«Радикал в математике»

Радикал в математике в словарях и энциклопедиях

Значение слова «Радикал в математике»

Источники

    Словарь Брокгауза и Ефрона

    — Один из корней двучленного уравнения xn = а называется радикалом и обозначается

    Здесь а называется подкоренным числом, n — показателем корня. Р. называется иногда корнем. В начальной алгебре подкоренное число предполагается положительным и под Р. подразумевается число положительное. Алгебраическое выражение, содержащее Р., может подвергаться преобразованиям при помощи формул:

    Если данное выражение имеет вид дроби, знаменатель которой содержит Р., то, помножая числитель и знаменатель на выражение, надлежащим образом подобранное, можно удалить все Р. из знаменателя. При помощи средств начальной алгебры можно выполнить это преобразование только в простейших случаях. В высшей алгебре подкоренное число a предполагается комплексным (см. Мнимые величины) и представляется под видом

    a

    = r(cos φ + isin φ), где r > 0.

    Для n значений Р. получается выражение

    ,

    где k = 0, 1, 2,..., n— 1. В правой части

    положительное число, n -ая степень которого равна r. При помощи Р. можно выразить корни каких угодно уравнений второй, третьей и четвертой степени. Решать же уравнения высших степеней при помощи Р. возможно только в исключительных случаях, как это выяснилось благодаря исследованиям Абеля и Галуа. В соч. Д. Селиванова "Об уравнениях пятой степени с целыми коэффициентами" (СПб. 1889) приведены примеры уравнений, нерешаемых алгебраически. Оказывается, что напр. уравнение х 5— х —v = 0 не решается в Р., если v не делится на 15. Если в алгебраическом решении уравнения все показатели Р. равны двум, то корни можно построить при помощи циркуля и линейки. На этом основании Гаусс в своем сочинении "Disquisitiones arithmeticae" (в "Ganss Werke", т. I) указал, какие правильные многоугольники можно вписать в круг при помощи циркуля и линейки. К числу таких многоугольников принадлежит семнадцатиугольник.

    Д. Селиванов.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона