкий словарь
  19. Большой французско-русский и русско-французский словарь
  20. Большой испано-русский и русско-испанский словарь
  21. Большой итальяно-русский и русско-итальянский словарь
  22. Научно-технический энциклопедический словарь
  23. Энциклопедия Кольера
  24. Энциклопедический словарь
  25. Математическая энциклопедия
  26. Математическая энциклопедия
  27. Большой энциклопедический политехнический словарь
  28. Большая политехническая энциклопедия
  29. Русско-английский политехнический словарь
  30. Dictionnaire technique russo-italien
  31. Русско-украинский политехнический словарь
  32. Русско-украинский политехнический словарь
  33. Естествознание. Энциклопедический словарь
  34. Словари и энциклопедии на Академике
  35. Большой Энциклопедический словарь
  36. Толковый словарь Даля

Поделиться

    Словарь Брокгауза и Ефрона

    Алгебра вместе с арифметикой есть наука о числах и через посредство чисел — о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от того, к каким конкретным приложениям они способны. Различие между арифметикой и А. состоят в том, что первая наука исследует свойства данных, определенных величин, между тем как А. занимается изучением общих величин, значение которых может быть произвольное, а следовательно, А. изучает только те свойства величин, которые общи всем величинам независимо от их значений. Таким образом, А. есть обобщенная арифметика. Это подало повод Ньютону назвать свой трактат об А. "Общею арифметикой". Гамильтон, полагая, что, подобно тому, как геометрия изучает свойства пространства, А. изучает свойства времени, назвал А. "Наукою чистого времени" — название, которое Деморган предлагал изменить в "Исчисление последовательности". Однако такие определения не выражают ни существенных свойств А., ни исторического ее развития. А. можно определить как "науку о количественных соотношениях".

    В настоящее время отчасти из педагогических соображений, отчасти вследствие исторического развития этой науки, А. делят на низшую и высшую, причем в последнее время под названием новой А. развилось учение о инвариантах преобразований алгебраических форм.

    История А. Происхождение самого слова А. не вполне выяснено. По мнению большинства исследователей этого вопроса, слово А. происходит от арабских слов эль-джабер-эль-мокабела, т. е. учение о перестановках, отношениях и решениях, но некоторые авторы производят А. от имени математика Гебера, самое существование которого, однако, подвержено сомнению.

    Первое дошедшее до нас сочинение, содержащее исследование алгебраических вопросов, есть трактат Диофанта, жившего в середине IV века. В этом трактате мы встречаем, например, правило знаков (минус на минус дает плюс), исследование степеней чисел и решение множества неопределенных вопросов, которые в настоящее время относятся к теории чисел. Из 13 книг, составлявших полное сочинение Диофанта, до нас дошло только 6, в которых решаются уже довольно трудные алгебраические задачи. Нам не известно о каких бы то ни было иных сочинениях об А. в древности, кроме утерянного сочинения знаменитой дочери Теона, Гипатии. В Европе А. снова появляется только в эпоху Возрождения и именно от арабов. Каким образом арабы дошли до тех истин, которые мы находим в их сочинениях, дошедших до нас в большом количестве, — неизвестно. Они могли быть знакомы с трактатами греков или, как думают некоторые, получить свои знания из Индии. Сами арабы приписывали изобретение А. Магоммеду-бен-Муза, жившему около середины IX-го века, в царствование халифа Аль-Мамуна. Во всяком случае, греческие авторы были известны арабам, которые собирали древние сочинения по всем отраслям наук. Магоммед-Абульвефа перевел и комментировал сочинения Диофанта и других предшествовавших ему математиков (в Х веке). Но ни он, ни другие арабские математики не внесли много нового, своего в А. Они изучали ее, но не совершенствовали. Первым сочинением, появившимся в Европе после продолжительного пробела со времен Диофанта, считается трактат итальянского купца Леонардо, который, путешествуя по своим коммерческим делам на Востоке, ознакомился там с индийскими (ныне называемыми арабскими) цифрами и с арифметикой и А. арабов. По возвращении своем в Италию он написал сочинение, охватывающее одновременно арифметику и А. и отчасти геометрию. Однако сочинение это не имело большого значения в истории науки, ибо осталось малоизвестным и было открыто вновь только в середине прошлого столетия в одной флорентийской библиотеке. Между тем сочинения арабов стали проникать в Европу и переводиться на европейские языки. Известно, напр., что старейшее арабское сочинение об А. Магоммеда-бен-Музы было переведено на итальянский язык, но перевод этот не сохранился до нашего времени. Первый печатный трактат об А. есть "Summa de Arithmetica, Geometria, Proportioni et Proportionalita", написанное итальянцем Лукас де Бурго. Первое издание его вышло в 1494 г. и второе в 1523 г. Оно указывает нам, в каком состоянии находилась А. в начале XVI века в Европе. Здесь нельзя видеть больших успехов в сравнении с тем, что уже было известно арабам или Диофанту. Кроме решения отдельных частных вопросов высшей арифметики, только уравнение первой и второй степени решаются автором, и притом вследствие отсутствия символического обозначения все задачи и способы их решения приходится излагать словами, чрезвычайно пространно. Наконец, нет общих решений даже квадратного уравнения, а отдельные случаи рассматриваются отдельно, и для каждого случая выводится особый метод решения, так что самая существенная черта современной А. — общность даваемых ею решений — еще совершенно отсутствует в начале XVI века.

    В 1505 году Сципион Феррео впервые решил один частный случай кубического уравнения. Это решение, однако, не было им опубликовано, но было сообщено одному ученику — Флоридо. Последний, находясь в 1535 году в Венеции, вызвал на состязание уже известного в то время математика Тарталья из Брешии и предложил ему несколько вопросов, для разрешения которых нужно было уметь решать уравнение третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Феррео, но в двух других частных случаев. Тарталья принял вызов и сам предложил Флоридо также свои задачи. Результатом состязания было полное поражение Флоридо. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Флоридо не мог решить ни одной задачи, предложенной ему его противником (число предложенных с обеих сторон задач было 30). Тарталья продолжал, подобно Феррео, скрывать свое открытие, которое очень интересовало Кардана, профессора математики и физики в Милане. Последний приготовлял к печати обширное сочинение об арифметике, алгебре и геометрии, в котором он хотел дать также решение уравнений 3-й степени. Но Тарталья отказывался сообщить ему о своем способе. Только когда Кардан поклялся над Евангелием и дал честное слово дворянина, что он не откроет способа Тартальи для решения уравнений и запишет его в виде непонятной анаграммы, Тарталья согласился после долгих колебаний раскрыть свою тайну любопытному математику и показал ему правила решений кубических уравнений, изложенные в стихах, довольно туманно. Остроумный Кардан не только понял эти правила в туманном изложении Тартальи, но и нашел доказательства для них. Невзирая, однако, на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем "правила Кардана".

    Вскоре было открыто и решение уравнений четвертой степени. Один итальянский математик предложил задачу, для решения которой известные до той поры правила были недостаточны, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу нерешимою. Но Кардан предложил ее своему ученику Луиджи Феррари, который не только решил задачу, но и нашел способ решать уравнения четвертой степени вообще, сводя их к уравнениям третьей степени. В сочинении Тартальи, напечатанном в 1546 году, мы также находим изложение способа решать не только уравнение первой и второй степени, но и кубические уравнения, причем рассказывается инцидент между автором и Карданом, описанный выше. Сочинение Бомбелли, вышедшее в 1572 г., интересно в том отношении, что рассматривает так наз. неприводимый случай кубического уравнения, который приводил в смущение Кардана, не могшего решить его посредством своего правила, а также указывает на связь этого случая с классическою задачей о трисекции угла.

    В Германии первое сочинение об А. принадлежит Христиану Рудольфу из Иауера и появилось впервые в 1524 г. а затем вновь издано Стифелем, или Стифелиусом, в 1571 г. Сам Стифель и Шейбль, или Шейбелиус, независимо от итальянских математиков разработали некоторые алгебраические вопросы, и первому принадлежит введение знаков +, — и √ для сокращения письма.

    В Англии первый трактат об А. принадлежит Роберту Рекорду, преподавателю математики и медицины в Кембридже. Его сочинение об А. называется "The Whetstone of Wit". Здесь впервые вводится знак равенства (=). Во Франции в 1558 году появилось первое сочинение об А., принадлежащее Пелетариусу; в Голландии Стевин в 1585 г. не только изложил исследования, известные уже до него, но и ввел некоторые усовершенствования в А. Громадные успехи сделала А. после сочинений Виета, который первый рассматривал уравнение всех степеней и показал способы для приблизительного нахождения корней каких бы то ни было алгебраических уравнений. Он же первый означал величины, входящие в уравнение буквами, и тем придал А. ту общность, которая составляет характеристическую особенность алгебраических исследований нового времени. Он же подошел весьма близко к открытию формулы бинома, найденной впоследствии Ньютоном, и, наконец, в его сочинениях можно даже встретить разложение отношения стороны квадрата, вписанного в круг, к дуге круга, выраженное в виде бесконечного произведения. Фламандец Альбер Жирар или Жерар, трактат которого об А. появился в 1629 г., первый ввел понятие мнимых величин в науку. Англичанин Герриот показал, что всякое уравнение может быть рассматриваемо как произведение некоторого числа множителей первого порядка, и ввел в употребление знаки >и

    Содержание А. Низшая А. Сюда включают обыкновенно следующие отделы: теорию простейших арифметических операций над алгебраическими величинами, решение уравнений первой и второй степени, теорию степеней и корней, теорию логарифмов и, наконец, теорию сочетаний.

    К высшей А. относят теорию уравнений каких угодно степеней, теорию исключения, теорию симметрических функций корней уравнений, теорию подстановок и, наконец, изложение различных частных способов отделения корней уравнений, определения числа вещественных или мнимых корней данного уравнения с численными коэффициентами и решение по приближению или, когда это возможно, в точности уравнений каких угодно степеней.

    Наконец, под названием новой А. известна в особенности в Англии теория инвариантов алгебраических форм.

    Литература А. вообще (по отдельным вопросам см. под соответственными рубриками: Уравнения, Инварианты, Определители, и др.): Древнейшие авторы (до XVIII века): Diophantus, "Arithmeticorum libri sex", около (300); (первое изд. 1575; лучшее 1670); Lucas Paciolus или De Burgo (1494); Rudolff, "Algebra" (1522); Stifelius, "Arithmetica Integra" (1544); Cardanus, "Ars Magna quam vulgo Cossam vocant" (1545); Tartalea (Tartaglia), "Quesiti ed Inventioni, diverse" (1546); Scheubelius, "Algebra Compediosa" (1551); Recorde, "Whetstone of Wit" (1557); Peletarius, "De Occulta parte Numerorum" (1558); Buteo, "De Logistica" (1559); Ramus, "Aritmeticae Libri duo et totidem Algebrae" (1560); Pedro Nuguez (Nonnius), "Libre de Algebra" (1567); Josselin, "De Occulta Parte Mathematicarum" (1576); Bernard Solignac, "Arithmeticae Libri II et Algebrae totidem" (1580); Stevinus, "Arithmetique etc. et aussi l'Algébre" (1585); Vieta, "Opera Mathematica" (1600); Folinus, "Algebra sive liber de Rebus Occultis" (1619); Bachet, "Diophantus cum commentariis" (1621); Albert Girard, "Invention Nouvelle en Algébre" (1629); Ghetaldus, "De Resolutione et Compositione Mathematica" (1630); Harriot, "Artis Analyticae Proxis" (1631); Oaghtreed, "Clavis Mathematica" (1631); Herigonis, "Cursu Mathematicus" (1634); Cavalerius, "Geometria Indivisibilis Continuarum etc." (1635); Descartes, "Geometria" (1637); Roberval, "De Recognitione Aequationum (1640); De Billy, Nova Geometricae clavis Algebra (1643); Renoldius, Opus Algebraicum" (1644); Wallis, "Arithmetica Infinitarum, Algebra" (1655); Newton (Opera) (1666); Gregory, "Exercitationes Geometrical" (1663); Mercator, "Logarithmotecnia" (1678); Barrow, "Lectiones geometrical" (1669) Prescot, "Nouveaux élements de Mathématique" (1675); Leibniz (Opera) (1677); Fermat (1679); Tschienhausen (1683); Rolle, "Une Méthode etc." (1690). XVIII и начала XIX века: Abel, Bernoulli, Budan, Clairault, Galois, Gauss, Horer, Lagrange, Landen, Legendre, Lhuillier, Malfatti, De Moivre, Nicole, S'Gravesande, Simpson, Stirling, Vandermonde. Учебники: Bertrand, De Morgan, Serret, Todhunter. На русском языке: "Элементарная алгебра": Давыдов, Краевич. Высшая А. Сохоцкий (СПб., 1882).

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    Общие сведения

    Алгебра — один из больших разделов математики (См. Математика), принадлежащий наряду с арифметикой (См. Арифметика) и геометрией (См. Геометрия) к числу старейших ветвей этой науки. Задачи, а также методы А., отличающие её от других отраслей математики, создавались постепенно, начиная с древности. А. возникла под влиянием нужд общественной практики, в результате поисков общих приёмов для решения однотипных арифметических задач. Приёмы эти заключаются обычно в составлении и решении уравнений.

    Задачи решения и исследования уравнений оказали большое влияние на развитие первоначального арифметического понятия числа (См. Число). С введением в науку отрицательных, иррациональных, комплексных чисел общее исследование свойств этих различных числовых систем тоже отошло к А. При этом в А. сформировались характерные для неё буквенные обозначения, позволившие записать свойства действий над числами в сжатой форме, удобной для построения исчисления над буквенными выражениями. Буквенное исчисление тождественных преобразований (См. Тождественное преобразование), давшее возможность преобразовывать по определённым правилам (отражающим свойства действий) буквенную запись результата действий, составляет аппарат классической А. Тем самым А. отграничилась от арифметики: А. изучает, пользуясь буквенными обозначениями, общие свойства числовых систем и общие методы решения задач при помощи уравнений; арифметика занимается приёмами вычислений с конкретно заданными числами, а в своих более высоких областях (см. Чисел теория)— более тонкими индивидуальными свойствами чисел. Развитие А., её методов и символики оказало очень большое влияние на развитие более новых областей математики, подготовив, в частности, появление анализа математического (См. Анализ математический). Запись простейших основных понятий анализа, таких, как переменная величина, функция, невозможна без буквенной символики, а в анализе, в частности в дифференциальном и интегральном исчислениях, полностью пользуются аппаратом классической А. Применение аппарата классической А. возможно всюду, где приходится иметь дело с операциями, аналогичными сложению и умножению чисел. Эти операции могут производиться при этом и не над числами, а над объектами самой различной природы. Наиболее известным примером такого расширенного применения алгебраических методов является векторная А. (см. Векторное исчисление). Векторы можно складывать, умножать на числа и множить друг на друга двумя различными способами. Свойства этих операций над векторами во многом похожи на свойства сложения и умножения чисел, но в некоторых отношениях отличны. Например, векторное произведение двух векторов Аи В некоммутативно, т. е. вектор С = [А,В]может не равняться вектору D =[В,А],наоборот, в векторном исчислении действует правило: [А,В] = — [В,А].

    Следом за векторной А. возникла А. тензоров (см. Тензорное исчисление), ставших одним из основных вспомогательных средств современной физики. В пределах самой классической А. возникла А. матриц (См. Матрица), а также многие другие алгебраические системы.

    Таким образом, А. в более широком, современном понимании может быть определена как наука о системах объектов той или иной природы, в которых установлены операции, по своим свойствам более или менее сходные со сложением и умножением чисел. Такие операции называются алгебраическими. А. классифицирует системы с заданными на них алгебраическими операциями по их свойствам и изучает различные задачи, естественно возникающие в этих системах, включая и задачу решения и исследования уравнений, которая в новых системах объектов получает новый смысл (решением уравнения может быть вектор, матрица, оператор и т. д.). Этот новый взгляд на А., вполне оформившийся лишь в 20 в., способствовал дальнейшему расширению области применения алгебраических методов, в том числе и за пределами математики, в частности в физике. Вместе с тем он укрепил связи А. с др. отделами математики и усилил влияние А. на их дальнейшее развитие.

    Исторический очерк

    Начальное развитие. Алгебре предшествовала арифметика, как собрание постепенно накопленных практических правил для решения повседневных житейских задач. Эти правила арифметики сводились к сложению, вычитанию, умножению и делению чисел, вначале только целых, а затем — постепенно и в очень медленном развитии — и дробных, Характерное отличие А. от арифметики заключается в том, что в А. вводится неизвестная величина; действия над ней, диктуемые условиями задачи, приводят к уравнению, из которого уже находится сама неизвестная. Намёк на такую трактовку арифметических задач есть уже в древнеегипетском папирусе Ахмеса (1700—2000 до н. э.), где искомая величина называется словом «куча» и обозначается соответствующим знаком — иероглифом (см. Папирусы математические). Древние египтяне решали и гораздо более сложные задачи (например, на арифметическую и геометрическую прогрессии). Как формулировка задачи, так и решение давались в словесной форме и только в виде конкретных численных примеров. И все же за этими примерами чувствуется наличие накопленных общих методов, если не по форме, то по существу равносильных решению уравнений 1-й и иногда 2-й степеней. Имеются и первые математические знаки (например, особый знак для дробей).

    В начале 20 в. были расшифрованы многочисленные математические тексты (клинописи) и другой из древнейших культур — вавилонской (см. Клинописные математические тексты). Это открыло миру высоту математической культуры, существовавшей уже за 4000 лет до наших дней. Вавилоняне с помощью обширных специальных таблиц умели решать разнообразные задачи; некоторые из них равносильны решению квадратных уравнений и даже одного вида уравнения 3-й степени. Среди учёных, разрабатывающих историю математики, возник спор о том, в какой мере математику вавилонян можно считать А. Нельзя, однако, забывать, что древняя математика едина. Разделение произошло гораздо позднее.

    В Древней Греции была отчётливо выделена геометрия. У древнегреческих геометров впервые сознательно поставлено исследование, каждый шаг которого оправдан логическим доказательством. Мощь этого метода так велика, что и чисто арифметические или алгебраические вопросы переводились на язык геометрии: величины трактовались как длины, произведение двух величин — как площадь прямоугольника и т. д. И в современном математическом языке сохранилось, например, название «квадрат» для произведения величины на самоё себя. Характерное для более древних культур единство научных знаний и практических приложений было в древнегреческой математике разорвано: геометрию считали логической дисциплиной, необходимой школой для философского ума, а всякого рода исчисления, т. е. вопросы арифметики и А., идеалистическая философия Платона не считала достойным предметом науки. Несомненно, эти отрасли также продолжали развиваться (на основе вавилонских и египетских традиций), но до нашего времени дошёл только трактат Диофанта Александрийского «Арифметика» (вероятно, 3 в.), в котором он уже довольно свободно оперирует с уравнениями 1-й и 2-й степеней; в зачаточной форме у него можно найти и употребление отрицательных чисел.

    Наследие древнегреческой науки восприняли учёные средневекового Востока — Средней Азии, Месопотамии, Северной Африки. Международным научным языком служил для них арабский язык (подобно тому как для учёных средневекового Запада таким языком был латинский), поэтому этот период в истории математики иногда называют «арабским». В действительности же одним из крупнейших научных центров этого времени (9—15 вв.) была Средняя Азия. Среди многих примеров достаточно назвать деятельность узбекского математика и астронома 9 в., уроженца Хорезма Мухаммеда аль-Хорезмии великого учёного-энциклопедиста Бируни, создание в 15 в. обсерватории Улугбека в Самарканде, Учёные средневекового Востока передали Европе математику греков и индийцев в оригинальной переработке, причём особенно много они занимались именно А. Само слово «алгебра» — арабское (аль-джебр) и является началом названия одного из сочинений Хорезми (аль-джебр означало один из приёмов преобразования уравнений). Со времени Хорезми А. можно рассматривать как отдельную отрасль математики.

    Математики средневекового Востока все действия излагали словами. Дальнейший прогресс А. стал возможным только после появления во всеобщем употреблении удобных символов для обозначения действий (см. Знаки математические). Этот процесс шёл медленно и зигзагами, Выше упоминалось о знаке дроби у древних египтян. У Диофанта буква i (начало слова isos, т. е. равный) применялась как знак равенства, были подобные сокращения и у индийцев (5—7 вв.), но затем эта зарождавшаяся символика снова терялась. Дальнейшее развитие А. принадлежит итальянцам, перенявшим в 12 в. математику средневекового Востока. Леонардо Пизанский (13 в.) — наиболее выдающийся математик этой эпохи, занимавшийся алгебраическими проблемами. Постепенно алгебраические методы проникают в вычислительную практику, в первое время ожесточённо конкурируя с арифметическими. Приспособляясь к практике, итальянские учёные вновь переходят к удобным сокращениям, например вместо слов «плюс» и «минус» стали употреблять латинские буквы p и t с особой чёрточкой сверху. В конце 15 в. в математических сочинениях появляются принятые теперь знаки + и —, причём есть указания, что эти знаки задолго до этого употреблялись в торговой практике для обозначения избытка и недостатка в весе.

    Быстро следует введение и всеобщее признание остальных знаков (степени, корня, скобок и т. д.). К середине 17 в. полностью сложился аппарат символов современной А. — употребление букв для обозначения не только искомого неизвестного, но и всех вообще входящих в задачу величин. До этой реформы, окончательно закрепленной Ф. Виетом (конец 16 в.), в А. и арифметике как бы нет общих правил и доказательств; рассматриваются исключительно численные примеры. Почти невозможно было высказать какие-либо общие суждения. Даже элементарные учебники этого времени очень трудны, т. к. дают десятки частных правил вместо одного общего, Виет первый начал писать свои задачи в общем виде, обозначая неизвестные величины гласными А, Е, I, ..., а известные — согласными В, С, D, .... Эти буквы он соединяет введёнными уже в то время знаками математических операций. Т. о. впервые возникают буквально формулы, столь характерные для современной А. Начиная с Р. Декарта (17 в.) для неизвестных употребляют преимущественно последние буквы алфавита (х, у, z).

    Введение символических обозначений и операций над буквами, заменяющими какие угодно конкретные числа, имело исключительно важное значение. Без этого орудия — языка формул — были бы немыслимы блестящее развитие высшей математики начиная с 17 в., создание математического анализа, математического выражения законов механики и физики и т. д.

    Содержание А. охватывало во время Диофанта уравнения 1-й и 2-й степеней. К уравнениям 2-й степени (т. н. квадратным) древнегреческие математики пришли, по-видимому, геометрическим путём, т. к. задачи, приводящие к этим уравнениям, естественно, возникают при определении площадей и построении окружности по различным данным. Однако в одном, очень существенном отношении решение уравнений у древних математиков отличалось от современного: они не употребляли отрицательных чисел. Поэтому даже уравнение 1-й степени (с точки зрения древних)не всегда имело решение. При рассмотрении уравнений 2-й степени приходилось различать много частных случаев (по знакам коэффициентов). Решающий шаг — применение отрицательных чисел — был сделан индийскими математиками (10 в.), но ученые средневекового Востока не пошли по этому пути. С отрицательными числами свыклись постепенно; этому особенно способствовали коммерческие вычисления, в которых отрицательные числа имеют наглядный смысл убытка, расхода, недостатка и т. д. Окончательно же отрицательные числа были приняты только в 17 в., после того как Декарт воспользовался их наглядным геометрическим представлением для построения аналитической геометрии.

    Возникновение аналитической геометрии (См. Аналитическая геометрия) было вместе с тем и торжеством А. Если раньше, у древних греков, чисто алгебраические задачи облекались в геометрическую форму, то теперь, наоборот, алгебраические средства выражения оказались уже настолько удобными и наглядными, что геометрические задачи переводились на язык алгебраических формул. Подробнее о постепенном расширении области чисел, употребляемых в математике, о введении отрицательных, иррациональных, мнимых чисел см. в ст.Число. Здесь же надо отметить, что необходимость введения всех этих чисел особенно настоятельно ощущалась как раз в А.: так, например, квадратные иррациональности (корни) возникают при решении уравнений 2-й степени. Конечно, уже древнегреческие и среднеазиатские математики не могли пройти мимо извлечения корней и придумали остроумные способы приближенного вычисления их; но взгляд на иррациональность как на число установился значительно позже. Введение же комплексных или «мнимых» чисел относится к следующей эпохе (18 в.).

    Итак, если оставить в стороне мнимые числа, то к 18 в. А. сложилась приблизительно в том объёме, который до наших дней преподаётся в средней школе. Эта А. охватывает действия сложения и умножения, с обратными им действиями вычитания и деления, а также возведение в степень (частный случай умножения) и обратное ему — извлечение корня. Эти действия производились над числами или буквами, которые могли обозначать положительные или отрицательные, рациональные или иррациональные числа. Указанные действия употреблялись в решении задач, по существу сводившихся к уравнениям 1-й и 2-й степеней. Теперь А. в этом объёме владеет каждый образованный человек. Эта «элементарная» А. применяется повседневно в технике, физике и др. областях науки и практики. Но содержание науки А. и её приложений этим далеко не ограничивается. Трудны и медленны были только первые шаги. С 16 в. и особенно с 18 в. начинается быстрое развитие А., а в 20 в. она переживает новый расцвет.

    На русском языке изложение элементарной А. в том виде, как она сложилась к началу 18 в., было впервые дано в знаменитой «Арифметике» Л. Ф. Магницкого (См. Магницкий), вышедшей в 1703.

    Алгебра в 18—19 вв. В конце 17 — начале 18 вв. произошёл величайший перелом в истории математики и естествознания: был создан и быстро распространился анализ бесконечно малых (дифференциальное и интегральное исчисления). Этот перелом был вызван развитием производительных сил, потребностями техники и естествознания того времени и подготовлен он был всем предшествующим развитием А. В частности, буквенные обозначения и действия над ними ещё в 16—17 вв. способствовали зарождению взгляда на математические величины как на переменные, что так характерно для анализа бесконечно малых, где непрерывному изменению одной величины обычно соответствует непрерывное изменение другой — её функции.

    А. и анализ развивались в 17—18 вв. в тесной связи. В А. проникали функциональные представления, в этом направлении её обогатил И. Ньютон. С другой стороны, А. принесла анализу свой богатый набор формул и преобразований, игравших большую роль в начальный период интегрального исчисления и теории дифференциальных уравнений. Крупным событием в А. этого периода было появление курса алгебры Л. Эйлера, работавшего тогда в Петербургской академии наук. Этот курс вышел сначала на русском языке (1768—69), а затем неоднократно издавался на иностранных языках. Отличие А. от анализа в 18—19 вв. характеризуется тем, что А. имеет своим основным предметом прерывное, конечное. Эту особенность А. подчеркнул в 1-й половине 19 в. Н. И. Лобачевский, назвавший свою книгу «Алгебра, или Вычисление конечных» (1834). А. занимается основными операциями (сложение и умножение), производимыми конечное число раз.

    Простейшим результатом умножения является одночлен, например 5a3bx2y. Сумма конечного числа таких одночленов (с целыми степенями) называется Многочленом. Если обратить внимание на одну из входящих в многочлен букв, например x, то можно придать ему вид:a0xn + a1xn-1 + ... + an, гдекоэффициенты ao, a1, ....,an уже не зависят от х. Это — многочлен n-й степени (другое наименование — полином, целая рациональная функция). А. 18—19 вв. и есть прежде всего А. многочленов.

    Объём А., т. о., оказывается значительно уже, чем объём анализа, но зато простейшие операции и объекты, составляющие предмет А., изучаются с большей глубиной и подробностью; и именно потому, что они простейшие, их изучение имеет фундаментальное значение для математики в целом. Вместе с тем А. и анализ продолжают иметь много точек соприкосновения, и разграничение между ними не является жёстким. Так, например, анализ перенял от А. её символику, без которой он не мог бы и возникнуть. Во многих случаях изучение многочленов, как более простых функций, пролагало пути для общей теории функций. Наконец, через всю дальнейшую историю математики проходит тенденция сводить изучение более сложных функций к многочленам или рядам многочленов: простейший пример — Тейлора ряд. С другой стороны, А. нередко пользуется идеей непрерывности, а представление о бесконечном числе объектов стало господствующим в А. последнего времени, но уже в новом, специфическом виде (см. ниже — Современное состояние алгебры).

    Если приравнять многочлен нулю (или вообще какому-либо определённому числу), мы получим алгебраическое уравнение. Исторически первой задачей А. было решение таких уравнений, т. е. нахождение их корней — тех значений неизвестной величины х, при которых многочлен равен нулю. С древних времён известно решение квадратного уравнения х2 + px + q =0в виде формулы:

    Алгебраическое решение уравнения 3-й и 4-й степеней было найдено в 16 в. Для уравнения вида x3+ px + q = 0 (к которому можно привести всякое уравнение 3-й степени) оно даётся формулой:

    Эта формула называется формулой Кардано, хотя вопрос о том, была ли она найдена самим Дж. Кардано или же заимствована им у других математиков, нельзя считать вполне решенным. Метод решения алгебраических уравнений 4-й степени указал Л. Феррари.После этого начались настойчивые поиски формул, которые решали бы уравнения и высших степеней подобным образом, т. с. сводили бы решение к извлечениям корней («решение в радикалах»). Эти поиски продолжались около трёх столетий, и лишь в начале 19 в. Н. Абель и Э. Галуа доказали, что уравнения степеней выше 4-й в общем случае в радикалах не решаются: оказалось, что существуют неразрешимые в радикалах уравнения n-й степени для любого n, большего или равного 5. Таково, например, уравнение x5 - 4x - 2 = 0. Это открытие имело большое значение, т. к. оказалось, что корни алгебраических уравнений — предмет гораздо более сложный, чем радикалы. Галуа не ограничился этим, так сказать, отрицательным результатом, а положил начало более глубокой теории уравнений, связав с каждым уравнением группу (См. Группа) подстановок его корней. Решение уравнения в радикалах равносильно сведению первоначального уравнения к цепи уравнений вида: ym= а, которое и выражает собой, что

    Сведение к таким уравнениям оказалось в общем случае невозможным, но возник вопрос: к цепи каких более простых уравнений можно свести решение уравнения заданного? Например, через корни каких уравнений корни заданного уравнения выражаются рационально, т. е. при помощи четырёх действий — сложения, вычитания, умножения и деления. В таком более широком понимании Галуа теория продолжает развиваться вплоть до нашего времени.

    С чисто практической стороны для вычисления корней уравнения по заданным коэффициентам не было особой необходимости в общих формулах решения для уравнений высших степеней, т. к. уже для уравнений 3-й и 4-й степеней такие формулы практически мало полезны. Численное решение уравнений пошло иным путём, путём приближённого вычисления, тем более уместным, что на практике (например, в астрономии и технике) и сами коэффициенты обычно являются результатом измерений, т. е. известны лишь приближённо, с той или иной точностью.

    Приближённое вычисление корней алгебраических уравнений является важной задачей вычислительной математики, и к настоящему времени разработано огромное число приёмов её решения, в частности с использованием современной вычислительной техники. Но математика состоит не только из описания способов вычисления. Не менее важна — даже для приложений — другая сторона математики: уметь чисто теоретическим путём, без вычислений, дать ответ на поставленные вопросы. В области теории алгебраических уравнений таким является вопрос о числе корней и их характере. Ответ зависит от того, какие числа мы рассматриваем. Если допустить положительные и отрицательные числа, то уравнение 1-й степени всегда имеет решение и притом только одно. Но уже квадратное уравнение может и не иметь решений среди т. н. действительных чисел; например, уравнение x2+ 2 = 0 не может быть удовлетворено ни при каком положительном или отрицательном х, т. к. слева всегда окажется положительное число, а не нуль. Представление решения в виде

    не имеет смысла, пока не будет разъяснено, что такое квадратный корень из отрицательного числа. Именно такого рода задачи и натолкнули математиков на т. н. мнимые числа. Ещё раньше отдельные смелые исследователи ими пользовались, но окончательно они были введены в науку только в 19 в. Эти числа оказались важнейшим орудием не только в А., но и почти во всех разделах математики и её приложений. По мере того как привыкали к мнимым числам, они теряли всякую таинственность и «мнимость», почему теперь их и называют чаще всего не мнимыми, а комплексными числами (См. Комплексные числа).

    Если допускать и комплексные числа, то оказывается, что любое уравнение n-й степени имеет корни, причём это верно и для уравнений с любыми комплексными коэффициентами. Эта важная теорема, носящая название основной теоремы А., была впервые высказана в 17 в. французским математиком А. Жираром, но первое строгое доказательство её было дано в самом конце 18 в. К. Гауссом, с тех пор были опубликованы десятки различных доказательств. Все эти доказательства должны были, в той или иной форме, прибегнуть к непрерывности; т. о., доказательство основной теоремы А. само выходило за пределы А., демонстрируя лишний раз неразрывность математической науки в целом.

    Если xi один из корней алгебраического уравнения

    a0xn + a1xn-1 + ... + an= 0,

    то легко доказать, что многочлен, стоящий в левой части уравнения, делится без остатка на х — xi. Из основной теоремы А. легко выводится, что всякий многочлен n-й степени распадается на nтаких множителей 1-й степени, т. е. тождественно:

    a0xn + a1xn-1 + ... +an = a0(x-x1)(x-x2) ... (x-xn),

    причём многочлен допускает лишь одно единственное разложение на множители такого вида.

    Таким образом, уравнение n-йстепени имеетn «корней». В частных случаях может оказаться, что некоторые из множителей равны, т. е. некоторые корни повторяются несколько раз (кратные корни); следовательно, число различных корней может быть и меньше n. Часто не так важно вычислить корни, как разобраться в том, каков характер этих корней. Как пример приведём найденное еще Декартом «правило знаков»: уравнение имеет не больше положительных корней, чем число перемен знака в ряду его коэффициентов (а если меньше, то на чётное число). Например, в рассмотренном выше уравнении x5 - 4x -2 =0 одна перемена знака (первый коэффициент — положительный, остальные — отрицательные). Значит, не решая уравнения, можно утверждать, что оно имеет один и только один положительный корень. Общий вопрос о числе действительных корней в заданных пределах решается Штурма правилом. Очень важно, что y уравнения с действительными коэффициентами комплексные корни могут являться только парами: наряду с корнем а + bi корнем того же уравнения всегда будет и a - bi. Приложения ставят иногда и более сложные задачи этого рода; так, в механике доказывается, что движение устойчиво, если некоторое алгебраическое уравнение имеет только такие корни (хотя бы и комплексные), у которых действительная часть отрицательна, и это заставило искать условия, при которых корни уравнения обладают этим свойством (см. Рауса - Гурвица проблема).

    Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т. е. системы т уравнений 1-й степени с n неизвестными:

    a11x1+...+a1nxn = b1,

    a21x1+...+a2nxn = b2,

    ...............................

    am1x1+...+amnxn = bm.

    Здесь x1..., xn —неизвестные, а коэффициенты записаны так, что значки при них указывают на номер уравнения и номер неизвестного. Значение систем уравнений 1-й степени определяется не только тем, что они — простейшие. На практике (например, для отыскания поправок в астрономических вычислениях, при оценке погрешности в приближённых вычислениях н т. д.) часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь (ввиду их чрезвычайной малости), так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г. Лейбниц (1700) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов aik и показал, как из этих коэффициентов (в случае m = n) строить т. н. определители (См. Определитель), при помощи которых исследуются системы линейных уравнений. Впоследствии такие таблицы, или матрицы (См. Матрица), стали предметом самостоятельного изучения, т. к. обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Теория систем линейных уравнений и теория матриц в настоящее время стали частями важной отрасли науки — линейной алгебры (См. Линейная алгебра).

    (По материалам статьи А.Г. Куроша и О. Ю. Шмидта из 2-го изд. БСЭ).

    Современное состояние алгебры

    Сфера приложений математики расширяется с течением времени, и темп этого расширения возрастает. Если в 18 в. математика стала основой механики и астрономии, то уже в 19 в. она стала необходимой для различных областей физики, а ныне математические методы проникают даже в такие, казалось бы далекие от математики области знания, как биология, лингвистика, социология и т.д. Каждая новая область приложений влечёт создание новых глав внутри самой математики. Эта тенденция привела к возникновению значительного числа отдельных математических дисциплин, различающихся по областям исследования (теория функций комплексного переменного, теория вероятностей, теория уравнений математической физики и т. д.; более новые — теория информации, теория автоматического управления и т. д.). Несмотря на такую дифференциацию, математика остаётся единой наукой. Это единство сохраняется благодаря развитию и совершенствованию ряда общих, объединяющих идей и точек зрения. Тенденция к объединению лежит в существе математики как науки, пользующейся методом абстракции и, кроме того, часто стимулируется тем, что при исследовании задач, возникающих в различных областях знания, приходится пользоваться одним и тем же математическим аппаратом.

    Современная А., понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Эту роль А. разделяет с топологией (См. Топология), в которой изучаются наиболее общие свойства непрерывных протяжённостей. А. и топология оказались, несмотря на различие объектов исследования, настолько связанными, что между ними трудно провести чёткую границу. Для современной А. характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми производятся эти операции. Попытаемся объяснить на простом примере, как это происходит. Всем известна формула (a+ b)2= а2 + 2аb + b2. Её выводом является цепочка равенств: (а + b)2= (a + b)(а + b) = (a + b)a + (а + b) b = (a2 + ba) + (ab + b2) = a2 + (ba + ab)+ b2 = a2 + 2ab + b2. Для обоснования мы дважды пользуемся законом дистрибутивности (См. Дистрибутивность):. с(а + b) = ca + cb (роль с играет а + b) и (a + b) с = ac + bc (роль с играют а и b), закон ассоциативности (См. Ассоциативность)при сложении позволяет перегруппировать слагаемые, наконец используется закон коммутативности (См. Коммутативность): ba = ab. Что представляют собой объекты, закодированные буквами а и b, остаётся безразличным; важно, чтобы они принадлежали системе объектов, в которой определены две операции — сложение и умножение, удовлетворяющие перечисленным требованиям, касающимся свойств операций, а не объектов. Поэтому формула останется верной, если а и b обозначают Векторы на плоскости или в пространстве, сложение принимается сперва как векторное сложение, потом как сложение чисел, умножение — как скалярное умножение векторов. Вместо а и b можно подставить коммутирующие матрицы (т. е. такие, что ab = ba, что для матриц может не выполняться), операторы дифференцирования по двум независимым переменным и т. д.

    Свойства операций над математическими объектами в разных ситуациях иногда оказываются совершенно различными, иногда одинаковыми, несмотря на различие объектов. Отвлекаясь от природы объектов, но фиксируя определённые свойства операций над ними, мы приходим к понятию множества, наделённого алгебраической структурой, или алгебраической системы. Потребности развития науки вызвали к жизни целый ряд содержательных алгебраических систем: группы (См. Группа), линейные пространства (См. Линейное пространство), поля (См. Поле), кольца (См. Кольцо) и т.д. Предметом современной А. в основном является исследование сложившихся алгебраических систем, а также исследование свойств алгебраических систем вообще, на основе ещё более общих понятий (Q-алгебры, модели). Кроме этого направления, носящего название общей А., изучаются применения алгебраических методов к др. разделам математики за её пределами (топология, функциональный анализ, теория чисел, алгебраическая геометрия, вычислительная математика, теоретическая физика, кристаллография и т. д.).

    Наиболее важными алгебраическими системами с одной операцией являются группы. Операция в группе ассоциативна [т. е. верно (a * b) * с = а * (b * с) при любых а, b,с из группы; звёздочкой * обозначена операция, которая в разных ситуациях может иметь разные названия] и однозначно обратима, т.е. для любых а и b из группы найдутся единственные х, у, такие, что а * х = b, у * а = b. Примерами групп могут служить: совокупность всех целых чисел относительно сложения, совокупность всех рациональных (целых и дробных) положительных чисел относительно умножения. В этих примерах операция (сложение в первом, умножение во втором) перестановочна. Такие группы называют абелевыми. Совокупности движений, совмещающих данную фигуру или тело с собой, образуют группу, если в качестве операции взять последовательное осуществление двух движений. Такие группы (группы симметрии фигуры) могут быть неабелевыми. Движения, совмещающие с собой атомную решётку кристалла, образуют т. н. федоровские группы, играющие основную роль в кристаллографии и через нее в физике твёрдого тела. Группы могут быть конечными (группы симметрии куба) и бесконечными (группы целых чисел по сложению), дискретными (тот же пример) и непрерывными (группа вращений сферы). Теория групп стала разветвленной, богатой содержанием математической теорией, имеющей обширную область приложений. Не менее богатой приложениями является линейная А., изучающая линейные пространства. Под этим названием понимаются алгебраические системы с двумя операциями — сложением и умножением на числа (действительные или комплексные). Относительно сложения объекты (называемые векторами) образуют абелеву группу, операция умножения удовлетворяет естественным требованиям:

    а (х + у) = ax + ау, (а + b) х = ax + bx, 1․x = х, a(bx) = ab(x);

    здесь а и b обозначают числа, х и у — векторы. Множества векторов (в обычном понимании) на плоскости и в пространстве образуют линейные пространства в смысле данного определения. Однако задачи, стоящие перед математикой, заставляют рассматривать многомерные и даже бесконечномерные линейные пространства. Последние (их элементами чаще всего являются функции) составляют предмет изучения функционального анализа (См. Функциональный анализ).Идеи и методы линейной А. применяются в большинстве разделов математики, начиная с аналитической геометрии и теории систем линейных уравнений. Теория матриц и определителей составляет вычислительный аппарат линейной А.

    О других алгебраических системах, указанных выше, см. соответствующие статьи и литературу при них.

    Д. К.Фаддеев.

    Лит.:История алгебры. Выгодский М. Я., Арифметика и алгебра в древнем мире, 2 изд., М., 1967; Юшкевич А. П., История математики в средние века, М., 1961; Вилейтнер Г., История математики от Декарта до середины XIX столетия, пер. с нем., 2 изд., М., 1966.

    Классики науки. Декарт P., Геометрия, пер. с латин., М. — Л., 1938; Ньютон И., Всеобщая арифметика, или книга об арифметических синтезе и анализе, пер. с лат., М., 1948; Эйлер Л., Универсальная арифметика, пер. с нем., т. 1 — 2, СПБ. 1768 — 69; Лобачевский Н. И., Полное собрание сочинений, т. 4 — Сочинения по алгебре, М. — Л., 1948: Галуа Э., Сочинения, пер. с франц., М. — Л., 1936.

    Университетские курсы. Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968: Гельфанд И. М., Лекции по линейной алгебре, 3 изд., М. , 1966: Мальцев А. И., Основы линейной алгебры, М. — Л., 1948.

    Монографии по общим вопросам алгебры.Ван-дер-Варден Б. Л., Современная алгебра, пер. с нем., 2 изд., ч. 1 — 2, М. — Л., 1947; Бурбаки Н., Алгебра, пер. с франц., [гл. 1 — 9], М., 1962 — 66; Курош А. Г., Лекции по общей алгебре, М., 1962.

    Монографии по специальным разделам алгебры. Шмидт О., Абстрактная теория групп, 2 изд., М. — Л., 1933; Курош А. Г., Теория групп, 3 изд., М., 1967; Понтрягин Л. С., Непрерывные группы, 2 изд., М., 1954; Чеботарев Н. Г., Основы теории Галуа, ч. 1 — 2, М. — Л., 1934 — 37; Джекобсон Н., Теория колец, пер. с англ., М., 1947.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. а́лгебра;
    2. а́лгебры;
    3. а́лгебры;
    4. а́лгебр;
    5. а́лгебре;
    6. а́лгебрам;
    7. а́лгебру;
    8. а́лгебры;
    9. а́лгеброй;
    10. а́лгеброю;
    11. а́лгебрами;
    12. а́лгебре;
    13. а́лгебрах.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Даля

    жен. наука счисления буквами и другими условными знаками, взамен цифр, которые вставляются только при окончательном выводе; буквосчисление, общая арифметика. Алгебраический, алгебрический, к сему способу относящийся. Алгебраист, алгебрист муж. сведущий в науке этой.

  7. Источник: Толковый словарь Даля. В.И. Даль. 1863-1866.



  8. Толковый словарь Ожегова

    А́ЛГЕБРА, -ы, жен. Раздел математики, изучающий такие качества величин, к-рые вытекают из отношений между величинами и не зависят от их природы.

    | прил. алгебраический, -ая, -ое.

  9. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  10. Малый академический словарь

    , ж.

    Раздел математики, изучающий общие приемы действий над величинами, независимо от их числовых значений.

    [лат. algebra из араб.]

  11. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  12. Толковый словарь Ушакова

    А́ЛГЕБРА, алгебры, мн. нет, жен. (от араб.). Отдел математики, часть математического анализа (см. анализ).

  13. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  14. Толковый словарь Ефремовой

    ж.

    1.

    Раздел математики, изучающий свойства переменных числовых величин и общих методов решения задач при помощи уравнений.

    2.

    Учебный предмет, содержащий основы данного раздела математики.

    3.

    разг.

    Учебник, излагающий содержание данного учебного предмета.

  15. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  16. Большой энциклопедический словарь

    АЛГЕБРА (араб.) - часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.

  17. Источник: Большой Энциклопедический словарь. 2000.



  18. Современная энциклопедия

    АЛГЕБРА, часть математики, развившаяся в связи с задачей о решении алгебраических уравнений. Слово "алгебра" - арабское (аль-джебр), означает один из приемов преобразования алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности (2-е тысячелетие до нашей эры). В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В начале 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, например, над многочленами, векторами, матрицами и т.д.

  19. Источник: Современная энциклопедия. 2000.



  20. Энциклопедия Брокгауза и Ефрона

  21. Источник: Энциклопедия Брокгауза и Ефрона



  22. Этимологический словарь русского языка Макса Фасмера

    а́лгебра с 1717 г. (см. Смирнов 34), из нем. Algebra (араб. происхождения).

  23. Источник: Этимологический словарь русского языка Макса Фасмера



  24. Большой англо-русский и русско-английский словарь

    жен. algebra матричная алгебра ≈ matrix algebra линейная алгебра ≈ linear algebra мат. алгебра Ли ≈ Lie algebra мат.ж. algebra;
    ~ический algebraic(al).

  25. Источник: Большой англо-русский и русско-английский словарь



  26. Англо-русский словарь технических терминов

    algebra

  27. Источник: Англо-русский словарь технических терминов



  28. Русско-английский словарь математических терминов

    f.algebra; алгебра логики, Boolean algebra; алгебра Ли, Lie algebra; алгебра с делением, division algebra

  29. Источник: Русско-английский словарь математических терминов



  30. Большой немецко-русский и русско-немецкий словарь

    алгебраAlgebra {f}

  31. Источник: Большой немецко-русский и русско-немецкий словарь



  32. Большой немецко-русский и русско-немецкий словарь

    алгебра ж Algebra f

  33. Источник: Большой немецко-русский и русско-немецкий словарь



  34. Большой немецко-русский и русско-немецкий словарь

    ж

    Algebra f

  35. Источник: Большой немецко-русский и русско-немецкий словарь



  36. Большой французско-русский и русско-французский словарь

    ж.

    algèbre f

  37. Источник: Большой французско-русский и русско-французский словарь



  38. Большой испано-русский и русско-испанский словарь

    ж.

    álgebra f

  39. Источник: Большой испано-русский и русско-испанский словарь



  40. Большой итальяно-русский и русско-итальянский словарь

    ж.

    algebra

  41. Источник: Большой итальяно-русский и русско-итальянский словарь



  42. Научно-технический энциклопедический словарь

    АЛГЕБРА, область МАТЕМАТИКИ, посвященная изучению уравнений, содержащих цифры и буквенные обозначения, которые представляют величины, подлежащие определению. Например, у+х=8 - это алгебраическое уравнение, содержащее переменные х и у. Если значение х будет задано, можно определить величину у, и наоборот. Слово «алгебра» происходит от арабского «al-jabr», что значит «найти неизвестное». см. также АЛГЕБРАИЧЕСКИЕ ОПЕРАЦИИ,БУЛЕВА АЛГЕБРА,СИСТЕМА УРАВНЕНИЙ.

  43. Источник: Научно-технический энциклопедический словарь



  44. Энциклопедия Кольера

    раздел элементарной математики, в котором арифметические операции производятся над числами, значения которых заранее не заданы. Преимущества алгебраических методов обусловлены использованием достаточно компактных символических систем, что внешне выглядит как самая характерная их черта. Термин "алгебра" применяется также для обозначения более абстрактных областей математики, в которых символы используются сходным образом, но необязательно при этом представляют числа

    (см. также АЛГЕБРА АБСТРАКТНАЯ; МНОЖЕСТВ ТЕОРИЯ). Для представления чисел можно использовать любые символы, но обычно для этого берут буквы латинского алфавита. Если x и y - два числа, то их сумма обозначается x + y, а разность x - y, т.е. как в арифметике. Так как знак умножения * легко спутать с буквой x, в алгебре знак * используется редко; обычно произведение чисел x и y обозначается xЧy или просто xy. (Знакомые всем позиционные обозначения, используемые при записи целых чисел и означающие, например, что 23 - это не два умножить на три, а два десятка плюс три единицы, в алгебре не применяются.) Аналогично, если одно из встречающихся в задаче чисел указано явно или заранее известно, например число 2, то сумма двойки и любого не указанного заранее числа x алгебраически записывается в виде 2 + x или x + 2, а произведение - как 2x. Множитель 2 в произведении 2x обычно называют коэффициентом. Частные, как правило, записывают в виде дробей; допустима запись x е y, но или (из соображений удобства набора) x/y встречается гораздо чаще. Символ = означает "равно", символ № - "не равно". Например, пусть x - число (если оно существует), такое, что если его удвоить, то оно совпадет с самим собой, увеличенным на три. Чтобы найти x ("неизвестное"), мы можем рассуждать на словах, как это и делали первые алгебраисты до изобретения символических систем, но гораздо эффективнее воспользоваться алгебраическими обозначениями. По условиям задачи, требуется, чтобы 2x = x + 3.

    Такое представление равенства двух чисел называется уравнением. Пользуясь известными из арифметики правилами операций над числами, уравнение можно упростить. Если число x удовлетворяет уравнению, то числа 2x и x + 3 равны. Вычитая по x из каждого числа, мы снова получим равные числа, следовательно, можно записать x = 3, и задача решена (см. также АРИФМЕТИКА; ЧИСЛО). Заметим, что вычитание x из обеих частей уравнения приводит к такому же результату, как если бы мы взяли x из правой части уравнения и перенесли его в левую часть с другим знаком, т.е. как -x, в результате чего мы получим уравнение 2x - x = 3,

    откуда x = 3. Аналогично, если два числа равны, будут равны также их удвоенные величины и их половины, а в более общем случае будут равны результаты их умножения на одно и то же число. Отсюда следует правило, согласно которому обе части уравнения можно умножать или делить на одно и то же число (кроме нуля). Например, из уравнения 3x = 6 мы заключаем, что x = 2. С другой стороны, если x = 1 и, следовательно, x - 1 = 0, мы не можем делить на x - 1 обе части уравнения x - 1 = 0; если же мы все-таки разделим, то скорее всего получим неверный результат, который можно записать в виде "равенства" 1 = 0.

    Символы группировки. Огромные возможности алгебраических символов в полной мере раскрываются лишь когда необходимо записать уравнения более сложные, чем те, которые встречались нам до сих пор. В тех случаях, когда требуется изменить порядок выполнения операций, используются символы группировки членов, главным образом круглые скобки (), квадратные скобки [[]] и фигурные скобки {}. В некоторых случаях порядок выполнения операций несуществен, например, как в выражении 2 + 3 + 4; не важно, прибавим ли мы сначала 2 к 3, а затем прибавим результат, равный 5, к 4, или сначала прибавим 3 к 4, а затем полученную сумму, равную 7, прибавим к 2. Объясняется это тем, что сложение действительных чисел подчиняется закону ассоциативности. С другой стороны, смысл выражения 12 е 2 е 3 совершенно неясен: оно могло бы означать, что 12 следует разделить на 2 (и получить частное, равное 6), а затем полученный результат разделить на 3 и получить 2; или же что 2 следует разделить на 3 и получить частное, равное 2/3, а затем 12 разделить на 2/3 и получить 18. Чтобы исключить столь различные толкования, мы можем записать исходное выражение в виде (12 е 2) е 3 в первом случае и как 12 е (2 е 3) - во втором. Согласно принятому соглашению, операции, указанные в круглых скобках, выполняются первыми. В некоторых случаях смысл выражения определяет принятое соглашение о порядке выполнения операций, без которого выражение допускало бы различные толкования. Например, принято считать, что 2Ч3 + 4 означает 6 + 4, т.е. 10, а не 2*7, т.е. 14. Таким образом, если нет операций, заключенных в скобки, то сначала выполняются последовательно умножение и деление, а затем - сложение и вычитание. Если же мы хотим, чтобы сначала была выполнена операция сложения, то необходимо записать 2*(3 + 4) или просто 2(3 + 4). Используя закон дистрибутивности, это выражение можно упростить: 2(3 + 4) = (2*3) + (2*4). Если встречаются несколько скобок, круглых, прямоугольных и фигурных, то выполнять действия нужно, начиная с внутренних скобок; например, 2{3 + 4[[6 - (2 + 3)]]}

    раскрывается последовательно следующим образом: 2{3 + 4[[6 - 5]]} = 2{3 + 4} = 2*7 = 14. К числам, представленным символами, следует применять те же правила, которые определяются свойствами чисел. Например, x + 2(3 - x) = x + 2*3 - 2x = 6 - x;

    здесь мы воспользовались законом дистрибутивности, а затем законами ассоциативности и коммутативности сложения. Аналогично,

    В этом примере мы помимо законов дистрибутивности, коммутативности и ассоциативности, воспользовались правилом, согласно которому произведение положительного и отрицательного чисел отрицательно, а произведение двух отрицательных чисел положительно.

    Системы уравнений. В некоторых задачах требуется найти одновременно несколько чисел, для чего необходимо решить несколько уравнений. Предположим, например, что возраст Джона и удвоенный возраст Мэри вместе составляют 32 года, а если бы Джон был вдвое старше, а Мэри на четыре года младше, то им вместе было бы 24 года. Сколько лет Джону и Мэри? Обозначим возрасты Джона и Мэри любыми буквами, например, соответственно j и m. Тогда первое утверждение относительно возрастов можно записать в виде

    а второе - в виде

    или после упрощения как

    Когда два (или больше) числа удовлетворяют двум, как в данном случае, или большему числу уравнений, говорят, что эти числа удовлетворяют системе уравнений. Существуют несколько методов решения систем уравнений. В нашей задаче уравнение (1) (его правую и левую части) можно умножить на 2:

    Уравнение (2) утверждает, что 2j + m и 28 - одно и то же число; уравнение (3), если оно верно, останется в силе, если мы вычтем это число из его правой и левой частей, а именно: из левой части мы вычтем 2j + m, а из правой - число 28. В результате мы получим 3m = 36,

    откуда m = 12 (т.е. Мэри 12 лет). Используя информацию, содержащуюся в уравнении (1), мы получаем j + 24 = 32 и, следовательно, j = 8 (т.е. Джону 8 лет). Другие методы решения систем уравнений мы продемонстрируем на следующих примерах (каждый из методов пригоден для решения любой из приведенных задач). Предположим, что руководителю предприятия выплачивается 20%-я премия от чистой прибыли, вычисляемой вычитанием из прибыли налогов, но не его премии, и что налоги взимаются в размере 30% от общей прибыли за вычетом причитающейся руководителю премии, но не самих налогов. Предположим, что общая прибыль до вычитания премии и налогов составляет 50 000 долларов. Какова премия и каковы налоги? Задача может показаться неразрешимой, если подходить к ней с позиций арифметики, так как ни премия, ни налоги не могут быть представлены в численном виде, пока мы не узнаем хотя бы одну из этих величин. Однако с помощью алгебраических методов справиться с решением такой задачи не составляет труда. Если обозначить величину премии через b, а размер взимаемых налогов через t, то b = 0,2(50 000 - t), t = 0,3(50 000 - b).

    Здесь первое из уравнений утверждает, что b = 10 000 - 0,2t; используя это обстоятельство во втором уравнении, последовательно находим:

    или после округления до ближайших целых чисел (долларов) t = 12 766$, b = 7447$.

    Системы линейных уравнений вроде этих можно решать с помощью определителей. В более сложных случаях мы можем воспользоваться различными численными методами их решения. См. также ОПРЕДЕЛИТЕЛЬ. Степени и радикалы. Обозначение x2 (читается "икс в квадрате") используется для сокращенной записи произведения xx (т.е. "икс раз по икс"); например, 32 = 9 и (-1/2)2 = 1/4. Число 2 в этой записи называется показателем степени. Аналогичный смысл имеют более высокие показатели степени: x3 (читается "икс в кубе") означает xxx, а xn (читается "икс в степени n") означает произведение n сомножителей x. Например, 25 = 2*2*2*2*2 = 32. Само число x можно записать как x1 (икс в первой степени), но показатель 1 обычно опускается. Так как 22Ч23 = 25 и вообще xmЧxn = xm+n (в этом нетрудно убедиться, если воспользоваться определением степеней), мы приходим к определениям отрицательных и нулевого показателей степеней: x- n = 1/xn и x0 = 1. Например, 2- 3 = (1/2)3 = 1/8; 20 = 1. (Для нуля отрицательные и нулевая степени не определены.) Равенство xm*xn = xm+n - одно из трех фундаментальных правил действий над степенями, два других правила имеют вид xm*ym = (xy)m и (xm)n = xmn. Например, 23*33 = 63 и (23)4 = 212 = 4096. Повторные показатели следует интерпретировать следующим образом: означает. Таким образом, означает. Это число часто приводят как наибольшее число, которое можно записать с помощью трех цифр. Корнем n-й степени из числа x называется число, n-я степень которого совпадает с x. При n = 2 или n = 3 корни называются соответственно квадратным и кубическим. Например, 3 и -3 - квадратные корни из 9, так как 32 = 9 и (-3)2 = 9; 2 - кубический корень из 8, т.к. 23 = 8; -2 - кубический корень из -8; 1/2 - кубический корень из 1/8. У любого положительного числа существуют два квадратных корня, один положительный и один отрицательный. Положительный квадратный корень из x обозначается, поэтому. (Символ - стилизованная буква латинского алфавита r, первая буква латинского слова "radix" - корень.) Произвольное положительное число имеет n корней n-й степени; если n четно, то оба корня - действительные; если n нечетно, то действительным является один корень. Если x - положительное число, то символ означает положительный корень n-й степени при четном n; если x - положительное или отрицательное число, то означает один из действительных корней n-й степени при нечетном n. Например,,,,,, называются радикалами. Простые радикалы, выражающие иррациональные числа, например,,, и поныне называются несколько устаревшим термином "иррациональности". Следует подчеркнуть, что всегда означает положительный квадратный корень, так что, например, только в том случае, если y - положительное число; если же y отрицательно, то означает положительное число-y. Альтернативные обозначения корней основаны на использовании дробных степеней и предпочтительны с точки зрения удобства типографского набора. Если считать, что дробные показатели степеней должны подчиняться тем же законам, что и целые, то x1/2x1/2 должно означать (x1/2)2 = x1/2Ч2 = x; по определению мы полагаем. Аналогично, x1/n означает корень n-й степени из x, поэтому, например, 81/3 = 2. Естественно, xp/q означает p-ю степень корня q-й степени из числа x или имеет альтернативный (при положительных x - эквивалентный) смысл корня q-й степени из p-й степени числа x. Например, 82/3 = 22 = 4 или 82/3 = 641/3 = 4; 8-2/3 = 1/4. Определения дробных и отрицательных степеней положительных чисел выбраны так, чтобы при работе с ними сохранялись правила действий с целыми положительными степенями. Например,

    Определить степени отрицательных или комплексных чисел так, чтобы и для них выполнялись все без исключения правила действий над степенями, не представляется возможным. См. также ЛОГАРИФМ.

    Тождества. Важную часть алгебры составляют формулы, которые можно использовать для упрощения сложных выражений. Например, справедливо следующее соотношение: (a + b)(c + d) = ac + bc + ad + bd.

    Такое равенство называется тождеством; под этим понимается, что независимо от того, какие числа были обозначены символами a, b, c, d, результат выполнения операций, указанных в левой части равенства, совпадает с результатом операций, указанных в правой части равенства. Кстати сказать, приведенное выше тождество используется в арифметике при решении, например, таких задач: 25*36 = (20 + 5)(30 + 6) = 600 + 150 + 120 + 30;

    обычная форма записи, принятая при выполнении вычислений, является сокращенной формой этого тождества. Другие тождества, такие как

    могут использоваться как для упрощения решений в арифметике, так и для строго алгебраических целей. Например, 101*99 = (100 + 1)(100 - 1) = 1002 - 12 = 9999. Первые две из приведенных формул являются частными случаями (с показателем 2) бинома Ньютона (см. также НЬЮТОНА БИНОМ). Эти тождества можно читать и в обратную сторону, т.е. справа налево, для записи алгебраических выражений в виде произведения множителей, например,

    Такая факторизация (разложение на множители) полезна при решении уравнений. Раскрыв произведение (ax + b)(cx + d), мы получим тождество (ax + b)(cx + d) = acx2 + (bc + ad)x + bd.

    Довольно часто приходится сталкиваться с задачей представления в виде произведения двух множителей выражений типа x2 - x - 6. Если такое представление с целочисленными коэффициентами возможно, то его можно попытаться найти путем подбора коэффициентов (в рассматриваемом случае x2 - x - 6 = (x - 3)(x +2)).

    Многочлены и уравнения. Многочленом называется выражение 2x3 - 5x2 + 6x - 1, в общем виде представляющее собой сумму целочисленных степеней одного и того же числа, взятых с заданными коэффициентами. С помощью десятичной записи целые числа можно представлять в виде многочленов по степеням числа 10, например, 365 = 3*(102) + 6(10) + 5. Если число x в выражении 2x3 - 5x2 + 6x - 1 не задано и может принимать значения из некоторого множества чисел, то оно называется переменной, и формула 2x3 - 5x2 + 6x - 1 определяет некоторую функцию, область определения которой совпадает с тем множеством значений, которые может принимать x. Такая функция называется полиномиальной или для краткости просто полиномом (многочленом); обычно областью определения многочлена принято считать область всех вещественных чисел или множество всех комплексных чисел

    (см. ФУНКЦИЯ). Степенью многочлена называют высшую степень входящей в него переменной, например, 2x3 - 5x2 + 6x - 1 - многочлен третьей степени. Любое число, отличное от нуля, рассматриваемое как функция (постоянная, или константа), представляет собой многочлен нулевой степени. Многочлены степеней 1, 2, 3, 4 называются соответственно линейными, квадратными, кубическими и биквадратными. Многочлены можно складывать и умножать так же, как числа, за исключением операции переноса единицы в старший разряд. Последнее вполне естественно, т.к. обычный способ записи чисел по существу является их представлением в виде многочлена по степеням числа 10. Например, чтобы найти сумму многочленов 2x3 - 3x2 + 4x + 5 и x2 + 3x - 2, мы записываем

    чтобы найти произведение тех же многочленов, мы записываем

    Алгебраическое уравнение (в стандартной форме) - это записанное в алгебраических обозначениях утверждение о том, что некоторая полиномиальная функция обращается в нуль при некотором значении или некоторых значениях переменной (которые требуется найти; например, x2 - 5x + 6 = 0 - алгебраическое уравнение). Уравнение типа 5 - 2x = 6x2 - 3x, приводимое к стандартному алгебраическому уравнению, также называется алгебраическим уравнением. В тех разделах математики, где неалгебраические уравнения (например, ex + 2sin x = 3) не встречаются, вместо слов "алгебраическое уравнение" обычно говорят просто "уравнение". Значения переменной, при которых многочлен обращается в нуль, называются корнями многочлена; они также являются корнями уравнения, получающегося, если многочлен приравнять нулю. Например, многочлен x2 - 5x + 6 имеет корни 2 и 3, т.к. 22 - 5Ч2 + 6 = 0 и 32 - 5Ч3 + 6 = 0; уравнение x2 - 5x + 6 = 0 также имеет корни 2 и 3. Заметим, однако, что в многочлене x2 - 5x + 6 переменная x означает любое число из области определения функции; в уравнении же x2 - 5x + 6 = 0 неизвестная величина x означает одно из чисел, удовлетворяющих уравнению, т.е. превращающих его в тождество, а именно 2 или 3. Линейное уравнение общего вида можно записать как ax + b = 0, где a(№ 0) и b - два заданных числа. Оно имеет решение x = -b/a; таким образом, линейное (степени 1) уравнение имеет ровно один корень. Квадратное уравнение имеет вид ax2 + bx + c = 0. Некоторые простые квадратные уравнения удается решить методом факторизации: если уравнение имеет вид x2 - 5x + 6 = 0,

    то его можно также записать в эквивалентной форме (x - 3)(x - 2) = 0,

    а последнее выполняется только в том случае, когда x = 3 или x = 2 (т.к. произведение двух чисел равно нулю лишь когда один из сомножителей равен нулю). Следовательно, у интересующего нас уравнения два корня: 2 и 3. Было установлено, что квадратное уравнение обычно имеет два корня, хотя, например, у уравнения x2 - 4x + 4 = 0

    только один корень. Считается, что в этом случае оба корня уравнения совпадают, так как многочлен, стоящий в левой части уравнения, можно представить в виде двух линейных сомножителей x2 - 4x + 4 = (x - 2)(x - 2).

    Квадратное уравнение типа x2 + 2x + 4 = 0

    не имеет действительных корней, т.к. x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x + 1)2 + 3, т.е. значение многочлена x2 + 2x + 4 положительно при любом действительном x; однако у этого уравнения есть, как будет показано ниже, два комплексных корня. Так называемая основная теорема алгебры утверждает, что любой многочлен положительной степени n можно разложить в произведение n линейных сомножителей (возможно, с использованием комплексных чисел), поэтому в общем случае можно сказать, что алгебраическое уравнение степени n имеет n корней (хотя значения некоторых корней могут совпадать). Общий метод решения квадратного уравнения (называемый дополнением до полного квадрата) основан на идее, с помощью которой мы показали, что у уравнения x2 + 2x + 4 = 0 нет действительных корней. В качестве примера мы выберем уравнение, имеющее действительные корни: x2 + 2x - 2 = 0.

    Запишем это уравнение в виде x2 + 2x = 2

    и прибавим к правой и левой части по 1: x2 + 2x + 1 = 3.

    В левой части теперь стоит полный квадрат, поэтому (x + 1)2 = 3.

    Это означает, что число x + 1 - один из квадратных корней из 3, т.е.

    откуда

    Обычно для краткости это записывают так:

    что следует понимать как альтернативу (x принимает либо одно, либо другое значение), но отнюдь не как утверждение о том, будто x принимает два значения одновременно. Следуя той же самой процедуре, мы можем решить квадратное уравнение в общем виде и получить формулу для его корней. Запишем уравнение в виде ax2 + bx + c = 0, где a № 0,

    перенесем свободный член в правую часть с противоположным знаком и разделим каждый член уравнения на a:

    Тогда

    Если величина b2 - 4ac отлична от нуля, то радикал следует понимать как любой из двух квадратных корней из b2 - 4ac, один из которых - положительный, а другой - отрицательный, поэтому полученная формула дает ровно два корня; если величина b2 - 4ac равна нулю, то x = -b/(2a), и мы говорим, что уравнение имеет два равных корня. Если величина b2 - 4ac положительна, то никаких трудностей с извлечением квадратного корня не возникает. Если же величина b2 - 4ac отрицательна, то нам приходится вводить мнимую единицу i, определяемую как квадратный корень из -1, и корни уравнения становятся комплексными. Так, если, например, b2 - 4ac = -4, то

    См. также ЧИСЛО. Чтобы продемонстрировать, как действует формула для корней квадратного уравнения в случае, когда b2 - 4ac < 0, рассмотрим уравнение 2x2 - 4x + 3 = 0.

    Здесь a = 2, b = -4, c = 3, и корни равны

    Формула для корней квадратного уравнения остается в силе и в том случае, когда коэффициенты уравнения - комплексные числа, но приводит к необходимости извлекать квадратный корень из комплексного числа, а поэтому менее удобна, чем в случае действительных коэффициентов. Формулы для корней уравнений третьей и четвертой степеней (кубических и биквадратных уравнений) выглядят гораздо сложнее, а для уравнений пятой и более высоких степеней они существуют лишь в отдельных случаях. Когда же коэффициенты уравнения достаточно сложны, например, выражаются числами со многими значащими цифрами, такие формулы не имеют практического значения, и гораздо эффективнее воспользоваться приближенными методами.

    См. также УРАВНЕНИЯ. Неравенства. Символы > и < означают соответственно "больше, чем" и "меньше, чем"; например, 2 < 4 и -3 > -5. Неравенства, содержащие неизвестное число, можно решать, пользуясь методами, похожими на те, которыми решают уравнения. Применимы три правила: (i) из обеих частей неравенства можно вычитать одно и то же число, к обеим частям неравенства можно прибавлять одно и то же число; (ii) обе части неравенства можно умножать на одно и то же положительное число (но не на нуль); (iii) при умножении обеих частей неравенства на одно и то же отрицательное число смысл неравенства изменяется на противоположный (т.е. вместо "больше, чем" неравенство переходит в "меньше, чем" и наоборот). В качестве примера решим неравенство -2x - 7 > 2 - 5x.

    Пользуясь правилом (i), заменим это неравенство новым: -7 > 2 - 3x,

    или -9 > -3x.

    По правилу (iii) последнее неравенство эквивалентно неравенству 9 < 3x,

    а по правилу (ii) это неравенство, в свою очередь, эквивалентно неравенству 3 < x.

    Таким образом, числа x, удовлетворяющие неравенству -2x - 7 > 2 - 5x, это в точности те самые числа, которые больше 3. При умножении на множитель, содержащий неизвестную величину, следует иметь в виду, что этот множитель может быть как отрицательным, так и положительным.

    См. также РЯДЫ; ПРОГРЕССИЯ.

    ЛИТЕРАТУРА

    Курош А.Г. Курс высшей алгебры. М., 1975 Скорняков Л.А. Элементы алгебры. М., 1980

  45. Источник: Энциклопедия Кольера



  46. Энциклопедический словарь

    А́ЛГЕБРА -ы; ж. [лат. algebra из араб.].

    1. Раздел математики, изучающий общие приёмы действий над величинами (выраженными буквами), независимо от их числовых значений.

    2. Учебная дисциплина и урок по изучению этого раздела математики в средней школе. Получить пятёрку по алгебре. Опоздать на алгебру. Прогулять алгебру. Не в ладах с алгеброй кто-л. (о том, кто плохо понимает, не разбирается в этой дисциплине). На алгебре занимались повторением (разг.). // Учебник по этой дисциплине. Листать алгебру.

    * * *

    а́лгебра

    (араб.), часть математики, развившаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно ещё с древности. В XVI в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или комплексных. В начале XIX в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, например, над многочленами, векторами, матрицами и т. д.

    * * *

    АЛГЕБРА

    А́ЛГЕБРА (араб.), часть математики(см. МАТЕМАТИКА), развивающаяся в связи с задачей о решении алгебраических уравнений(см. АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ). Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом(см. ГАУСС Карл Фридрих) установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В нач. 19 в. Н. Абель(см. АБЕЛЬ Нильс Хенрик) и Э. Галуа(см. ГАЛУА Эварист) доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами(см. МНОГОЧЛЕН), векторами(см. ВЕКТОР (в математике)), матрицами(см. МАТРИЦА (в математике)) и т. д.

  47. Источник: Энциклопедический словарь



  48. Математическая энциклопедия

    - часть математики, посвященная изучению алгебраических операций.

    Исторический очерк. Простейшие алгебраич. операции - арифметич. действия над натуральными и положительными рациональными числами - встречаются в самых ранних математич. текстах, свидетельствующих о том, что уже в глубокой древности были известны все основные свойства этих действий. Значительное влияние на развитие алгебраич. идей и символики оказала, в частности, "Арифметика" Диофанта (3 в. н. э.). Термин "А." происходит от названия сочинения Мухаммеда аль-Хорезми "Альджебр аль-мукабала" (9 в.), содержащего общие приемы для решения задач, сводящихся к алгебраич. уравнениям 1-й и 2-й степеней. В конце 15 в. вместо громоздкого словесного описания алгебраич. действий, господствовавшего ранее, в математич. сочинениях появляются принятые теперь знаки + и -, затем знаки степеней, корней, скобки. Ф. Виет ( конец 16 в.) первым стал применять буквенные обозначения как для неизвестных, так и для заданных в задаче величин. К сер. 17 в. в основном сложилась современная алгебраич. символика и тем самым завершилась "предыстория" А. Развитие собственно А. происходило в три последующих столетия, причем точка зрения на ее предмет несколько раз существенно менялась.

    В 17-18 вв. под А. понималась наука о буквенных вычислениях - тождественных преобразованиях буквенных формул, решения алгебраических уравнений и т. п., - в отличие от арифметики, занимавшейся вычислениями над конкретными числами. Предполагалось, однако, что под буквами подразумеваются числа, целые или дробные. Вот краткое содержание одного из лучших руководств того времени - "Введения в алгебру" Л. Эйлера (L. Euler): целые числа, обыкновенные и десятичные дроби, корни, логарифмы, алгебра-ич. уравнения 1-й - 4-й степеней, прогрессии, соединения, бином Ньютона, диофантовы уравнения. Таким образом, к сер. 18 в. А. сложилась в том приблизительно объеме, к-рый теперь принято наз. "элементарной" А. А. 18-19 вв. есть прежде всего А. многочленов. Исторически первой задачей А. было решение алгебраич. уравнений с одним неизвестным, т. е. уравнений вида:

    Имелось в виду отыскание формул, выражающих корни уравнения через его коэффициенты при помощи сложения, умножения, вычитания, деления и извлечения корней ("решение в радикалах"). С древнейших времен математики умели решать уравнения 1-й и 2-й степеней. В 16 в. существенное продвижение было сделано итальянскими математиками - сначала была найдена формула для решения уравнений 3-й степени (см. Кардана формула), а затем и метод решения (см. Феррари метод).уравнения 4-й степени. В течение почти трех последующих столетий продолжались безуспешные попытки найти аналогичные формулы для решения уравнений высших степеней, в связи с чем приобрела большой интерес задача найти хотя бы "бесформульное" доказательство существования комплексного корня для произвольного алгебраич. уравнения с комплексными коэффициентами. Эта теорема была впервые высказана в 17 в. А. Жираром (A. Girard), но первое строгое доказательство ее дал К. Гаусс (С. Gauss) в конце 18 в. (см. Алгебры основная теорема). Наконец, в 1824 Н. Абель (N. Abel) установил, что уравнения выше 4-й степени в общем случае в радикалах не разрешимы, а в 1830 Э. Галуа (Е. Galois) указал общий критерий разрешимости алгебраич. уравнения в радикалах (см. Галуа теория). Другие задачи отходят в это время на второй план, и под А. понимается "анализ уравнений", как отмечает Ж. Серре (J. Serret) в своем курсе высшей алгебры (1849).

    Наряду с теорией алгебраич. уравнений с одним неизвестным развивается теория систем алгебраич. уравнений с несколькими неизвестными, в частности систем линейных уравнений. В связи с исследованием последних возникают понятия матрицы и определителя. В дальнейшем матрицы становятся предметом самостоят, теории - алгебры матриц, роль к-рой не исчерпывается применением к исследованию систем линейных уравнений.

    Начиная с сер. 19 в., центр тяжести в алгебраич. исследованиях постепенно перемещается с теории уравнений на изучение произвольных алгебраич. операций. Первоначальные попытки аксиоматич. изучения алгебраич. операций можно проследить уже в "теории отношений" Евклида, однако они не получили развития из-за невозможности геометрически интерпретировать даже простейшие действия над числами как отношениями длин или площадей. Дальнейший прогресс оказался возможным только после постепенного расширения и углубления понятия числа, а также в результате появления разнообразных примеров алгебраич. операций над объектами совсем иной природы, нежели числа,- первыми такими примерами (нач. 19 в.) явились "композиция двоичных квадратичных форм" К. Гаусса и умножение подстановок П. Руффини (P. Ruffini) и О. Коши (A. Cauchy). Явное выделение абстрактного понятия алгебраич. операции было сделано в сер. 19 в. в связи с исследованиями природы комплексных чисел. Возникают алгебра логики Дж. Буля (G. Boole), внешние алгебры Г. Грассмана (Н. Grassmann), кватернионы У. Гамильтона (W. Hamilton). А. Кэли (A. Cayley) создает матричное исчисление, К. Жордан (С. Jordan) публикует большой трактат о группах подстановок.

    Эти работы подготовили вступление А. в конце 19 - нач. 20 вв. в современный этап ее развития, характеризующийся объединением ранее разрозненных алгебраич. идей на общей аксиоматич. основе и существенным расширением области приложений А. Современная точка зрения на А. как на общую теорию алгебраич. операций сформировалась в нач. 20 в. под влиянием работ Д. Гильберта (D. Hilbert), Э. Штейница (E.Steinitz), Э. Артина (Е. Artin), Э. Нётер (Е. Noether) и окончательно утвердилась с выходом в 1930 монографии Б. Л. ван дер Вардена (В. L. van der Waerden) "Современная алгебра".

    Предмет, основные разделы алгебры, связь с другими областями математики. Предметом изучения современной А. являются множества с заданными на них алгебраич. операциями (т. е. алгебры, или универсальные алгебры, см. терминологич. справку Алгебра), рассматриваемые с точностью до изоморфизма. Последнее означает, что природа множеств - носителей алгебраич. операций с точки зрения А. безразлична, и в этом смысле подлинным объектом изучения являются сами алгебраич. операции (см. начало статьи).

    Фактическому изучению долгое время подвергались сравнительно немногие основные типы универсальных алгебр, естественно выделившиеся в ходе развития математики и ее приложений.

    Один из наиболее важных и наиболее изученных типов алгебр - группы, т. е. алгебры с одной ассоциативной бинарной операцией, содержащие единицу и для каждого элемента - обратный элемент. Понятие группы явилось исторически первым примером универсальной алгебры и послужило во многих отношениях образцом при перестройке А. и, вообще, математики на рубеже 19-20 вв. Значительно позже началось самостоятельное изучение таких обобщений групп, как полугруппы, квазигруппы и лупы.

    Важнейшие типы алгебр с двумя бинарными операциями - кольца и поля. Операции в них обычно наз. сложением и умножением. Кольцо определяется аксиомами абелевой группы для сложения и законами дистрибутивности для умножения относительно сложения (см. Кольца и алгебры). Первоначально изучались лишь кольца с ассоциативным умножением, и это требование ассоциативности иногда даже включают в определение кольца (см. Ассоциативные кольца и алгебры). В настоящее время вполне сложившимся является общее направление, посвященное изучению неассоциативных колец (см. Не ассоциативные кольца и алгебры). Телом наз. ассоциативное кольцо, все отличные от нуля элементы к-рого образуют группу по умножению. Поле- тело с коммутативным умножением. Числовые поля, т. е. совокупности чисел, замкнутые относительно сложения, умножения, вычитания и деления на число, отличное от нуля, неявно фигурировали уже в начальных исследованиях по алгебраич. уравнениям. Ассоциативно-коммутативные кольца и поля являются основными объектами изучения коммутативной алгебры, с к-рой тесно связана алгебраическая геометрия.

    Другой важный тип алгебр с двумя бинарными операциями - решетки. Типичные примеры решеток: система подмножеств данного множества с операциями теоретико-множественного объединения и пересечения, множество положительных целых чисел с операциями взятия наименьшего общего кратного и наибольшего общего делителя.

    Линейные (или векторные) пространства над полем можно трактовать как универсальные алгебры с одной бинарной операцией - сложением и набором унарных операций - умножений на скаляры из основного поля. Рассматриваются также линейные пространства над телами. Если за множество скаляров взять кольцо, то получается более широкое понятие модуля. Изучению линейных пространств, модулей, а также их линейных преобразований и смежным вопросам посвящен важный раздел А.- линейная алгебра, частью к-рой являются сформировавшиеся еще в 19 в. теория линейных уравнений и теория матриц. К линейной алгебре тесно примыкает полилинейная алгебра.

    Первые работы по общей теории произвольных универсальных алгебр (иногда сама эта теория наз. универсальной алгеброй) относятся к 30-м гг. 20 в. и принадлежат Г. Биркгофу (G. Birkhoff). В те же годы А. И. Мальцев и А. Тарский (A. Tarski) заложили основы теории моделей, т. е. множеств с отмеченными на них отношениями. В дальнейшем теория универсальных алгебр и теория моделей столь тесно переплелись между собой, что привели к возникновению новой дисциплины, пограничной между А. и математич. логикой,- теории алгебраических систем, изучающей множества с определенными на них алгебраич. операциями и отношениями.

    Ряд дисциплин, пограничных между А. и другими частями математики, определяется внесением в универсальные алгебры дополнительных структур, согласованных с алгебраич. операциями. Сюда относятся топологическая алгебра, в т. ч. теория топологических групп и Ли групп, теория нормированных колец, дифференциальная алгебра, теории различных упорядоченных алгебраич. образований. К сер. 50-х гг. 20 в. оформилась в самостоятельную дисциплину гомологическая алгебра, уходящая своими истоками как в А., так и в топологию.

    Роль А. в современной математике исключительно велика, и существует объективная тенденция к дальнейшей "алгебраизации" математики. Типичный путь изучения многих математич. объектов, порой очень далеких от А., состоит в построении алгебраич. систем, достаточно хорошо отражающих поведение изучаемых объектов. Так, изучение групп Ли во многом сводится к изучению их алгебраич. отражений - Ли алгебр. Аналогичный метод используется в топологии - каждому топологич. пространству сопоставляется нек-рым стандартным способом бесконечная серия групп гомологии (см. Гомологии группа), и эти серии алгебраич. отражений позволяют очень точно судить о свойствах самих пространств. Именно с помощью А. сделаны последние крупные открытия в топологии (см. Алгебраическая топология).

    Казалось бы, перевод задач на язык А., решение их на этом языке, а затем обратный перевод только усложняют дело. В действительности такой путь оказывается весьма выгодным, а порой и единственно возможным. Объясняется это тем, что алгебраизация позволяет применить для решения задачи не только чисто словесные рассуждения, но и мощный аппарат формальных алгебраич. вычислений, сокрушающий подчас самые сложные препятствия. Эта роль А. в математич. творчестве напоминает роль современных ЭВМ в задачах практики.

    Алгебраич. понятия и методы широко применяются в теории чисел (см. Алгебраическая теория чисел), в функциональном анализе, в теории дифференциальных уравнений, в геометрии (см. Инвариантов теория, Проективная геометрия, Тензорная алгебра).и в других математич. дисциплинах.

    Наряду с фундаментальной ролью внутри математики А. имеет большое прикладное значение - следует отметить ее выходы в физику (теория представлений конечных групп в квантовой механике, дискретные группы в кристаллографии), в кибернетику (автоматов теория), в математич. экономику ( линейные неравенства).

    Лит.:[1] История математики с древнейших времен до начала XIX столетия, т. 1-3, М., 1970-72; [2] Мальцев А. И., К истории алгебры в СССР за первые 2-5 лет, "Алгебра и логика", 1971, т. 10, № 1,с. 103-18; [3] Математика, ее содержание, методы и значение. Сб. статей, т. 1-3, М., 1956; [4] Курош А. Г., Курс высшей алгебры, 10 изд., М., 1971; [5] Бурбаки Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962; [6] Вандер Варден Б. Л., Алгебра, пер. с нем., М., 1976; [7] Ленг С., Алгебра, пер. с англ., М., 1968; [8] Мальцев А. И., Алгебраические системы, М., 1970.

    См. также лит. при статьях об отдельных алгебраических дисциплинах. Ю. И. Мерзляков, А. И. Ширшов.

    С* -АЛГЕБРА - банахова алгебра А над полем комплексных чисел, снабженная такой инволюцией, что норма и инволюция связаны соотношением для любого элемента были введены в 1943 (см. [1]) под назв. вполне регулярных колец, их наз. также -алгебрами.

    Важнейшие примеры С*- А . 1) Алгебра непрерывных комплекснозначных функций на локально компактном хаусдорфовом пространстве X, стремящихся к нулю на бесконечности (т. е. таких непрерывных функций f на X, что для любого множество точек удовлетворяющих условию компактно в X); снабжается равномерной нормой

    инволюция в определяется как переход к комплексно сопряженной функции: Любая коммутативная С*- А . Аизометрически и симметрически изоморфна С*- А . (т. е. изоморфна как банахова алгебра А с инволюцией) где X - пространство максимальных идеалов алгебры А, снабженное топологией Гельфанда (см. [1], [2], [3]).

    2) Алгебра L)Н).всех ограниченных линейных операторов в гильбертовом пространстве Н, рассматриваемая относительно обычных линейных операций и умножения операторов; инволюция в L)Н).определяется как переход к сопряженному оператору, норма - как обычная норма оператора.

    Подмножество наз. самосопряженным, если , где Любая замкнутая самосопряженная подалгебра В С*- А . А является С*- А . относительно линейных операций, умножения, инволюции и нормы, заимствованных из А; В наз. -подалгеброй А. Всякая С*- А . изометрически и симметрически изоморфна С*-подалгебре нек-рой С*- А . вида Любой замкнутый двусторонний идеал Iв С*- А . Асамосопряжен (поэтому I есть С*-подалгебра А), факторалгебра снабженная естественными линейными операциями, умножением, инволюцией и нормой факторпространства, есть С*-А. Множество К)Н).вполне непрерывных линейных операторов в гильбертовом пространстве Несть замкнутый двусторонний идеал в L)H). Если Аесть - алгебра с инволюцией, получаемая из Априсоединением единичного элемента, то на существует единственная норма, превращающая в С*-А. и продолжающая норму на А. Кроме того, для С*-А. определены операции ограниченной прямой суммы и тензорного произведения (см. [3], [4]).

    Как и во всякой симметричной банаховой алгебре, в С*-А. Аможно выделить подмножества: действительное линейное пространство эрмитовых элементов; множество нормальных элементов; мультипликативную группу Uунитарных элементов (если Асодержит единичный элемент); множество положительных элементов. Множество есть замкнутый конус в и конус превращает в упорядоченное действительное векторное пространство. Если Асодержит единичный элемент 1. то 1 - внутренняя точка конуса Линейный функционал на Аназ. положительным, если для всех такой функционал непрерывен. Если где Весть -подалгебра А, то спектр элемента хв Всовпадает со спектром х в А. Спектр эрмитова элемента действителен, спектр унитарного элемента лежит на единичной окружности, спектр положительного элемента неотрицателен. Построено функциональное исчисление для нормальных элементов С*- А . Любая С*- А . А имеет аппроксимативную единицу, лежащую в единичном шаре алгебры Аи образованную положительными элементами из А. Если - замкнутые двусторонние идеалы в А, то - замкнутый двусторонний идеал в A и J+. Если I - замкнутый двусторонний идеал в J, J - замкнутый двусторонний идеал в А, то I - замкнутый двусторонний идеал в А. Всякий замкнутый двусторонний идеал есть пересечение содержащих его двусторонних примитивных идеалов; всякий замкнутый левый идеал в А - есть пересечение содержащих его максимальных регулярных левых идеалов.

    Любой *-изоморфизм С*- А . является изометрическим. Любой *-гомоморфизм банаховой алгебры с инволюцией Вв С*- А . А непрерывен и для всех В частности, все представления банаховой алгебры с инволюцией (т. е. *-гомоморфизм Вв С*- А . вида непрерывны. Теория представлений С*-А. составляют существенную часть теории С*-А., и приложения теории С*- А . связаны именно с теорией представлений С*-А. Свойства представлений С*- А . позволяют построить для каждой С*- А . А топологич. пространство А, наз. спектром С*-А., и снабдить это пространство Макки борелевской структурой. Спектр С*- А ., вообще говоря, не удовлетворяет никаким аксиомам отделимости, но является локально бикомпактным Бэра пространством.

    С*- А. А наз. - алгеброй (соответственно GCR - алгеброй), если для любого ненулевого неприводимого представления С*- А . А в гильбертовом пространстве Нвыполняется соотношение (соответственно .

    С*- А. <наз. NGCR - алгеброй, если Ане содержит ненулевых замкнутых двусторонних GCR- идеалов (т. е. идеалов, являющихся GCR- алгебрами). Любая С*- А. А содержит максимальный двусторонний GCR- идеал I, и факторалгебра А/I есть NGCR- алгебра. Всякая GCR- алгебра содержит возрастающее семейство замкнутых двусторонних идеалов занумерованных порядковыми числами такое, что есть GCR - алгебра при всех для предельных порядковых чисел а. Спектр GCR - алгебры содержит открытое всюду плотное отделимое локально бикомпактное подмножество.

    С*- А . А наз. С*-алгеброй типа I, если для любого представления С*- А . А в гильбертовом пространстве Неймана алгебра, порожденная семейством в , есть алгебра Неймана типа I. Для С*-А. Аследующие условия эквивалентны: а) Аесть С*-А. типа I; б) Аесть GCR - алгебра; в) любое факторпредставление С*- А . А кратно неприводимому. Если Аудовлетворяет этим условиям, то: 1) неприводимые представления С*- А . А эквивалентны тогда и только тогда, когда их ядра совпадают; 2) спектр С*- А . А есть Т 0 пространство. Если А - сепарабельная С*-А., то каждое из условий 1) и 2) эквивалентно условиям а) - в). В частности, всякая сепарабельная С*- А ., имеющая единственное с точностью до эквивалентности неприводимое представление, изоморфна С*-А. К)Н).для нек-рого гильбертова пространства Н.

    Пусть Аесть С*- А ., Р- множество таких элементов , что функция конечна и непрерывна на спектре С*- А . А. Если линейная оболочка множества Рвсюду плотна в A, то Аназ. С*-А. с непрерывным следом. Спектр таких С*-А. отделим, и при нек-рых дополнительных условиях С*-А. с непрерывным следом можно представить в виде алгебры вектор-функций на спектре (см. [3]).

    Пусть Аесть F - множество положительных линейных функционалов на Ас нормой Р )А) - множество ненулевых крайних точек выпуклого множества F. Тогда Р)А) - множество чистых состояний А(см. Представления симметричных алгебр]. Пусть Весть С*-подалгебра А. Если Аесть GCR- алгебра и Вразделяет точки множества т. е. для любых существует, такой, что (теорема Стоуна - Вейерштрасса). Если А - произвольная С*- А . и В разделяет точки множества то В=А.

    Второе сопряженное пространство А** с С*-А. Аестественным образом снабжается операцией умножения, превращающей А** в С*-А., изоморфную нек-рой алгебре Неймана; эта алгебра наз. обертывающей алгеброй Неймана С*- А . (см. [3], [4]).

    Теория С*- А . имеет многочисленные применения в теории представлений групп и симметричных алгебр [3], теории динамич. систем [4], статистич. физике и квантовой теории поля [5], а также в теории операторов в гильбертовом пространстве [6].

    Лит.:[1] Гельфанд И. М., Наймарк М. А., "Матем сб.", 1943, т. 12, № 2, с. 197-213; [2] Наймарк М. А. Нормированные кольца, М.. 1956; [3] Диксмье Ж., С*-алгебры и их представления, пер. с франц., М., 1974; [4] Saka S., C*-algebras and W*-algebras, N. Y., 1971; [5] Рюэль Д. Статистическая механика. Строгие результаты, пер. с франц. М., 1971; [6] Douglas R. G., Banach Algebra Technigues in Operator Theory, N. Y., 1972. А. И. Штерн.

    PI-АЛГЕБРА - алгебра над полем, в к-рой выполняются нек-рые полиномиальные тождества.

    Пусть А - ассоциативная алгебра над полем F,

    - свободная ассоциативная алгебра (алгебра некоммутативных многочленов) от счетного множества образующих над Fи - ненулевой элемент алгебры F[x]. Тогда

    наз. полиномиальным тождеством алгебры А, если для любого набора элементов

    Примеры PI-A. и тождеств. В коммутативной алгебре выполняется тождество

    (тождество коммутативности); во внешней алгебре линейного пространства выполняется тождество метабелевости алгебра Аконечной размерности п -1 над полем Fудовлетворяет так наз. стандартному тождеству n-й степени

    где Sn- группа подстановок множества, состоящего из первых га натуральных чисел л а также более общему тождеству Капелли

    в алгебре Fn квадратных матриц порядка n над полем F выполняется стандартное тождество степени 2n. Тензорное произведение PI-A. является PI-A.

    Для всякой PI-A. Анад полем Fхарактеристики нуль можно указать такое натуральное число n, что тождества алгебры Аисчерпываются степенями тождеств алгебры матриц Fn , причем нек-рая степень любого тождества алгебры Fn является тождеством алгебры А. Таким образом, во всякой PI-A. над полем характеристики нуль выполняется нек-рая степень стандартного тождества.

    Совокупность всех левых частей тождеств, выполняющихся в данной алгебре А, образует вполне харак-теристич. идеал (коротко, Т-идеал).свободной алгебры F[x]и обратно, для всякого Т-идеала существует алгебра, совокупность тождеств к-рой совпадает с этим Т-идеалом (ею будет, напр., факторалгебра F[x]/T). В случае, когда поле Fнулевой характеристики, тождества можно дифференцировать, и Т-идеалы алгебры F[x] - это в точности дифференциально замкнутые односторонние идеалы. Напр., из нильтождества многократным дифференцированием получается тождество

    к-рое является полилинейным (точнее, n-линейным), т, е. линейным по каждой переменной, входящей в его запись. Причем и обратно, положив в последнем тождестве можно получить тождество или Этот процесс линеаризации тождеств позволяет утверждать (в случае полей нулевой характеристики), что все тождества алгебры являются следствиями ее полилинейных тождеств. Для алгебры с единицей, более того, все тождества вытекают из ее полилинейных тождеств, представимых в виде линейных комбинаций произведений правонормированных коммутаторов различных степеней от образующих х;. Вопрос о том, всякая ли ассоциативная алгебра обладает конечным базисом тождеств, составляет содержание проблемы Шпехта.

    Совокупность всех алгебр, удовлетворяющих данной системе тождеств, наз. многообразием. Многообразие может быть определено также как класс алгебр, замкнутый относительно взятия подалгебр, гомоморфных образов и подпрямых произведений (см. также Алгебраических систем многообразие). Для ряда многообразий алгебр доказана их конечная базируемость (т. е. в этих многообразиях положительно решена проблема Шпехта). Таковы многообразия (все над полем нулевой характеристики) нильпотентных алгебр данного индекса n, алгебр, в к-рых аддитивные коммутаторы длины правны нулю (Ли - нильпотентные алгебры), многообразие алгебр, определяемое Т-идеалом политождеств -алгебры матриц 2-го порядка. Однако для многообразия, определяемого идеалом тождеств -алгебры матриц порядка вопрос открыт.

    Наличие полиномиального тождества жестко определяет структуру ассоциативной алгебры. Примитивная алгебра А, удовлетворяющая полиномиальному тождеству степени d, изоморфна алгебре матриц Dn над телом Dс центром Zи

    Поэтому полупростая (в смысле Джекобсона радикала).PI-A. разлагается в подпрямую сумму полных матричных алгебр над телами, причем порядки этих алгебр и размерности тел над центрами ограничены в совокупности, и Т-идеал тождеств полупростой алгебры совпадает с нек-рым "матричным" Т-идеалом М п . Упорядоченная PI-A. коммутативна. Первичная PI-A. Аобладает двусторонним классич. кольцом частных Q)A), к-рое изоморфно матричной алгебре Dm над телом D, конечномерным над своим центром Z. Кольцо Q)A). является центральным расширением алгебры Ав том смысле, что Идеалы тождеств алгебр Аи Q)A).совпадают. PI-A. удовлетворяют ряду условий "бернсайдовского типа" (см. Бернсайда проблема). Например, алгебраическая (ниль-) PI-A. локально конечна (локально ннльпотентна). Ассоциативная нильалгебра ограниченного индекса пнильпотентна, если характеристика основного поля нулевая или больше n.

    PI-A., не имеющая ненулевых нильидеалов, представима матрицами над коммутативным кольцом. Но не всякая Р1-А. представима в таком смысле. Напр., внешняя алгебра счетномерного пространства не представима - в ней не выполняется никакое стандартное тождество. Внутренняя характеризация представимости алгебры матрицами над коммутативным кольцом составляет самостоятельное направление исследований в теории PI-A.

    Радикал Джекобсона конечно порожденной PI-A. над полем нулевой характеристики является нильидеалом. Вопрос о его нильпотентности пока (1977) открыт. Если радикал Джекобсона PI-A. нильпотентен, то она удовлетворяет всем тождествам алгебры матриц порядка пдля нек-рого п. Для конечно порожденных алгебр доказано и обратное утверждение. Более того, для конечно порожденной алгебры над полем нулевой характеристики нильпотентность радикала Джекобсона эквивалентна выполнимости в ней нек-рого стандартною тождества.

    Во многих случаях выполнимость тождества для "части" элементов алгебры влечет за собой выполнимость нек-рого тождества во всей алгебре. Напр., если в алгебре с инволюцией симметрические элементы удовлетворяют тождеству, то она - PI-A.; если на алгебра над полем нулевой характеристики действует конечная группа автоморфизмов и подалгебра инвариантов удовлетворяет нек-рому тождеству, то исходная алгебра будет PI-A.

    Представляет интерес при каких условиях те или иные алгебры специального типа удовлетворяют полиномиальному тождеству.

    Для того чтобы групповая алгебра F)G).группы Gнад полем нулевой характеристики удовлетворяла некоторому полиномиальному тождеству, необходимо и достаточно, чтобы группа Gобладала абелевой подгруппой конечного индекса. Если же характеристика Fконечна и равна р, то F[G]является PI-A. тогда и только тогда, когда Gобладает р-абелевой подгруппой конечного индекса (группа наз. р-a белевой, если ее коммутант - конечная р-группа).

    Универсальная обертывающая алгебра алгебры Ли Lнад полем Fхарактеристики нуль есть PI-A. в том и только том случае, когда Lабелева (UL- коммутативна). Если же F - поле конечной характеристики, то является PI-A. тогда и только тогда, когда Lобладает абелевым идеалом конечной коразмерности и присоединенное представление алгебры Lявляется алгебраическим ограниченной степени.

    Все Pi-подалгебры свободной ассоциативной алгебры коммутативны.

    Теория PI-A. является естественным обобщением коммутативной алгебры, она содержит глубокие и законченные аналоги теорем коммутативной алгебры, что позволяет говорить о зарождении некоммутативной алгебраич. геометрии.

    Во всякой конечно порожденной PI-A. А с образующими a1,..., ak над полем Fвыполняется условие ограниченности высот, т. е. существуют конечное число слов и натуральное число hтакие, что всякое слово и от образующих пред-ставимо в A в виде линейной комбинации слов

    где совпадающих по составу относительно со словом В коммутативном случае в качестве слов можно взять сами образующие Свободным некоммутативным аффинным кольцом наз. факторалгебра

    где - свободная алгебра с конечным числом образующих xi над полем Fхарактеристики нуль, а М п - определенный выше Т-идеал тождеств матричной алгебры fn . Алгебра есть PI-A. без делителей нуля, она обладает классич. телом частных конечномерным над своим центром Z. Пусть, далее, - пространство, элементами к-рого являются строки длины k, состоящие из матриц алгебры Fn . Можно говорить о нулях элементов алгебры лежащих в пространстве об алгеб-раич. многообразиях пространства и т. д. При этом окажутся выполненными основные положения классической алгебраич. геометрии. Так, имеет место некоммутативный аналог Гильберта теоремы о нулях. Неприводимым алгебраич. многообразиям соответствуют первичные идеалы алгебры, удовлетворяющие условию нётеровости. Выполняется теорема Крулля о совпадении максимальной из длин цепочек первичных идеалов алгебры со степенью трансцендентности Zнад F, к-рая в рассматриваемом случае равна

    По аналогии с ассоциативными алгебрами можно определить с помощью элементов свободных алгебр PI-A. в других классах алгебр, обладающих свободными алгебрами (лиевы, альтернативные и др.).

    Алгебра Ли над полем нулевой характеристики, удовлетворяющая n-му тождеству Энгеля

    локально нильпотентна. Вопрос о том, влечет ли тождество Энгеля нильпотентность (проблема Xиггинса), решен положительно лишь для n= 4. Для полей положительной характеристики эта проблема имеет отрицательное решение.

  49. Источник: Математическая энциклопедия



  50. Математическая энциклопедия

    - 1) Часть математики (см. Алгебра). В этом понимании термин "А." употребляется в таких сочетаниях, как гомологическая алгебра, коммутативная алгебра, линейная алгебра, полилинейная алгебра, топологическая алгебра.

    2) Частный случай операторного кольца:А. (иногда - линейная, или векторная, А.) над полем, телом, коммутативным кольцом. Ассоциативная А. (прежнее назв. "гиперкомплексная система"), неассоциативная А., альтернативная А.- алгебры именно в этом понимании.

    3) То же, что универсальная алгебра. В этом понимании алгебрами будут, напр., булевы алгебры, унарные алгебры.

  51. Источник: Математическая энциклопедия



  52. Большой энциклопедический политехнический словарь

    (от араб. аль-джебр - один из приёмов преобразования уравнений) - часть математики, развившаяся в связи с задачей о решении алгебраич. уравнений (осн. задача классич. А.). В совр. А. изучается общая теория совокупностей (напр., групп), в к-рых определены алгебраич. операции, аналогичные по своим св-вам операциям над числами (сложению, умножению и т. д.).

  53. Источник: Большой энциклопедический политехнический словарь



  54. Большая политехническая энциклопедия

    АЛГЕБРА — часть матем. науки, в которой изучаются свойства величин, выраженных буквами, независимо от их числового значения. В первоначальном понимании А. мыслится как учение о решении уравнений. В современном понимании А. изучает общую теорию совокупностей (напр. теорию групп), в которых определены алгебраические операции, похожие по свойствам на операции, производимые над числами.

  55. Источник: Большая политехническая энциклопедия



  56. Русско-английский политехнический словарь

    algebra

    * * *

    а́лгебра ж.

    algebra

    аннигиля́торная а́лгебра — annihilator algebra

    ассоциати́вная а́лгебра — associative algebra

    бу́лева а́лгебра — Boolean algebra

    ве́кторная а́лгебра — vector algebra

    а́лгебра выска́зываний — propositional algebra

    вы́сшая а́лгебра — higher algebra

    гомологи́ческая а́лгебра — homological algebra

    а́лгебра кватернио́нов — quaternion algebra

    коммутати́вная а́лгебра — commutative algebra

    лине́йная а́лгебра — linear algebra

    а́лгебра Ли, свобо́дная — free Lie algebra

    а́лгебра ло́гики — Boolean algebra

    а́лгебра ма́триц — matrix algebra

    а́лгебра мер — measure algebra

    а́лгебра мно́жеств — algebra of sets

    а́лгебра над по́лем — algebra over a field

    а́лгебра ограниче́ний — constraint algebra

    проста́я а́лгебра — simple algebra

    а́лгебра реле́йных схем — switching algebra

    а́лгебра с деле́нием — division algebra

    а́лгебра схем — circuit algebra

    топологи́ческая а́лгебра — topological algebra

    элемента́рная а́лгебра — elementary algebra

  57. Источник: Русско-английский политехнический словарь



  58. Dictionnaire technique russo-italien

    ж.

    algebra f

    - абстрактная алгебра

    - ассоциативная алгебра

    - булева алгебра

    - векторная алгебра

    - алгебра высказываний

    - высшая алгебра

    - дифференциальная алгебра

    - классическая алгебра

    - алгебра классов

    - коммутативная алгебра

    - линейная алгебра

    - алгебра логики

    - алгебра матриц

    - матричная алгебра

    - алгебра множеств

    - общая алгебра

    - полиадическая алгебра

    - простая алгебра

    - алгебра современная

    - алгебра схем

    - схемная алгебра

    - тензорная алгебра

    - топологическая алгебра

    - цилиндрическая алгебра

    - элементарная алгебра

  59. Источник: Dictionnaire technique russo-italien



  60. Русско-украинский политехнический словарь

    матем.

    а́лґебра

    - алгебра алгоритмов

    - алгебра вычетов

    - алгебра множеств

    - алгебра отношений

    - алгебра подмножеств

    - алгебра подобия

    - алгебра представлений

    - алгебра трансформирований

    - внешняя алгебра

    - двойная алгебра

    - двухсторонняя алгебра

    - двусторонняя алгебра

    - знакопеременная алгебра

    - конечная алгебра

    - нормированная алгебра

    - первичная алгебра

    - полугрупповая алгебра

    - производная алгебра

    - частичная алгебра

  61. Источник: Русско-украинский политехнический словарь



  62. Русско-украинский политехнический словарь

    матем.

    а́лґебра

    - алгебра алгоритмов

    - алгебра вычетов

    - алгебра множеств

    - алгебра отношений

    - алгебра подмножеств

    - алгебра подобия

    - алгебра представлений

    - алгебра трансформирований

    - внешняя алгебра

    - двойная алгебра

    - двухсторонняя алгебра

    - двусторонняя алгебра

    - знакопеременная алгебра

    - конечная алгебра

    - нормированная алгебра

    - первичная алгебра

    - полугрупповая алгебра

    - производная алгебра

    - частичная алгебра

  63. Источник: Русско-украинский политехнический словарь



  64. Естествознание. Энциклопедический словарь

    (араб.), часть математики, развившаяся в связи с задачей о решении алгебр. ур-нии. Решение ур-ний 1-й и 2-й степеней известно ещё с древности. В 16 в. итал. математиками найдет ны решения ур-ний 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебр. ур-ние n -й степени имеет п корней (решений), действительных или комплексных. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения ур-ний степени выше 4-й, вообще говоря, нельзя выразить через коэф. ур-ния при помощи алгебр. действий. В совр. А. изучается общая теория совокупностей, в к-рых определены алгебр. операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.

  65. Источник: Естествознание. Энциклопедический словарь



  66. Словари и энциклопедии на Академике

  67. Источник:



  68. Большой Энциклопедический словарь

  69. Источник:



  70. Толковый словарь Даля

  71. Источник: