«Фотография»

Фотография в словарях и энциклопедиях

Значение слова «Фотография»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Даля
  5. Толковый словарь Ожегова
  6. Малый академический словарь
  7. Толково-фразеологический словарь Михельсона
  8. Толковый словарь Ушакова
  9. Толковый словарь Ефремовой
  10. Большой энциклопедический словарь
  11. Современная энциклопедия
  12. Большой англо-русский и русско-английский словарь
  13. Большой немецко-русский и русско-немецкий словарь
  14. Большой немецко-русский и русско-немецкий словарь
  15. Большой французско-русский и русско-французский словарь
  16. Большой испано-русский и русско-испанский словарь
  17. Большой итальяно-русский и русско-итальянский словарь
  18. Физическая энциклопедия
  19. Русско-китайский словарь: пресса, интернет, радио, телевидение
  20. Энциклопедический словарь
  21. Сводная энциклопедия афоризмов
  22. Большой энциклопедический политехнический словарь
  23. Большая политехническая энциклопедия
  24. Русско-английский политехнический словарь
  25. Dictionnaire technique russo-italien
  26. Русско-украинский политехнический словарь
  27. Русско-украинский политехнический словарь
  28. Естествознание. Энциклопедический словарь
  29. Юридическая энциклопедия
  30. Москва (энциклопедия)
  31. Большой Энциклопедический словарь
  32. Толковый словарь Даля

Поделиться

    Словарь Брокгауза и Ефрона

    Содержание: 1. Фотография и ее значение. — 2. История Ф. — 3. Объективы. — 4. Затворы. — 5. Камеры. — 6. Сухие броможелатиновые пластинки. — 7. Экспозиция; снимки при вспышке. — 8. Негативный процесс. — 9. Позитивный процесс. — 10. Светокопирование. — 11. Литература.

    1. Под словом Ф. (светопись, φως — свет, γράφω — пишу) понимают совокупность всех методов получения рисунков при помощи света. Все эти методы основаны на способности некоторых веществ, называемых светочувствительными веществами, претерпевать изменения в составе и свойствах под влиянием освещения. Химические явления, вызываемые освещением в светочувствительных веществах, изучаются теоретически в особом, недавно возникшем отделе физической химии, называемом фотохимией (см. Химические действия света); Ф. развивалась независимо от теоретического изучения фотохимических явлений и почти до последнего времени была чисто эмпирическим полухудожественным мастерством. Основные приемы Ф. в общем нижеследующие. На плоскость, покрытую светочувствительным веществом (светочувствительная пластинка, бумага, пленка), отбрасывается при помощи собирательной оптической системы (объектив) изображение предмета; для того, чтобы посторонний свет не мог действовать на светочувствительную поверхность, последняя заключается в дно светонепроницаемого ящика (камера), в крышку которого вставлен объектив. В большинстве случаев изменения, вызванные действием света на светочувствительную поверхность, таковы, что не вызывают непосредственно видимого изменения характера поверхности; чтобы проявить эти изменения, подвергают поверхность действию реактива (проявитель), который дает какое-либо заметное окрашивание (напр. почернение) либо освещенным частям, либо не освещенным, и тем самым делает видимым запечатленное на светочувствительной поверхности изображение. В большинстве практически применимых случаев проявитель вызывает почернение тех частей поверхности, которые подверглись освещению, причем почернение поверхности тем интенсивнее, чем сильнее освещено было данное место. Полученное таким образом изображение (негатив) является во всех отношениях обратным оригиналу, так как, во-первых, чем светлее какое-либо место оригинала, тем темнее соответственное место негатива (фиг. 1А — позитив, В — негатив), во-вторых — правая сторона оригинала является левой стороной изображения.

    ФОТОГРАФИЯ. I.

    Если негатив получен на прозрачной пластинке (стекло) так, что неосвещенные места (тени оригинала) светочувствительного слоя остались после проявления прозрачными, то данный негатив может служить для получения неограниченного количества негативных изображений с негатива (позитивы), представляющих уже точное и правильное изображение оригинала. Для получения позитива негатив прижимается изображением к слою другой светочувствительной поверхности, освещаемой сквозь изображение негатива. Под влиянием освещения на этой поверхности либо непосредственно, либо по воздействии проявителя появляется изображение оригинала, представляющее точную одноцветную копию изображения в естественных цветах, отброшенного объективом на первую светочувствительную поверхность. Первоначально Ф. служила исключительно целям художественным, изображению портретов, ландштафтов, архитектур, копий с картин и статуй и т. п. и уже на этом сравнительно узком поприще принесла неоценимую пользу полной объективностью даваемых результатов, легкостью и быстротой получения их, а позже — и возможностью получения неограниченного количества совершенно однородных отпечатков с одного снимка. Когда только появилась дагерротипия (см.), Араго предсказал новому искусству выдающуюся роль в науке и не ошибся. В настоящее время нет ни одного отдела науки, который не пользовался бы широко услугами Ф., и трудно даже оценить то, что дала Ф. науке. Раньше всего Ф. является в науке объективным свидетелем явлений, зарисовывающим их в виде документальных, беспристрастных данных; это особенно важно в микроскопии и астрономии, особенно астрофизике; как пример можно привести наблюдение столь редко повторяющихся и столь быстро протекающих полных солнечных затмений, использование коих для целей изучения Солнца возможно стало только с момента применения Ф. к запечатлению солнечной короны и солнечного спектра. Затем Ф. заменяет во многих случаях необходимость производить измерения (часто в очень трудных условиях) над самим объектом, возможностью производить эти измерения когда и где угодно над фотографическим снимком с объекта (фотограмметрия, астроном. Ф., исследование спектров). Чрезвычайная светочувствительность современных фотографических пластинок сделала затем доступным изучению науки целый ряд явлений, столь быстро протекавших, что зрению отдельные фазы явлений, а иногда и все явление были совершенно недоступны (моментальные снимки с бега животных и людей, полета птиц, даже полета пули, см. Моментальная Ф.). Затем, способность светочувствительной пластинки аккумулировать получаемые ею впечатления дает возможность продолжительным воздействием на нее сделать видимыми столь слабые источники света или детали в них, которые даже вооруженным глазом еле постижимы (см. Фотогр. неба). Немаловажна роль Ф. и в преподавании, в которое Ф. внесла возможность богатого иллюстрирования чтения рисунками (см. Фонарь волшебный). Затем, быстро развившаяся любительская Ф. явилась желанным толпе суррогатом искусства. Наконец, основывающиеся на фотографии способы воспроизведения рисунков при помощи печатного станка совершенно преобразовали дело иллюстрации печатных произведений и, дав возможность получения дешевых, но в то же время прекрасных копий с произведений художества, в свою очередь немало способствовали развитию знаний и популяризации искусства. Трудно представить себе, какую роль будет играть Ф. в жизни и науке, когда удастся полное решение намеченного уже и понемногу подвигающегося к разрешению вопроса о Ф. в цветах.

    2. Свойство азотнокислого серебра чернеть с течением времени было известно уже древним; о нем упоминают Albertus Magnus (1280), Fabricius (1556), Глаубер (1658) и Бойль (1660). Но никто из них не приводил это явление в связь с действием света; Гело (Hellot, 1737) приписывал его действию воздуха. Нужно, однако, предположить, что роль света в изменении цвета азотнокислого серебра была уже известна в 1761 г., когда появилось сочинение "Gyphantie" анонимного автора (Tiphaine de la Roche), описание фантастического путешествия, в котором автор до того ясно указывает на возможность получения изображений при помощи светочувствительных веществ, что существование последних в середине XVIII стол. было, вероятно, уже известно. Действительно, уже в 1727 г. Иоганн Шульц, врач в Галле, целым рядом опытов доказал светочувствительность азотнокислого серебра; при помощи трафаретов он даже отпечатал светом на меловом осадке, пропитанном раствором азотнокислого серебра, ряд букв. Тридцать лет позже (1757) Беккарий в Турине опытами, совершенно аналогичными таковым Шульца, доказал светочувствительность хлористого серебра. Еще через 20 лет (1777) знаменитый шведский химик Шееле (Scheele) излагает в своем "A ë ris atque ignis examen chemicum" опыты, произведенные им для изучения действия различных частей спектра на хлористое серебро, и указывает на необыкновенную интенсивность фотохимического действия в фиолетовой части спектра. Опыты Шееле были повторены и исследованы Сенебиром (Senebier, 1782), который, кроме того, указал еще на светочувствительность некоторых смол. Повторение тех же опытов Шееле привело в 1801 г. Риттера к замечательному открытию ультрафиолетовой части спектра. Первое практическое применение накопившихся к началу XIX стол. сведений о светочувствительности различных веществ принадлежит известному керамисту Веджвуду (Wedgwood), который в 1802 г. опубликовал способ получения силуэтов и копирования рисунков на бумаге или коже, пропитанной раствором азотнокислого серебра. Закрепить эти изображения ему не удалось, так что их приходилось сохранять в темноте; точно так же не удались ему опыты получения изображений в камере-обскуре. Знаменитому Дэви (Davy), повторявшему опыты Веджвуда, удалось, однако, получить изображения на бумаге при помощи солнечного микроскопа; это были первые настоящие Ф. и в то же время первые микрофотографии. В 1810 г. Зеебек (Sееbесk) в Иене сделал поразительное открытие, что хлористое серебро принимает под влиянием цветного освещения окраску того света, который на него падает; это наблюдение Зеебека лежит в основе некоторых позднейших методов цветной Ф. В 1814 г. Дэви получает йодистое серебро и открывает его светочувствительность, в 1819 г. сэр Дж. Гершель открывает способность серноватистокислого натра растворять хлористое серебро и таким образом указывает на вещество, способное закреплять и делать неизменяемыми фотографические снимки; в 1826 г. Балар (Balard) приготовляет первое бромистое серебро. С 1814 г. в Chalons-sur-Sa ô ne работал над задачами Ф. отставной лейтенант Никифор Ниэпс (Ni é pce); после 13-летних неудач он в 1827 году открыл метод получения печатных досок в камере, названной им гелиографией, и предложил его Королевскому обществу в Лондоне. Ниэпс покрывал медную доску раствором асфальта в лавандовом масле и экспонировал высушенную пластинку от 4—8 часов в камере, после чего проявлял ее лавандовым маслом, растворявшим не подвергшийся освещению асфальт; проявленная доска травилась кислотой и давала при печатании с нее силуэты снятых предметов. В 1829 г. Ниэпс сблизился с Дагерром (см.), тоже давно работавшим над Ф., для совместной работы. В 1833 г. Ниэпс умер; Дагерр продолжал исследования, и уже 7 января 1839 г. Араго докладывал Парижской акад. об открытии дагерротипии (см.). Французское правительство купило открытие у Дагерра и Исидора Ниэпса (сын Никифора Ниэпса) и обнародовало его. Открытие было встречено с энтузиазмом, и участие множества любителей привело к быстрому усовершенствованию процесса. В 1840 г. Дрэпер в Нью-Йорке получил первый портрет при помощи дагерротипии, в 1841 г. открыта была способность брома и хлора увеличивать светочувствительность йодированных пластинок, в 1843 г. появились первые светосильные объективы, рассчитанные Петцевалем и приготовленные Фойхтлендером (см.), так что к середине 50-х годов дагерротипия достигла полного расцвета и экспозиции, длившиеся раньше 20 минут и больше, сократились до нескольких секунд. Метод Дагерра представлял, однако, то огромное неудобство, что снимки не поддавались размножению; поэтому параллельно с дагерротипией неустанно разрабатывался и другой фотографический метод, основания которого указаны были еще в 1837 г. Фоксом Тальботом в Лондоне. Тальбот получал на бумаге, покрытой хлористым или йодистым серебром, изображения в камере (1841), проявлял их галловой кислотой и печатал полученные таким образом негативные изображения на другом куске бумаги, покрытом хлористым серебром, дававшим позитив. Чтобы избежать неудобств, связанных с применением бумаги для получении негатива, Ниэпс де Сен-Виктор, племянник Никифора Ниэпса, заменил в 1848 г. бумажные негативы Тальбота стеклянными пластинками, покрытыми белком, содержащим йодистый калий; чтобы сделать пластинки светочувствительными, их купали в растворе азотнокислого серебра, превращавшегося в пластинке в йодистое серебро. В 1851 г. Арчер (Archer) в Лондоне заменил белок коллодием, ввел проявление пирогалловой кислотой и создал таким образом мокрый коллодионный процесс , быстро вытеснивший дагерротипию и применяемый для некоторых целей и до сих пор. Приготовленные по этому способу светочувствительные пластинки годны, пока они еще не высохли, а следовательно, не могут быть заготовлены в запас. В 1871 г. английский врач Маддокс (Maddox) указал на возможность замены коллодия желатином, в котором в виде эмульсии подвешено йодистое или бромистое серебро. В 1878 г. Беннет (Bennett) показал, что продолжительным нагреванием или даже кипячением эмульсии можно придать приготовленным из нее сухим пластинкам чувствительность гораздо большую (в 20 и больше раз), чем чувствительность лучших коллодионных пластинок. Это открытие произвело в 1878—1880 г. целый переворот в Ф.; коллодионный процесс отступил на задний план и был заменен сухим броможелатинным процессом, которому современная Ф. и обязана своим развитием. В 1873 г. Фогель ввел новое значительное усовершенствование в Ф., указав на возможность делать светочувствительные пластинки более чувствительными к желаемой части спектра, окрашиванием их красящими веществами, поглощающими лучи данной части спектра (см.). Параллельно с развитием негативного процесса шло развитие и позитива. В 1848 г. Бланкар (Blanquart-Evrard) ввел в употребление альбуминную позитивную бумагу (см.), применяемую в широких размерах и до сих пор. Стремление удешевить позитивный процесс, дорогой при употреблении серебряных солей, привел в 1854—5 г. Пуатевена (Poitevin) к открытию пигментного печатания (см. ниже), основанного на замеченном в 1853 г. Тальботом свойстве желатина, содержащего двухромовокислый калий, делаться нерастворимым под влиянием освещения; в 1864 г. Сван (Swan) совершенствует пигментный процесс и придает ему ту форму, в которой им в настоящее время пользуются; в 1873 г. Уиллис (Willis) открывает платинотипный процесс (см.). Историю объектива, нек. позитивных способов и отдельные исторические указания — см. ниже; историю светопечатных способов см. Фотомеханические способы печатания.

    3. Объектив. Подробно о фотографическом объективе — см.; ниже будут лишь дополнены недостающие в указанном месте сведения. Первые объективы, применявшиеся для целей Ф., были простые ахроматические чечевицы, и лишь в 1840 г. появился портретный объектив, рассчитанный проф. Петцвалем (Petzval) в Вене и изготовленный Фойхтлендером (Voigtl ä nder) специально для целей Ф. Объектив Петцваля, отличающийся необыкновенной резкостью в центре поля при чрезвычайно большой светосиле применяется и до сих пор (главным образом фотографами-профессионалами) и лишь в самое последнее время начал выясняться анастигматическими фотографическими системами. До середины 60-х годов объектив Петцваля был единственный, применявшийся в Ф.; в 1866 г. Штейнгейль (Steinheil) в Мюнхене приготовил первую симметрическую систему — апланат, который вскоре в различных видоизменениях своих и под различными названиями сделался наиболее распространенным объективом для всех целей Ф. Апланаты были первые объективы, не дававшие искривления линий на краях поля, но светосила их не могла быть сделана очень большой; этот последний недостаток не существует у антипланатов (см.), приготовленных Штейнгейлем в 1881 г. Следующий крупный успех в изготовлении объективов были анастигматы Цейсса, вычисленные впервые Рудольфом в 1890 г.; приготовление их стало возможным только после того, как заводу Шотта в Иене удалось, руководствуясь указаниями проф. Аббе, изготовить целый ряд необходимых для этой цели новых сортов стекол. В настоящее время объективы анастигматического типа благодаря выдающимся достоинствам этого типа и чрезвычайно широкой приспособимости его к различным целям стоят впереди всех других оптических систем для целей Ф. Объективы анастигматического типа изготовляются теперь многими заводами. Впереди всех завод Цейсса, протары [Назывались раньше анастигматы, пока это слово не сделалось нарицательным для известного типа объективов.] которого представляют несимметричные дублеты с большим отверстием и широким полем (фиг. 2); различные серии их служат различным применениям — от моментальных снимков до снимков внутренних помещений. Симметричные дублеты анастигматического типа впервые введены заводом Герца в Берлине под названием двойных анастигматов (двойные протары Цейсса); этот тип (фиг. 3) является наиболее совершенным типом универсального объектива для любительских целей. Отдельные чечевицы двойного анастигмата могут отлично служить ландшафтными объективами; имея несколько таких отдельных чечевиц и комбинируя их попарно в одной оправе, можно составлять прекрасные объективы, удовлетворяющие различным требованиям (наборные протары Цейсса). К самым светосильным объективам принадлежат планары Цейсса (фиг. 4), обладающие отверстием f/3,6 до f/5,0 при поле до 70° и находящие вследствие значительной даваемой ими резкости широкое применение в микрофотографии. Другой тип завода Цейсса — унар (фиг. 5) отличается простотой конструкции (четыре неахроматических чечевицы) при значительной светосиле f/4,5 — f/5,6 и сравнительно невысокой цене и является одним из лучших объективов для ручных моментальных камер. Из анастигматических объективов других заграничных фабрик можно указать как лучшие: ортостигматы Штейнгейля и коллинеары Фохтлендера. Выдающееся место среди анастигматов занимают планистигматы (фиг. 6) завода "Фос" в Варшаве, первого русского оптического завода; эти объективы, исследованные автором, оказались не только не уступающими таковым заграничного происхождения, но даже в некоторых отношениях превосходящими их; они являются превосходными универсальными любительскими объективами. Из объективов, предназначаемых для специальных целей, можно назвать: апохроматичесте планары Цейсса с чрезвычайно совершенным уничтожением хроматической аберрации, специально приспособленные для фотомеханических воспроизведений, и гипергоны Герца — широкоугольные объективы с полем почти в 140°, предназначенные для панорамических снимков (длина покрываемой пластинки почти в 5 раз больше фокусной длины объектива!). Телеобъективы (см. соотв. ст., фиг. 10) приготовляются также различными оптиками; все они состоят из какого-либо хорошего обыкновенного объектива, соединенного с рассеивающей системой. Так, напр., телеобъективы Цейсса (фиг. 7) состоят из двойного протара, соединенного с особой тройной вогнутой чечевицей. 4. Затвор. Необходимым дополнением объектива является затвор. В прежние времена, когда экспозиции длились всегда не менее нескольких секунд, наиболее удобным приспособлением для открывания и закрывания объектива в надлежащий момент являлась крышка объектива. Когда появились в высшей степени чувствительные броможелатинные пластики, явилась необходимость в приборе (затвор), который бы мог открывать объектив на желаемый, иногда очень короткий промежуток времени и затем закрывать его. Простейшим типом затвора является падающий затвор (фиг. 8), в котором дощечка В с вырезом проскальзывает вдоль салазок F мимо отверстия объектива, открывая его на тот промежуток времени, пока отверстие В проходит мимо объектива. Скорость движения падающей дощечки можно регулировать, меняя натяжение резиновых шнуров, тянущих дощечку вниз. Дощечка держится в указанном на чертеже поднятом положении посредством защелки S, которую в желаемый момент отпускают при помощи пневматического спуска нажатием на резиновую грушу G. Небольшие камеры для моментальных Ф. снабжаются чаще всего очень удобными и простыми вращающимися затворами (фиг. 9), состоящими из зачерненного металлического кружка с вырезом А, вращающимся вокруг оси, параллельной оси объектива О. Сильная пружина, заводимая поворачиванием кружка, заставляет при спуске затвора отверстие А быстро проскользнуть мимо объектива О. Спуск производится отодвиганием защелки, которая держит кружок, от руки или через посредство пневматического приспособления подобного изображенному на фиг. 8. Одними из лучших современных затворов являются ирисовые секторные затворы (ф. 10), представляющие соединение ирисовой диафрагмы (см.) с затвором. Эти затворы помещаются в плоскости диафрагмы объектива, разрезанного на две части; ряд секторов ириса очень быстро расходится, когда затвор начал действовать, доходит до желаемого раскрытия, остается в этом положении желаемый промежуток времени и затем опять очень быстро сходится. Лучшие затворы этого рода изготовляются заводами Цейсса в Иене и Герца в Берлине. Из описанных выше затворов первые два далеко не совершенны, так как им не может быть придана значительная скорость и регулировка скорости тоже трудновыполнима; третий тип затворов очень хорош, но они сложны и дороги. Лучшим затвором нужно считать шторный, который бывает двух типов: 1) затвор перед или за объективом и 2) затвор перед чувствительной пластинкой. В этих затворах кусок черной светонепроницаемой материи с более или менее широкой щелью проскальзывает под влиянием пружины перед объективом или пластинкой. Из шторных затворов первого рода наилучшим является затвор Торнтон-Пикара (фиг. 11), надеваемый на переднюю или заднюю часть объектива; регулировка скорости производится большим или меньшим натяжением пружины, движущей штору. В затворах, помещаемых перед чувствительной пластинкой (фиг. 12, затвор Аншютца), возможна двойная регулировка скорости — при помощи большего или меньшего натяжения пружины и через посредство изменения ширины щели. Эти последние затворы допускают наиболее короткие экспозиции (до 0,001 сек.) и в то же время допускают наилучшее использование светосилы объектива. В затворах, находящихся в продаже, очень часто головка, закручивающая пружину, снабжена указателем продолжительности экспозиции при данном заводе пружины; к этим данным нужно относиться с большим сомнением. В случае надобности лучше определить скорость действия затвора по способам, указанным в соотв. ст. (см.).

    5. Камера. Подробно о фотографической камере — см. Прототипом фотографической камеры является камера-обскура (см.), изобретенная Портою в 1570 г.; первые фотографические камеры (фиг. 13) представляли лишь легкое видоизменение камеры-обскуры. В ящике А, в передней доске которого закреплен объектив l, движется другой ящик B, дно которого закрыто матовым стеклом rr; выдвижением В можно "навести на фокус" камеру или "привести в фокус" снимаемый предмет, т. е. дать расстоянию объектива от стекла ту величину, при которой предмет резко изображается на стекле. При съемке матовое стекло заменяется кассетой (см.). Современные камеры построены по той же самой схеме; на фиг. 14 дано изображение современной дорожной складной фотографической камеры в раздвинутом и в сложенном виде. Передняя часть А, в которую врезывается кольцо, держащее объектив, и задняя часть В с матовым стеклом С соединяются при помощи раздвижного меха D из коленкора или кожи. Задняя часть В может передвигаться вдоль основной доски при помощи кремальеры и шестеренки, поворачиваемой ручкой b; для увеличения достижимого растяжения меха и передняя часть А может быть выдвинута через посредство кремальеры, управляемой винтом а. Объективная доска т (фиг. 14 B), в центре которой укрепляется объектив, может быть передвигаема вверх и вниз, направо и налево и закреплена в желаемом положении при помощи нажимных винтов n. Камера имеет уклон матового стекла, т. е. вся часть В может поворачиваться на небольшой угол вокруг горизонтальной оси о и закрепляться в желаемом положении посредством винта с; часто В может также поворачиваться на небольшой угол вокруг вертикальной оси и закрепляться при этом винтом d. Нижняя доска состоит из двух половин, связанных шарниром, так что при сдвинутом мехе левая часть доски может в сложенной камере закрыть матовое стекло. Камера делается из дерева, скрепленного латунными скобками; движущиеся друг по другу части камеры тоже покрыты латунными частями. Дорожные камеры этого типа приготовляются для размеров пластинки обыкновенно не свыше 24 x 30 см; в качестве подставки к таким камерам служат складные выдвижные треножники. Камеры больших размеров, не переносимые часто с места на место ("павильонные камеры"), строятся более крепко и устанавливаются на крепких павильонных штативах, в которых поднимание и поворачивание камеры совершается посредством зубчаток и червяков (фиг. 15). Кассеты к камерам. Подробности о них см.; здесь будут помещены лишь некоторые дополнительные сведения. Кроме обыкновенных кассет, применяются иногда еще магазинные кассеты, содержащие дюжину пластинок, из которых каждая вложена в рамку из тонкой жести, и каждая поочередно может быть выдвинута вперед, но эти кассеты оттягивают заднюю часть камеры и могут сместить ее. Кассеты для нарезанных пленок ничем не отличаются от кассет для пластинок, и пленки закладываются в них, натянутые в особенные тонкие жестяные или картонные рамочки. Кассеты для пленки в виде ленты имеют устройство, показанное на фиг. 17; не экспонированная пленка намотана на валике А и сматывается с него на валик В через направляющие валики С и D.

    ФОТОГРАФИЯ. II.

    Выпрямленная часть пленки между С и D находится в фокусе объектива. Кассета снабжается приспособлениями для счета экспонированных частей пленки и для правильной замены одной части пленки другой непосредственно прилегающей к ней. В настоящее время изготовляются подобные кассеты, в которых можно производить замену экспонированного валика с пленочной лентой свежим валиком на полном свету, что представляет, понятно, огромное удобство. Чрезвычайное развитие любительской, специально моментальной Ф. привело к конструкции так назыв. ручных моментальных камер, т. е. небольших камер, снабженных светосильными объективами и быстрыми затворами и предназначенные для снимания "с руки" (без штатива, держа камеру в руках). Большинство таких камер имеет "постоянный фокус", т. е. объектив (очень короткофокусный) закреплен на определенном постоянном расстоянии от чувствительной поверхности; благодаря короткому фокусу объектива все предметы, находящиеся дальше нескольких метров от объектива, выходит одинаково резко. В лучших камерах объективы могут быть слегка передвигаемы вдоль оправы, в которой они сидят; на оправе нанесена шкала в метрах или шагах. Устанавливая объектив в оправе на приблизительное расстояние снимаемого предмета, наводят камеру на фокус; на фиг. 5 изображен объектив в подобной оправе. Моментальные камеры, предназначенные для пластинок, "заряжаются" обыкновенно целой дюжиной пластинок и снабжаются более или менее сложным механизмом для замены экспонированной пластинки свежей. Разрез характерного типа камеры для пластинок (Дельта Крюгенера) дан на фиг. 16. Запас пластинок, вложенных каждая в отдельную жестяную рамочку, лежит в "магазине" Р 1; рамочки снабжены штифтами, вокруг которых, как вокруг оси, пластинки могут повертываться в точке D. Если выдвинуть штифт S и вдвинуть его снова на место, то из Р 1 освобождается одна пластинка, поворачивается вокруг D и приходит в положение Р 2, в котором и подвергается экспозиции; постепенно заменяя экспонированные пластинки, переводят все пластинки из Р 1 в Р 2. В верхней части камеры прикреплен искатель (см.); L — объектив его, Sp — зеркало, М — матовое стекло. В последнее время все более и более распространяются ручные камеры для пленки в виде ленты, снабжаемые кассетами, подобными фиг. 16; особенно распространены камеры для пленок завода "Кодак" и подобные им типы камер других заводов. На фиг. 18 изображена этого типа камера, которая позволяет пользоваться и пленками (валики помещаются в ab), и кассетами (с; на фиг. изображена вдвинутая в камеру кассета). Когда камерой не пользуются, объективную доску вдвигают, доску d поднимают вверх; в собранном виде такая камера представляет небольшой тоненький ящик. Камеры указанных типов делаются обыкновенно для размера от изображения 6 ½ x 9 см до 9 x 12 см и даже 13 x 18 см. Для изображений еще меньшего размера (от 4 x 4 см. до 6 1/2 — 9 см) в продаже находится ряд камер, имеющих вид (а часто и размеры) биноклей, в которых один объектив служит искателем, другой служит для съемки. Вообще типов моментальных камер очень много.

    6. Наиболее употребительным светочувствительным материалом для негативного процесса являются сухие броможелатинные пластинки. О приготовлении их см.; о свойствах их см. О законах, управляющих действием света на них (закон Бунзена-Роско, фотохимическая индукция и т. д.) — см. Химические действия света. Приготовление пластинок является делом сложным, поэтому приобретают их готовыми от заводов, специально занимающихся их приготовлением. Таких заводов есть несколько и в России (Варнерке, Занковский и др.), и изделия их почти ни в чем не уступают таковым лучших заграничных заводов (Шлейсснер, Люмьер, Ильфорд и т. д.). Пластинки различных заводов, а также пластинки одного и того же завода, но различной марки отличаются своей чувствительностью, т. е. степенью восприимчивости к световому действию; очевидно, что чем чувствительность пластинки выше, тем при прочих равных условиях они требуют меньшей экспозиции для получения удовлетворительного негатива. Чувствительность пластинок меряется в произвольной условной шкале и определяется при помощи приборов, называемых сенситометрами. До настоящего времени применяется еще сенситометр Варнерке, признанный, однако, совершенно неудовлетворительным. Этот прибор состоит из прозрачной шкалы с 25 полями различной прозрачности от самой прозрачной до весьма темной; шкала составлена согласно некоторому условному закону. К этой шкале прижимается испытуемая пластинка и освещается сквозь нее в течение 3 0 сек. светом от дощечки, покрытой фосфоресцирующей краской и предварительно определенным образом освещенной. Чувствительность пластинки обозначается номером той ступени шкалы, которая после проявления еще окажется заметной на пластинке. Наиболее чувствительные пластинки, имеющиеся в продаже, считаются чувствительностью 25 по Варнерке, обыкновенные 20 до 23 по Варнерке. В последнее время сенситометр Варнерке начал вытеснять значительно более совершенный сенситометр Шейнера. В этом приборе источником света является бензиновая свеча, а ослабление освещения вдоль испытуемой пластинки производится при помощи диска с вырезами различной величины, вращающегося перед пластинкой. Однако и этот прибор не вполне достигает своего назначения, так как пластинки предназначены для освещения дневным светом, имеющим совершенно другой спектральный состав, чем свет горящего бензина. Кроме того, нельзя не заметить, что указание чувствительности (напр. N по Варнерке) на коробке пластинок и не может иметь особенного значения, так как чувствительность одной и той же пластинки меняется с течением времени в значительных пределах. Светочувствительность броможелатинных пластинок для различных лучей спектра неодинакова; наибольшей чувствительностью они обладают для лучей синих и фиолетовых, наименьшей для желтых и красных: синие и фиолетовые цвета выходят светлее того, как они кажутся глазу, желтые и красные, наоборот, — темнее. Так, напр., светлое ярко желтое поле А в черной рамке (фиг. 21 с) с темно-синим щитом В, на котором нарисована белая мышь С, выходит на обыкновенной пластинке в виде фиг. а, между тем как истинное (для глаза) распределение яркости цветов такое, какое показано на фиг. с. Открытое Фогелем свойство некоторых красок увеличивать чувствительность слоев, окрашенных ими, для тех цветов спектра, которые данные краски поглощают, привело к приготовлению ортохроматических пластинок, о которых подробнее см. У обыкновенных ортохроматических пластинок (окрашенных эозиновыми красками) сильно повышена чувствительность к желто-зеленым и зеленым лучам, но не уменьшена чувствительность к синим и фиолетовым. Снятый на такой пластинке рис. фиг. с дает фиг. а, на которой желтый фон уже имеет надлежащий светлый оттенок, но темно-синий щит слишком светел. Чтобы получить вполне правильную передачу, пользуются светофильтрами — желтыми стеклами, более или менее густо окрашенными, надеваемыми на объектив, свободно пропускающими желтые, зеленые и красные лучи, но заметно поглощающие синие и фиолетовые; ортохроматическая пластинка в соединении со светофильтром даст правильную передачу оттенков фиг. с. В хороших ортохроматических пластинках эмульсия окрашена в самой массе во время приготовления ее. Обыкновенные пластинки можно сделать ортохроматическим купанием их в растворе соответственных красок (см.). Из особенностей броможелатинной эмульсии следует указать на свойство соляризации, заключающееся в том, что при очень продолжительной экспозиции светочувствительный слой теряет способность восстанавливаться под влиянием проявителей. Так, напр., если экспонировать пластинку в 1000—10000 раз дольше, чем требуется для получения годного негатива, то по проявлении пластинка может дать позитив; действительно, самые глубокие тени успеют в течение столь продолжительного промежутка времени заставить почернеть пластинку, света же благодаря соляризации не проявятся. Опыты Льюмера показали, что при еще более продолжительных экспозициях снова появляется негатив, затем опять позитив и т. д. Причины соляризации еще мало исследованы. Явление ореолов — светлых сияний, окружающих яркие части снимка (окна, блики на металлических частях) и лишающих их резких контуров, происходит от действия на светочувствительный слой лучей, прошедших через слой и отразившихся от задней поверхности стекла. Для уничтожения этого отражения заднюю поверхность стекла пластинки покрывают скоро высыхающими красными красками, растворенными на веществах, показатель преломления которых близко равен показателю преломления стекла. Другое решение той же задачи представляют пластинки Санделля, в которых толстый светочувствительный слой состоит из трех слоев разной чувствительности (наименьшая в соприкосновении со стеклом), и изоляровые пластинки, у которых между чувствительным слоем и стеклом налит тонкий подслой из окрашенной в густо-красный цвет желатина, не допускающего к стеклу иных лучей, кроме красных, не действующих на чувствительный слой. С конца 70-х годов начали делать попытки заменить в пластинках тяжелое и ломкое стекло каким-либо другим веществом. Светочувствительную эмульсию наливали на желатиновую пленку и эту пленку, очень гибкую и упругую, экспонировали в кассетах, натянув ее предварительно в тоненькой жестяной рамочке. В настоящее время желатин почти оставлен и заменен целлулоидом. Чувствительные пленки на целлулоиде изготовляются либо уже нарезанными по форматам, либо в виде длинных лент, экспонируемых в особых кассетах, в которых лента постепенно сматывается с одного валика на другой (фиг. 16). Обработка пленок ведется в общем точно так же, как и пластинок, требует только несколько более осторожности в обращении с ними. Копировать пленки можно (ввиду тонкости их) с двух сторон, что представляет немаловажное удобство в некоторых случаях (см. ниже — пигментный процесс). В самое последнее время появились чувствительные негативные бумаги. У одних из них бумага служит только временным подслоем (пленки "Секко"); после проявления пленка наклеивается чувствительной стороной на желатиновый листок и, когда высохнет, то бумажный подслой с нее стягивается. У других чувствительная эмульсия налита на столь прозрачную и лишенную всякого заметного строения бумагу, что готовый негатив можно копировать через бумажный слой, не опасаясь получить на позитивной бумаге отпечатка структуры негативной бумаги (Neue Photographische Gesellschaft в Берлине). Несомненно, что скоро негативные пленки и бумаги вполне вытеснят стеклянные пластинки; их преимущества следующие: 1) легкость — дюжина пленок 13 x 18 см. весит около 15—20 гр.; 2) неразбиваемость; 3) отсутствие ореолов; 4) возможность копировать с обеих сторон; 5) в больших форматах пленки могут быть дешевле пластинок ввиду значительной цены чистых больших стеклянных пластинок. Как пластинки, так и пленки приготовляются в определенных, обычаем установленных размерах. За основной размер принимают 18 x 24 см (пластинка), затем 13 x 18 см (полпластинки) и 9 x 12 см (четверть пластинки); размеры меньше 9 x 12 см весьма разнообразны в зависимости от размеров изображений у различных моментальных камер (4 x 4 см, 6 x 9, 6,5 x 9, 8 x 8 см и т. д.). Пластинки больше целой делаются обыкновенно размеров 24 x 30 см (экстра-пластинка), 30 x 40 см и т. д. У англичан (и только у них) приняты другие нормальные размеры (в дюймах).

    7. Экспозиция, т. е. время, в течение которого необходимо подвергнуть действию света светочувствительную поверхность для получения по проявлении правильно выработанного негатива, зависит: 1) от интенсивности и характера освещения снимаемого предмета; 2) от окраски снимаемого предмета; 3) от светосилы объектива; 4) от светочувствительности применяемых пластинок. Сила освещения зависит от высоты солнца, времени года, степени прозрачности атмосферы. При этом следует иметь в виду интенсивность в спектре света лучей короткой длины волны, сильнее действующих на пластинку; зависимость интенсивности этих лучей от перечисленных выше обстоятельств изучена была Бунзеном и Визнером (см. Фотометрия в метеорологии). Окраска снимаемого предмета влияет на экспозицию опять лишь по той причине, что лучи различной длины волны при прочих равных условиях неодинаково сильно действуют на светочувствительный слой; красные, желтые, зеленые предметы требуют более продолжительной экспозиции, чем синие и фиолетовые. Светосила (см.) объектива имеет огромное влияние на время экспозиции; при одном и том же фокусном расстоянии объектива и равных условиях освещения количество света, попадающее на пластинку, пропорционально, а экспозиция обратно пропорциональна квадрату диаметра отверстия объектива. Это обстоятельство необходимо иметь в виду при замене одной диафрагмы в объективе другой; о нумерации диафрагм см. В настоящее время светочувствительность обыкновенных продажных высокочувствительных пластинок различных заводов довольно близко одинакова, так что на влияние светочувствительности следует теперь обращать внимание только тогда, если она заведомо отличается от обычной. Правильная оценка экспозиции является делом, требующим значительного опыта. Для облегчения этого дела неоднократно составлялись таблицы, в которых указывалось приблизительное время экспозиции для различных объектов (ландшафт, портрет на открытом воздухе, портрет в комнате) при различных светосилах объектива (таблицы Эллиота, Бэртона, актинограф Гертэра и Дриффильда). Ни одна из этих таблиц не дает возможности оценить и ввести в расчет интенсивность волн короткой длины волны в освещении. Значительно совершеннее те измерители экспозиции (фотометры), в которых этот последний фактор определяется по промежутку времени, в течение которого чернеет кусочек позитивной бумаги, и затем перемножение этого промежутка с некоторым множителем, зависящим от светосилы объектива, характера предмета и чувствительности пластинки, дает правильную экспозицию; лучший из этих приборов — фотометр Винна (Wynne's Infallible Exposure Meter). Существуют еще фотометры этого рода, которые дают время экспозиции на основании яркости изображения на матовом стекле (приборы Декудэна, Герца), но они не удовлетворяют своим целям. Вообще лучшим и единственными указателем правильной экспозиции может служить только опыт. В случае необходимости произвести моментальный снимок ночью или при очень слабом дневном освещении прибегают к искусственному освещению магниевым или электрическим светом. Магний применялся вначале в виде ленты, сжигавшейся в особых лампах, непрерывно выдвигавших быстро сгоравшую ленту. В настоящее время магний применяется в виде порошка, быстро сгорающего (магниевая вспышка) в особых лампах. Свет горящего магния обладает весьма значительным количеством лучей короткой длины волны, так что небольшого (несколько грамм) количества магния достаточно для съемки портрета, группы или помещения. Единственным неудобством магниевого света является образование при горении окиси магния (магнезии) — белого густого дыма, хотя и безвредного, но весьма неприятного. Магниевые вспышки производятся либо с чистым магнием, либо с магниевыми взрывчатыми смесями. Образцом лампы для чистого магния является лампа Ширма, изображенная на фиг. 19. Корпус лампы состоит из двух неравных частей: меньшей, b, наполненной бензином и образующей с фитилем i небольшую бензиновую лампочку, и большей части а, набитой губкой, пропитанной бензином. На крышке расположен резервуар f с порошком магния, любую порцию которого можно выпустить в трубку egh, соединенную одним концом с а, другим выходящую в трубку d лампы. Если дунуть посредством резиновой груши сквозь трубку с в a, то воздух, пройдя через бензин, насытится парами его; выйдя по трубке hge, воздух унесет с собой облако магниевой пыли, зажжется о пламя лампочки и даст в высшей степени яркое мгновенное сгорание магния. Магниевые смеси составляются из магниевой пыли и какого-либо вещества, богатого кислородом, напр. хлорноватистокислого натрия (магния 80 частей, хлорноват. натрия 60 частей, сернистой сурьмы 1 часть; смешивать в высшей степени осторожно в виде порошков; при трении может взорвать). Эти смеси поджигаются в особых лампах либо пистоном, либо раскаленной проволочкой. Как пример лампы для взрывчатой смеси опишем лампу Гезекиля (фиг. 20). Смесь насыпается в цилиндрики а, расположенные по окружности круга под крышкой b, снабженной круглым отверстием, открывающим одновременно лишь один цилиндрик. Спиртовая лампа c с усиленным притоком воздуха накаливает железный стерженек d; если нажать на грушу, соединяемую резиновой трубкой с e, то рычажок т падает, раскаленное железо попадает в смесь и взрывает ее; подняв рычажок и подставив под отверстие b новый цилиндрик, можно произвести новую вспышку. Магниевые смеси имеют то преимущество, что сгорают в высшей степени быстро (1/20 — 1/30 сек.; чистого мaгния — 1/4 — 1/10 сек.), но могут при неосторожном обращении представлять опасность. Вместо магниевого порошка можно применять более дешевый алюминиевый (так наз. белая бронза), дающий свет не менее действительный, чем магний. Электрический свет применяется в настоящее время почти исключительно в мастерских, назначенных для снимков с чертежей и рисунков. Попытки применять его для портретной съемки не привели еще к практически важным результатам. Камера при съемке должна быть установлена так, чтобы оптическая ось объектива была приблизительно горизонтальна; в некоторых случаях, где это особенно важно (при снимках с картин, чертежей и т. д.), камеру устанавливают по уровню. Если нужно поднять или опустить изображение на матовом стекле, то поднимают или опускают объективную доску. Если все же приходится наклонить камеру (передвижение объективной доски не хватает), то необходимо, пользуясь уклоном матового стекла, поставить последнее вертикально. Исполнение этого правила особенно важно при снимке предметов с рядом параллельных вертикальных линий (здания, картины, чертежи).

    8. Негативный процесс. Характер изменений, вызываемых светом в бромистом серебре броможелатиновой эмульсии, в точности еще не известен. Согласно наиболее распространенной теории, бромистое серебро разлагается под действием света на гипотетическое вещество Ag 2 Br и бром по формуле

    2AgBr = Ag2Br + Br

    (при этом количества разложенного вещества ничтожны; по Едеру, при освещении 100 кв. см броможелатиновой поверхности выделяется около одной миллионной доли грамма свободного брома). Согласно другим теориям, свет непосредственно разлагает бромистое серебро на бром и серебро либо делает молекулы этого соединения более способными к разъединению. Изменения, вызванные светом на поверхности броможелатиновой пластинки, незаметны. Чтобы сделать их видимыми, необходимо подвергнуть пластинку действию проявителя — какого-либо энергичного восстановителя, способного выделить из AgBr или Ag 2 Br металлическое серебро. Действие проявителя основано, согласно одной теории, на том, что из Ag 2 Br серебро восстановляется легче, чем из AgBr, согласно другой — на том, что освещенное бромистое серебро восстанавливается легче, чем неосвещенное, и притом тем легче, чем более продолжительно было освещение бромистого серебра. Под влиянием проявителя поэтому раньше всего восстановляется AgBr на наиболее освещенных местах, затем на местах менее освещенных; при очень продолжительном действии проявителя может восстановиться все серебро, заключающееся в пластинке. Восстановленное серебро выделяется черным, и поэтому пластинка, имеющая белую, слегка желтоватую поверхность до проявления, во время проявления чернеет: будет момент, когда распределение черноты на пластинке будет приблизительно пропорционально распределению освещения в изображении, запечатлевшемся на пластинке; тогда проявление нужно считать оконченным. Полученное изображение, в котором наиболее светлым местам оригинала соответствуют наиболее темные места изображения, называется негативом (см.) и служит для воспроизведения с него снимков на бумаге (фиг. 1 А и B, где А — оригинал, В — негатив). Проявление экспонированных пластинок должно производиться (неактиничный свет) при красном свете, в темной комнате, в которую совершенно отрезан доступ дневного света и которая лишь слабо освещена красным светом. Это освещение достигается либо тем, что окно в комнате закрывается красным стеклом, либо фонарем с красными стеклами, в который помещен какой-либо искусственный источник света. Красное стекло, применяемое для этих целей, должно действительно пропускать лишь красную часть солнечного спектра; вместо стекла часто применяют особые красные бумаги или материи. Обычный тип красного фонаря для темной комнаты изображен на фиг. 23; он снабжен несколькими стеклами различных оттенков красного; откидывая красное стекло а или выдвигая заслонку b, можно по желанию менять интенсивность и окраску освещающего комнату света. Нередко применяются также керосиновые лампы с красными стеклами или электрические лампы в шариках красного стекла; дорожные складные фонари приготовляются часто из красной материи и освещаются свечами. Фотографические манипуляции требуют много чистой воды; ввиду этого темная комната должна быть снабжена водопроводом и сточной трубой; вид расположения водопровода, удобного для проявления, показан на ф. 22. Проявление производится в кюветках — плоских чашках (фиг. 22 s) из стекла, фарфора, папье-маше, лакированной жести или целлулоида. К проявлению можно приступить либо тотчас после съемки, либо через некоторый промежуток времени. Следы освещения сохраняются на пластинке, по-видимому, неограниченно долго; автору случилось однажды получить безукоризненные негативы с пластинок, экспонированных за 7 лет до проявления. Веществ, способных восстанавливать серебро из освещенной броможелатинной эмульсии, известно в настоящее время весьма много. Большинство из современных проявителей принадлежит к органическим соединениям ароматического ряда (производным бензола); почти все эти вещества обнаруживают свои проявляющие свойства лишь в присутствии щелочей; в то же время почти все эти вещества быстро разлагаются в растворе и разложение их может быть весьма замедлено прибавлением сернистокислого натра. Таким образом, всякий проявитель состоит вообще из водного раствора проявляющего вещества, сернистокислого натра и какой-либо щелочи (соды, поташа, едкого кали или натра). К проявителю по мере надобности прибавляют небольшие количества раствора бромистого калия, который замедляет проявление и не допускает восстановление серебра в местах пластинки, лишь очень слабо тронутых светом. Раствор бромистого калия добавляется поэтому к проявителю главным образом при проявлении передержанных пластинок; роль его заключается, вероятно, в том, что он превращает Ag 2 Br вновь в более стойкое AgBr. Рассмотрим последовательно некоторые наиболее распространенные проявители [Для каждого проявляющего вещества существует множество рецептов, по которым можно составить годный проявитель. Мы приводим рецепты по Schmidt, "Compendium der praktischen Photographie", лучшему современному руководству по фотографии.]: 1) гидрохинон (парадиоксибензол С 6 Н 4 (ОН) 2) вошел в фотографическую практику в 1887 г. и применяется в виде одного раствора (в 1000 куб. см воды растворяют 40 гр. сернистокислого натра, затем 5 гр. гидрохинона и по растворении всего 50—75 гр. поташа) или 2 растворов А и В, смешиваемых по мере надобности; состав А: 1000 куб. см воды, 100 гр. сернистокислого натра, 20 гр. гидрохинона; состав В: 1000 куб. см воды, 100 гр. поташа; при пользовании смешивают 30 частей А с 30 частями В и 15 частями воды. Прибавление к гидрохиноновому проявителю нескольких капель 30 % раствора едкого кали или натрия делает проявитель энергичнее и ускоряет проявление. Особенности проявителя: годен для всяких снимков, обладает значительной кроющей силой (густые малопрозрачные выделения серебра в ярко освещенных местах); работает при температурах ниже 18° Ц. очень медленно; чем температура выше, тем проявление идет быстрее; в одном растворе с течением времени разлагается, приобретая бурую окраску. 2) Родинал (1891 г.) представляет концентрированный раствор параамидофенола с прибавлением сернистокислого натрия и едкого натра; продается готовым в концентрированном виде. Для пользования его разбавляют водой, причем для правильно экспонированных негативов берут 1 часть родинала на 15—20 частей воды, для передержанных на 8—1 0 частей воды (прибавление бромистого калия!), для недодержанных на 20—30 частей воды и больше. Особенности проявителя: действует энергично и быстро; температура почти не влияет на проявляющие свойства; бромистый калий заметно замедляет проявление лишь при прибавлении значительных количеств; в концентрированном растворе прекрасно сохраняется, не разлагаясь. 3) Амидол (сернокислый диамидофенол) приготовлен был впервые в 1892 г.; он может действовать энергично проявляющим образом без присутствия щелочи. Концентрированный проявитель состоит из 1000 куб. см воды, 20 гр. амидола и 200 гр. сернистокислого натрия; при пользовании 1 часть проявителя разбавляется 3 частями воды и несколькими каплями раствора бромистого калия. Особенности: проявляет очень быстро; в присутствии воздуха довольно быстро разлагается. 4) Метол (параамидометакрезол, 1892), один из лучших быстрых проявителей, применяется в виде 2 растворов — А: 1000 куб. см воды, 10 гр. метола, 100 гр. сернистокислого натрия и Β: 1000 куб. см воды, 100 гр. поташа и 2 гр. бромистого калия; при пользовании на 60 частей А берется лишь 20 частей В. Этот проявитель работает очень быстро; замена поташа содой замедляет действие проявителя. Особенности: проявляет быстро; отлично сохраняется; проявляющая сила почти не зависит от температуры. 5) Глицин (глицин — см.; р-амидофенол, 1891) дает в растворе прекрасный медленно работающий проявитель. Концентрированный проявитель состоит из 1000 куб. см воды, 5 гр. глицина, 25 гр. сернистокислого натрия и 25 гр. поташа; разбавляется при проявлении 3—4 чч. воды. Барон Гюбль (В. v. H ü bl) рекомендует в соч. "Die Enwicklung der photographischen Bromsilber-Gelatineplatte hei zweifelhaft richtiger Exposition" (Галле, 1898) ход проявления при помощи глицина, при котором можно получить удовлетворительные негативы как при сильно недодержанных снимках, так и при передержках, превосходящих свыше 500 раз правильную экспозицию. Особенности: проявляет медленно, но дает прекрасные негативы с прозрачными тенями; прекрасно сохраняется; рекомендуется многими как лучший проявитель. До 1887 г. употреблялись в фотограф. практике два проявителя — именно 6) железный проявитель (предложен Carey Lea в 1877 г.) и 7) пирогалловый проявитель (введен в 1850 г.); из них первый часто еще применяется для проявления броможелатиновых позитивных бумаг (см.), второй в микрофотографии, ввиду особой нежности отлагаемого им серебра. Некоторые сорта пластинок дают особенно хорошие результаты лишь с определенными проявителями, которые обыкновенно и указываются в прилагаемых к находящимся в продаже пластинкам наставлениях. По основным свойствам можно распределить проявители следующим образом: 1) по скорости проявления — скорее всех метол, затем амидол, родинал, пирогалловый проявитель, гидрохинон, глицин; проявление длится в зависимости от проявителя от 3 до 10 минут; 2) по силе изображения — гидрохинон, затем глицин, метол, амидол, родинал. Многие из приведенных проявителей продаются готовыми в концентрированном виде; при пользовании их разводят водой. Большое распространение нашли в последнее время проявители в сухом виде, в виде готовых отмеренных порций порошков в стеклянных трубочках (патроны) или в виде прессованных таблеток, которые перед употреблением растворяются в воде. Проявление ведется следующим образом. В темной комнате помещают пластинку чувствительной поверхностью вверх в кювету и обливают проявителем так, чтобы вся пластинка возможно скоро покрылась им. Покачивая кюветку, проявление продолжают до тех пор, пока все изображение не появится, пока не ясны будут даже детали в тенях (светлые места пластинки) и пока при наблюдении на просвет яркие света не будут достаточно густо черны. Если пластинка проявляется слишком медленно, или слишком быстро, или света и тени вырисовываются недостаточно постепенно и гармонично, то это указывает на ошибку в экспозиции пластинки. Если сразу после того, как вырисовались яркие света, появляются на пластинке и затененные места, то это указывает на передержку; такой негатив дал бы вялый отпечаток, в котором не было бы достаточного контраста между светом и тенью. Наоборот, если на пластинке быстро появляются яркие света, полутени же вырисовываются лишь очень медленно, а детали в глубоких тенях совершенно не появляются, то такая пластинка недодержана; она дала бы отпечаток с преувеличенным контрастом между светом и тенью и совершенно черными глубокими тенями без всяких деталей в них. Соответственным проявлением и изменением проявителя можно до некоторой степени исправить недостатки в экспозиции; при этом нужно руководствоваться следующими данными: 1) концентрированные растворы дают более сильные (контрастные) негативы, чем слабые; 2) у проявителей, состоящих из 2 жидкостей, прибавление избытка проявляющего вещества (напр. гидрохинона раствора А, см. выше) вызывает более сильные негативы, прибавление избытка щелочи дает большую мягкость негативу; 3) прибавление бромистого калия вызывает замедление проявления и увеличение контрастности изображения. Отсюда следует, что снимок, признанный недодержанным, следует продолжать проявлять в более разведенном проявителе с избытком щелочи; снимок, признанный передержанным, можно спасти проявлением в концентрированном растворе с избытком проявляющего вещества и значительным количеством бромистого калия. Рационально применяя означенные правила, можно исправить ошибки в экспозиции; нужно, однако, помнить, что передержанные снимки почти всегда (см. выше — глициновый проявитель) можно спасти, сильно недодержанные же снимки очень редко дают удачные результаты. Около 10 лет тому назад Мейденбауер предложил особый метод "медленного проявления" (Standentwicklung), посредством которого удается получить удовлетворительные негативы как с сильно недодержанных, так и с сильно передержанных снимков. Пластинки опускаются вертикально [В кюветках при подобном медленном проявлении на пластинках появляются трудноудалимые осадки.] в жестяной сосуд с пазами (фиг. 24); сосуд наполняется весьма разбавленным проявителем (5 куб. см родинала на 1 литр воды), закрывается крышкой и оставляется в темной комнате. В таком проявителе нормальная пластинка проявлена в час, сильно передержанная (в 10—20 раз) в 15—20 минут, сильно недодержанная в 2—3 часа. Этот способ проявления дает удивительно гармоничные, но слишком прозрачные негативы; последний недостаток можно исправить, заканчивая проявление в более крепком проявителе. Проявленный негатив обмывается водой под краном и переносится в фиксаж (закрепляющий раствор), назначение которого сделать пластинку нечувствительной к свету и прозрачной путем растворения всего неразложенного остающегося в ней бромистого серебра. Для этой цели служит в настоящее время 15—20 % раствор серноватистокислого натрия (гипосульфит Na 2S2O3) [Ничтожные следы этого вещества, попавшие на пластинку до или во время проявления, оставляют на ней невыводимые пятна; поэтому фиксирование должно производиться подальше от места, где проявляют, и при проявлении должна соблюдаться большая чистота.], образующий при воздействии на бромистое серебро сложные сернистые двойные соли серебра и натрия, растворяющиеся в жидкости. Фиксирование длится 10—20 минут и считается оконченным через 5—10 минут после того, как будет растворено все бромистое серебро, т. е. пластинка покажется со стеклянной стороны равномерно-черной без белых пятен. Фиксаж часто делают "кислым", прибавляя к нему сернистокислого натрия и какой-либо кислоты, напр. лимонной (напр. 10 гр. виннокаменной кислоты и 15 гр. сернистокислого натрия на литр 20 % фиксажа), что представляет то преимущество, что желатина пластинок делается тверже, фиксаж не дает осадков и пластинки становятся прозрачнее. В пластинке размером 13 x 18 см содержится около 0,4 гр. бромистого серебра; из них в среднем только 0,08 гр. дают изображение, остальное (0,32 гр.) растворяется в фиксаже. Ввиду этого в больших промышленных фотографических заведениях из отработавшей фиксажной ванны выгодным является выделить серебро. По отфиксировании пластинки — ее моют или (если фиксаж был не кислый) предварительно дубят в насыщенном растворе квасцов, который предотвращает отделение желатины от стекла, наступающее иногда (летом) при продолжительном пребывании пластинок в теплой воде. Промывание пластинок должно быть весьма тщательным; даже следы гипосульфита, остающиеся в пластинке, могут со временем дать на ней желтые пятна. Промывание ведется либо в кюветках в течение не менее 2 часов, причем вода в это время 5—6 раз должна быть сменена, либо в текучей воде в промывном баке (фиг. 25), в который пластинки вставляются вертикально в пазы его и промываются в течение 3/4—1 часа водой, втекающей из крана в бак и вытекающей из него через посредство сифонных трубок. Вымытые негативы сушатся на воздухе в особых станках (фиг. 26), что длится обыкновенно несколько часов; сушка не должна производиться в очень теплом месте или на солнце, так как желатиновый слой может расплавиться и потечь. Сушку можно чрезвычайно ускорить, если опустить предварительно пластинки в безводный алкоголь, который извлечет из пластинок почти всю заключающуюся в них воду. Готовый негатив может оказаться неудовлетворительным вследствие 1) ошибки в экспозиции и 2) ошибки в проявлении. Первая узнается по выработанности теней (прозрачных мест); если даже самые глубокие тени покрыты легким черным налетом (вуаль), то пластинка передержана, если же пластинка и в более глубоких полутонах совершенно прозрачна, то пластинка недодержана. Ошибки в проявлении узнаются по относительной черноте ярких светов; если даже самые яркие света слишком прозрачны, то негатив недопроявлен, если же и слабые тени затянуты так же черно, как и света, то пластинка перепроявлена. Недопроявленные негативы и вообще такие, в которых нет надлежащего контраста между тенью и светом, можно исправить усилением. Этот процесс основан на увеличении размеров зерен серебра в негативе; на фиг. 27 А и В показаны две микрофотографии с чувствительного слоя пластинки до и после усиления, на которых ясно видно увеличение размера частиц. Из методов усиления наиболее известен следующий: сухой негатив кладут в 5 % раствор сулемы (двухлористой ртути, HgCl 2), в котором пластинка начинает мало-помалу сереть (образование Ag 2 Cl и Hg 2Cl2); чем интенсивнее желательно усиление, тем дольше (даже до полного побеления) оставляют пластинку в сулеме. Вымыв старательно пластинку, погружают ее в 100 куб. см воды, к которым добавлено 5—10 куб. см нашатырного спирта; в этом растворе негатив чернеет и вынимается, когда приобретет желаемую силу. Перепроявленные и передержанные негативы и вообще негативы, в которых замечается серая серебряная вуаль, покрывающая и самые прозрачные места (глубокие тени оригинала), могут быть исправлены ослаблением их. Наиболее употребительный ослабитель состоит из 100 куб. см 25 % раствора серноватистокислого натра в смеси с 5—10 куб. см 10 % раствора красной кровяной соли (железосинеродистого калия); в этом растворе пластинка остается до тех пор, пока не получится желаемое ослабление. Ослабление не дает таких определенных результатов, как усиление. Чтобы предохранить поверхность негатива от повреждений, ее покрывают часто лаком (раствор шеллака или сандарака в спирту). Так назыв. матлаки, придающие матовую поверхность пластинке и облегчающие таким образом ретушь ее, имеют состав обыкновенных лаков, но разведены на эфире с добавлением бензола. До покрывания лаком или после него негатив подвергают ретуши, т. е. заделке тех пятнышек, точек и вообще недостатков, которые могут встретиться в желатиновом слое; это вообще не трудно. В портретной Ф. ретушь требует большого умения и художественного чутья. Подробнее — см. Ретушь.

    9. Позитивный процесс. Позитивы печатаются в копировальных рамках (фиг. 28), состоящих из деревянной рамки, в которую вкладывается негатив, желатиной внутрь; на нее кладется светочувствительная бумага, которая прижимается к негативу крышкой. Негатив держится в рамке краями своими; если негатив больше 13 x 18 см, то стекло негатива легко может лопнуть от нажатия крышки; в этом случае негатив кладется на толстое зеркальное стекло, врезанное в рамку. Заряженная рамка выставляется на свет, и за ходом появления изображения следят, открывая половину крышки, приподнимая ее и отгибая половину листка чувствительной бумаги. О различных позитивных процессах с проявлением и без него см. соотв. ст. и Платинотипия. В нижеследующем дано будет описание только двух не изложенных в указанных местах процессов. Пигментный (угольный) способ основан на открытом Тальбо в 1853 г. свойстве желатины, содержащей двухромокислый кали, делаться нерастворимой в теплой воде под влиянием освещения. Представим себе, что мы растворим в горячей воде желатину и двухромокислый кали, подмешаем к раствору какой-либо нерастворимой в воде краски (пигмент), нанесем слой такой смеси на кусок бумаги и дадим желатине застыть. Если кусок такой бумаги подвергнуть освещению под негативом, то под прозрачными местами последнего (тени) желатина сделается нерастворимой, под непрозрачными местами (света) сохранит свою способность растворяться; если подвергнуть кусок бумаги обработке теплой водой, то на местах ее, соответствующих светам оригинала, желатина растворится и обнажится белая бумага; места же, соответствующие теням оригинала, останутся темными. Пигментный способ в действительности, однако, пришлось для правильной передачи полутеней сделать более сложным. Пусть N (фиг. I) будет копируемый на пигментную бумагу негатив, сс — совершенно темные места его, а — совершенно прозрачная часть, b — полутень.

    Фиг. I. Схема пигментного печатания.

    При копировании на пигментный слой g, нанесенный на бумагу РР, свет в x и x проникнет под прозрачными местами aa негатива глубоко и сделает желатину до самой бумаги нерастворимой; под полутенью b действие света проникнет не так глубоко, и желатина будет нерастворимой лишь в более или менее глубоком слое yy с поверхности. При обработке теплой водой все растворится, кроме теней xx, полутень же yy, лишенная поддержки бумаги, оборвется. Чтобы предупредить это, экспонированную бумагу наклеивают желатиновым слоем на лист липкой бумаги RR; в теплой воде первоначальный подслой PP можно отделить от желатины, которая останется теперь приклеенной к RR (фиг. I d); очевидно, что теперь при дальнейшем проявлении теплой водой полутени останутся на бумаге и не рискуют сорваться. Полученное таким образом изображение является обращенным (как зеркальное изображение — правая сторона оригинала является левой стороной изображения). Если это нежелательно, то производят второй перенос слоя на другой кусок бумаги; для этой цели отпечаток крепко прижимается к бумаге, покрытой столь липким слоем, что желатиновый слой переходит на нее, бумага же RR может быть с желатинового слоя стянута. Если негатив получен на тонкой пленке, то можно, понятно, избежать второго переноса, печатая на пигментной бумаге под перевернутым желатиновой стороной вверх негативом. Пигментная бумага продается в виде длинных листов, крытых желатиной, содержащей краску (черная бумага содержит уголь, отчего пигментный способ и называют иногда "угольным"). Чтобы сделать бумагу светочувствительной, ее погружают на 3—5 минут в 2-5-процентный раствор двухромокислого калия (K 2Cr2O7); высушенная в темноте бумага сохраняется, не портясь, около 5—6 дней. Очувствленная пигментная бумага печатается под негативом, как всякая другая; так как, однако, ход печатания на самой бумаге не делается видимым, то для регулирования экспозиции пользуются фотографическими фотометрами (фотометр Винна — фиг. 29). Задняя крышка металлического ящичка снабжена рядом отверстий, величина которых растет согласно некоторому закону, и закрыта куском молочного стекла. На некотором расстоянии под отверстиями находится стеклянная пластинка, закрашенная черным лаком, в котором выцарапаны против отверстий задней крышки прозрачные кружки, обозначенные буквами и цифрами. Цифра 1, находящаяся под наибольшим отверстием, освещена сильнее всего; размеры отверстий таковы, что освещение равномерно падает от кружка к кружку и у последнего кружка (Р) таблички в 250 раз меньше, чем у первого. Посредством передней крышки к табличке прижимается кусок целлулоидной бумаги. Фотометр выставляется рядом с копировальной рамкой на свет, и когда из ряда опытов найдено надлежащее время экспозиции для данного негатива, то открывают фотометр и замечают, который номер таблички еще заметно пропечатался на целлулоидной бумаге; при дальнейшем копировании этого негатива нужно, очевидно, экспонировать до тех пор, пока в фотометре не появится замеченный номер. Экспонированный пигментный слой для проявления переносят на новый подслой. 1) В случае простого переноса отпечаток погружается в холодную воду вместе с куском бумаги для простого переноса и прикладывается к последней желатиновым слоем; по вынутии из воды обе бумаги крепко прижимаются друг к другу прокатыванием по ним резинового валика. Бумага для простого переноса имеется в продаже (бумага, крытая свернувшимся белком или раствором шеллака в спирте), но в качестве ее может служить также обыкновенная меловая бумага. Если готовят диапозитив (см.), то вместо бумаги пользуются кусками стекла, покрытыми слоем 5 % раствора желатины, обработанной 5 % раствором формалина (40 % раствор формальдегида). Для проявления склеенные куски бумаги погружают в теплую (28—30° Ц.) воду; через 1—2 минуты первоначальный подслой настолько отделится от желатины, что подслой можно легко стянуть и желатина останется приклеенной к бумаге для простого переноса. Под действием теплой воды происходит растворение желатина и проявление снимка; его продолжают до тех пор, пока не заметно будет дальнейшего растворения, затем закрепляют (дубят) желатину в 5 % растворе квасцов, высушивают, и снимок готов. В случае двойного переноса пигментный слой переносят на специальную "бумагу для проявления" (покрыта липким слоем, напр. каучука), отделяют от первоначального подслоя, проявляют, дубят и сушат как выше. Для второго переноса отпечаток погружают в холодную воду и подводят под него кусок "бумаги для второго переноса" (покрыта слоем слабо растворимой хромированной желатины), подогретой предварительно в теплой воде настолько, чтобы поверхность ее сделалась липкой [Ф. на стекле, металле, кости, фарфоре и т. д. представляют обыкновенно не что иное, как пигментные отпечатки, перенесенные описанным способом на подготовленную поверхность стекла, металла и т. п.]. Оба куска бумаги прижимают друг к другу слоем к слою; если их высушить в таком виде, то бумага для проявления легко отстает и оставляет желатину на новом окончательном подслое. Пигментный способ более сложен, чем другие способы позитивного печатания, но искупает этот недостаток удивительной красотой и нежностью даваемых им результатов, разнообразием окрасов, допустимых в отпечатках, а также полной неизменяемостью их с временем. Ввиду всех этих достоинств лучшие художественные мастерские, приготовляющие фотографические воспроизведения с картин (Braun & C o в Дорнахе, Hanfst ä ngel в Мюнхене, "Photographische Gesellschaft" в Берлине) пользуются пигментным способом. Лучшие бумаги для этого способа готовит "Autotype C o в Лондоне и Braun u. C o " в Дорнахе (Эльзас). Существует несколько видоизменений пигментного способа, значительно менее распространенных (напр. озотипия, печатание на бумаге "Charbon-Velours" Артига и т. д.); из них особенно стоит указать лишь на "гуммиарабиковое печатание", представляющее обыкновенное пигментное печатание без переноса на хромированной аравийской камеди. Так как нежные полутоны исчезают при проявлении, то проявленный отпечаток покрывают иногда другим чувствительным слоем, на котором пропечатывают полутоны, иногда даже третьим слоем. Больших размеров отпечатки, полученные по этому способу, производят очень цельное впечатление благодаря отсутствию мелких деталей, пестрящих изображение и делающих его беспокойным; этот модный теперь способ позитивного печатания по характеру подходит к модному теперь направлению в живописи.

    10. Светокопирование. Для размножения планов, заводских чертежей и т. п. обычные методы позитивной печати слишком дороги или слишком сложны; поэтому для этой цели применяют особенные методы размножения посредством света, которые объединяют обыкновенно под названием методов светокопирования. Наиболее распространенные методы светокопирования основаны на свойстве солей окиси железа в соединении с каким-нибудь органическим веществом раскисляться под влиянием света в закиси. Эти изменения в составе можно проявлять посредством реактивов, обнаруживающих некоторым окрашиванием либо присутствие неизмененных солей окиси, либо появление вновь образовавшихся под влиянием света закисей. В качестве таких реактивов можно пользоваться либо красной кровяной солью (FeCy 6K3), дающей с солями закиси железа синий осадок, либо желтой кровяной солью (FеСу 6 К 4 + 3Н 2 О), дающей с солями окиси синий осадок, с солями закиси белый. Сообразно с этими двумя реактивами существуют два способа светокопирования при помощи солей железа. Первый способ дает с прозрачного чертежа на бумаге или кальке рисунок из белых линий на синем фоне. Бумага покрывается смесью равных частей нижеследующих двух жидкостей: а) 375 куб. см воды, 80 куб. см хлорного железа (45° Боме), 175 куб. см раствора аммиака и 95 гр. виннокаменной кислоты; b) 370 куб. см воды и 80 гр. красной кровяной соли; высушенная в темноте бумага имеет желтовато-зеленый свет и сохраняется довольно долго, не портясь. Копируют под чертежом, пока не выступит серый рисунок, и проявляют в чистой воде, пока рисунок (ярко-белые линии на густо-синем фоне) не выступит совершенно ясно, затем моют и сушат. Если промытый отпечаток обработать сначала 3 % раствором танина, а затем 2,5 % раствором соды, то фон из синего делается буро-черным. Второй способ дает с чертежа рисунок синими линиями на белом фоне. Светочувствительная смесь составляется из 20 куб. см 20 % раствора аравийской камеди, 8 куб. см 50 % раствора виннокаменной кислоты и 5 куб. см 50 % раствора хлорного железа. Образующаяся при смеси кашица размазывается по бумаге, и затем быстро высушивают. Экспонируют до тех пор, пока изображение не вырисуется ясными белыми линиями на темном фоне. Проявляют 20 % раствором желтой кровяной соли, которым (посредством кисти) покрывают отпечаток. Как только весь рисунок (синие линии на белом фоне) выступит, отпечаток промывают и опускают в 10 % раствор соляной кислоты, растворяющей и удаляющей из бумаги остатки солей; после нового промывания отпечатки сушатся. Кроме описанных двух способов светокопирования, существует целый ряд других; из них стоит назвать следующие: а) анилиновое печатание, основанное на том, что на неосвещенных местах бумаги, покрытой двухромокислым калием и фосфорной кислотой, образуются под влиянием паров анилина анилиновые краски, между тем как на освещенных местах такие краски не образуются; b) чернильный способ, основанный на переходе солей окиси железа под влиянием освещения в соли закиси и на образовании черного осадка под влиянием действия танина на соли окиси; с) негрография, представляющая упрощенный пигментный способ с прозрачным чувствительным слоем, в котором при проявлении не подвергавшиеся освещению части вымываются до бумаги; на отпечаток наносится затем какая-либо жирная краска, которая плотно пристает к обнаженным местам бумаги и легко смывается с нерастворимой желатины. К этой же группе можно отнести те способы позитивного печатания, которые основаны на светочувствительности некоторых солей железа и лежат в основании приготовления целого ряда находящихся в продаже позитивных бумаг, предназначенных для печатания с обыкновенных негативов и дающих все серо-черный рисунок на белом фоне (калитипная, аргентотипная, платиноидная бумага). Все эти бумаги, предназначенные заменить дорогую платинотипию (см.), малоудовлетворительны, так как сравнительно трудно получить на них полную белизну фона. Приготовление копий с очень больших чертежей представляет немалые затруднения, в особенности, если в чертеже есть плохо разглаженные складки, так как очень трудно настолько плотно прижать друг к другу чертеж и чувствительную бумагу, чтобы линии чертежа отпечатались совершенно резко. В последнее время заводы, которым приходится часто печатать копии с больших чертежей, начали пользоваться пневматическими копировальными рамками (фиг. 30), в которых из пространства между оригиналом и чувствительной бумагой высасывается воздух и бумага прижимается к чертежу атмосферным давлением. Ввиду непостоянства дневного освещения многие заводы перешли также к печатанию копий с чертежей при электрич. освещении вольтовыми дугами. О различных специальных приемах и методах Ф., как то: увеличении и уменьшении снимков, микрофотографии, стереоскопической фотографии и т. д. — см. специальные курсы по этому предмету (см. литературу Ф.). По астрономической фотографии и фотограмметрии — см. специальные статьи; по Ф. лучами Рентгена — см. соотв. ст. О Ф. в естественных цветах — см. Цветная фотография.

    11. Литература Ф. весьма обширна и детальна; почти по всем отделам Ф. существуют специальные руководства; мы перечислим лишь основные сочинения по фотографии, отсылая относительно сочинений по отдельным вопросам к изданному книжным магазином К. Л. Риккера в С.-Петербурге библиографическому указателю "Русская и иностранная фотографическая литература" (СПб., 1901). Обширные, энциклопедического характера сочинения по фотографии, обнимающие все отделы ее, следующие: J. М. Eder, "Ausf ü hrliches Handbuch der Photographie" (4 т.); H. W. Vogel, "Handbuch d. Photographie" (4 т.); С. Fahre, "Trait é encyclopé dique de photographie" (6 т.; дополняется новыми выпусками, последний в 1897 г.). Из огромного количества менее подробных руководств укажем, как на лучшее, на F. Schmidt, "Compendium d. praktischen Photographie" (8 изд., 1902; русский перевод Г. Буяковича, 2 изд., 1902) и того же автора руководство для начинающих "Photographisches Vadesmecum" (1900). Из русских руководств лучшие: А. К. Ержемский, "Самоучитель Ф." (СПб., 2 изд., 1899); П. Дементьев, "Практическое руководство к Ф." (СПб., 2 изд., 1893) и И. Карпов, "Руководство к изучению Ф." (СПб., 5 изд., 1894). Руководство по Ф. для научных целей вообще: Kaiserling, "Praktikum d. wissenschaftlichen Photographie" (1898). Микрофотография: Marktanner-Turneretscher, "Die Mikrophotographie" (1890), и Neuh a us, "Lehrbuch d. Mikrophotographie" (1898). Фотограмметрия и астрономическая фотография см. соответственные статьи. Стереоскопическая фотография: Steinhauser, "Theoretische Grundlagen f ü r die Herstellung der Stereoskopenbilder" (1897), и Bergling, "Stereoskopie" (1896). Подводная фотография: L. Boutan, "La photographie sous-marine" (1900). Фотографическая оптика: см., также М. v. Rohr, "Theorie u. Geschichte des phot. Objective" (1899). Моментальные камеры: Kr ü gener, "Die Hand-Camera" (1898). Относительно множества сочинений по отдельным фотографическим процессам см. вышеупомянутую библиографию Риккера. Художественная сторона Ф.: Robinson, "Pictorial effect in photography" (1893, нем. перевод); Hinton, "Practical pictorial photography" (1899, нем. перевод); Miethe, "Kü nstlensche Landschaftsphotographie" (1897). Фотографии и ее применениям посвящены более 50 специальных журналов; из них более замечательны: "Photographische Correspondenz", "Photographische Mitteilungen", "Photographische Rundschau", "Bulletin de l'Association belge de Photographie", "Photo-Revue", "British Journal of photography", "American Journal of photography", "Photographic Times" и другие, а также издания фотографических обществ. Русские журналы по Ф. см. Фотографические журналы. Из фотографических ежегодников выдаются: "Jahrbuch f ü r Photographie und Reproduktionstechnik" Eder'a (с 1886 г.); "Annuaire de la photographie" (с 1891 г.); "British journal photogr. almanac" и "American annual of photography". На русском языке с 1892 по 1897 г. выходил "Фотографический ежегодник" П. Дементьева. Много полезных сведений о новых конструкциях камер, объективов и принадлежностей Ф. можно также найти в подробных каталогах больших заводов и складов фотографических принадлежностей.

    А. Г.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    (от Фото... и ...графия)

    совокупность методов получения стабильных во времени изображений предметов и оптических сигналов на светочувствительных слоях (СЧС) путём закрепления фотохимических или фотофизических изменений, возникающих в СЧС под действием излучения, испускаемого или отражаемого объектом Ф.

    Общая последовательность действий в Ф. не зависит от выбора СЧС и процесса получения стабильного изображения на нём и включает следующие стадии: создание на поверхности СЧС распределения освещённостей, соответствующего изображению или сигналу; появление в СЧС вызванных действием излучения химических или физических изменений, различных по величине в разных участках СЧС и однозначно определяемых экспозицией (См. Экспозиция), подействовавшей на каждый участок; усиление произошедших изменений, если они слишком малы для непосредственного восприятия глазом или прибором; стабилизация непосредственно возникших или усиленных изменений, которая позволяет длительно сохранять полученные изображения или записи сигналов для последующего рассматривания или анализа; извлечение информации из полученного изображения – рассматривание, считывание, измерение и т.д. Эта общая схема может быть дополнена (например, такой стадией, как размножение изображений), отдельные из перечисленных стадий могут быть разделены на более дробные или совмещены, но в целом схема сохраняется во всех процессах Ф.

    Первоначально Ф. создавалась как способ фиксации портретных или натурных изображений за периоды времени, много меньшие, чем требуются для той же цели художнику. Однако по мере расширения возможностей Ф. стал увеличиваться и круг решаемых ею задач, чему особенно способствовало появление кинематографии (См. Кинематография) и цветной фотографии (См. Цветная фотография), соответственно возрастали роль и значение Ф. в жизни человечества. В 20 в. Ф. стала одним из важнейших средств информации и документирования (фиксация лиц, событий и т.п.), технической основой самого массового вида искусства – киноискусства (См. Киноискусство), входит в число основных технических средств полиграфии (См. Полиграфия), служит орудием исследования во многих отраслях науки и техники. Это разнообразие задач, решаемых с помощью Ф., позволяет считать её одновременно разделом науки, техники и искусства.

    Независимо от области применения Ф. можно подразделить на более частные виды по многим признакам, например: по временному характеру изображения – на статическую и динамическую (наиболее важным примером которой служит кинематография); по химическому составу СЧС – на серебряную (более строго – галогенидо-серебряную) и несеребряную; по способности передавать только яркостные или также и цветовые различия в объекте – на черно-белую и цветную; в зависимости от того, передаются ли изменения яркостей в объекте различиями поглощения света в изображении или различиями оптической длины пути (См. Оптическая длина пути) света в нём – на амплитудную и фазовую; по пространственному характеру изображений – на плоскостную и объёмную. Последнее разделение, впрочем, требует оговорки: любое фотографическое изображение само по себе является плоским, а его объёмность (в частности, в стереоскопической Ф.) достигается одновременной съёмкой объекта с двух близких точек и последующим рассматриванием сразу двух снимков (при этом каждого из них только одним глазом). Совершенно особым видом объёмной Ф. можно считать голографию (См. Голография), но в ней способ записи оптической информации об объекте и его пространственных свойствах принципиально иной, чем в «обычной» Ф., и похож на Ф. только использованием СЧС для записи информации.

    Исторический очерк. История Ф. начинается с опытов, в которых на бумагу или холст с помощью камеры-обскуры (См. Камера-обскура) проектировали изображение объекта и зарисовывали его. Эти опыты начались не позднее конца 15 в.; о них знал и сам воспроизводил их ещё Леонардо да Винчи. Однако Ф. в собственном смысле слова возникла значительно позднее, когда не только стало известно о светочувствительности многих веществ, но и появились приёмы использования и сохранения изменений в таких веществах, вызванных действием света. В числе первых светочувствительных веществ в 18 в. были открыты и исследованы соли серебра. В 1802 Т. Уэджвуд в Великобритании смог получить изображение на слое AgNO3, но ещё не сумел его закрепить. Датой изобретения Ф. считают 1839, когда Л. Ж. М. Дагер сообщил Парижской академии о способе Ф., названном им в собственную честь дагеротипией, хотя авторство его было спорным и многие важнейшие особенности этого способа являются достижениями Ж. Н. Ньепса, разработанными им единолично или в сотрудничестве с Дагером. Почти одновременно с Дагером о др. способе Ф. – калотипии (от греч. kalós – красивый, превосходный и týpos – отпечаток) сообщил в Великобритании У. Г. Ф. Толбот (патент на этот способ выдан в 1841). Сходство обоих названных способов ограничивалось использованием Agl в качестве СЧС, различия же велики и принципиальны: в дагеротипии получалось сразу позитивное зеркально отражающее серебряное изображение, что упрощало процесс, но делало невозможным получение копий, а в калотипии изготовлялся Негатив, с которого можно было делать любое число отпечатков. В этом отношении калотипия более близка к современной Ф., чем дагеротипия; кроме того, в первой из них, как и в современной Ф., проявление использовалось не только для того, чтобы сделать Скрытое фотографическое изображение видимым для глаза, но и для того, чтобы его усилить.

    Из дальнейших открытий, принципиально важных для развития Ф., надо отметить прежде всего переход от камеры-обскуры со случайно выбранным объективом низкого качества к камере со специальным хорошо исправленным съёмочным объективом (его создал венгерский оптик И. Пецваль в 1840; о т. н. условии Пецваля см. ст. Кривизна поля) и переход от мокрых СЧС, приготовляемых непосредственно перед съёмкой, к заранее приготовляемым сухим СЧС, способным длительно храниться в темноте без существенных изменений. В этом отношении решающую роль сыграли замена коллодионных (см. Коллодий) СЧС желатиновыми (желатину в Ф. впервые широко использовал англичанин Р. Мэддокс, 1871), а также применение вместо чистого AgI др. галогенидов Ag, более удобных с практической точки зрения. Наиболее распространённый вид СЧС – сухие желатиновые слои с диспергированными в них микрокристаллами AgHal (Hal = Cl, Br, Cl + Br, Cl + I, Cl + Br + I, Br + I, причём содержание Agl ни в одном случае не превышает нескольких %). Именно такие СЧС стали массово выпускаться промышленностью с середины 1870-х гг. Первоначально их изготовляли на стеклянной подложке (пластинки), а затем также на бумажной и плёночной. Хотя массовый выпуск плёнок начался на полтора десятилетия позже, чем пластинок (после изобретения гибкой нитроцеллюлозной подложки американским изобретателем Г. Гудвином, 1887), этот вид материалов постепенно стал преобладающим, чему сильно способствовало создание малогабаритных плёночных камер, со временем вытеснивших громоздкие пластиночные камеры (за исключением специальных репродукционных). К 70-м гг. 20 в. около 90% всех выпускаемых AgHal-CЧС составляют плёнки, а на долю пластинок приходится менее 1%. В современном ассортименте фотографических материалов (См. Фотографические материалы) плёнки обычно являются негативными СЧС (кроме кинопозитивных и обращаемых – см. ниже), бумаги – позитивными (за исключением специальных копировальных), пластинки – только негативными (см. Бумага фотографическая, Пластинки фотографические, Плёнка кино- и фотографическая (См. Плёнка)).

    Важнейшую роль в развитии Ф. на AgHal-CЧС сыграло открытие оптической сенсибилизации (См. Сенсибилизация) (нем. учёный Г. Фогель, 1873), т. е. расширения спектральной области чувствительности СЧС путём введения в них красителей, поглощающих свет больших длин волн, чем AgHal [которые поглощают только в ультрафиолетовой (УФ) области и на коротковолновом участке видимой области, не дальше синей части]. Этим был преодолен крупный недостаток прежних СЧС. Уже в 1880-х гг. большинство выпускаемых СЧС стали ортохроматическими (см. Ортохроматические материалы), чувствительными к жёлтому цвету, а с 1920-х гг. основное место среди массово выпускаемых СЧС заняли Панхроматические материалы, чувствительные к оранжево-красной части спектра. Затем появились и AgHal-CЧС, чувствительные до длин волн 1,2–1,3 мкм, соответствующих смежному с видимой областью участку инфракрасной (ИК) области, однако не для любительской съёмки, а только для научно-технических целей (см. Инфрахроматические материалы). Дальнейшее продвижение чувствительности СЧС в длинноволновую сторону невозможно, т.к. равновесное тепловое излучение окружающих тел сосредоточено как раз в ИК-области. Непрерывно действуя на сенсибилизируемые СЧС в течение всего времени между их изготовлением и использованием, оно вуалирует их до недопустимого уровня (см. Вуаль фотографическая) уже в первые сутки или даже часы их хранения. Преодолеть это ограничение для любого вида Ф. на AgHal-CЧС принципиально невозможно.

    Напротив, в коротковолновую сторону чувствительность AgHal-CЧС не ограничена ничем. На AgHal-CЧС оказывают действие не только уже упоминавшиеся излучения видимой и близкой УФ-области, но и более коротковолновые, включая рентгеновское и гамма-излучения, а также ядерные частицы и электронные пучки. Благодаря этому AgHal-CЧС уже давно применяются для получения изображений в рентгеновских лучах и пучках электронов (см. Рентгенограмма, Радиография, Электронная микроскопия); они стали также одним из распространённых средств для регистрации и измерения дозы (См. Доза) ионизирующих излучений. Более того, некоторые из этих излучений, как и ряд элементарных частиц, были открыты именно с помощью AgHal-CЧС (см. Ядерная фотографическая эмульсия).

    Изготовление светочувствительных материалов на основе AgHal (см. также Фотографическая эмульсия). AgHal-CЧС получают нанесением (т. н. поливом) светочувствительной эмульсии – взвеси частиц AgHal в желатине или др. защитном коллоиде – на подложку. Наиболее важные характеристики СЧС с такими эмульсиями, кроме физико-механических и геометрических, формируются преимущественно до полива. К ним относятся прежде всего параметры, связанные с характеристической кривой (См. Характеристическая кривая), –Светочувствительность, вуаль, Контрастности коэффициент, а также Спектральная чувствительность и структурные характеристики, обусловленные размерами микрокристаллов (МК) AgHal. Основные этапы изготовления AgHal-CЧС:

    1) Эмульсификация и первое (т. н. физическое) созревание. На этом этапе происходит образование и рост твёрдой фазы эмульсии, т. е. МК AgHal. Образование AgHal является результатом реакции между AgNO3 и соответствующими галогенидами (по большей частью калия) в растворе, содержащем желатину, которая предотвращает слипание образующихся МК. Одновременно с образованием и ростом МК в растворе начинается перекристаллизация, т. е. преимущественный рост более крупных МК за счёт растворения более мелких. На скорость и результаты перекристаллизации существенно влияет наличие желатины. К концу реакции образования AgHal перекристаллизация становится преобладающим процессом. Чёткая граница между эмульсификацией и созреванием существует не всегда, и разделение этапа на 2 процесса иногда является формальным. В результате обоих процессов формирование твёрдой фазы полностью завершается и ни одна из последующих стадий не оказывает почти никакого влияния на размеры МК. Поэтому ряд свойств будущего СЧС (зернистость, отчасти Разрешающая способность и др.) задаются именно на первом этапе; заметную роль в их формировании играет также соотношение масс желатины и AgHal: от него зависит рассеяние света в СЧС при экспонировании, а тем самым и краевая резкость деталей изображения, получаемого на СЧС. Вместе с тем сенситометрические характеристики будущего СЧС зависят от условий и результатов первого этапа лишь косвенно (в частности, потому, что МК, сформировавшиеся без дефектов структуры, практически не светочувствительны и мало влияют на светочувствительность фотоматериала даже после дальнейшей его обработки) и формируются в основном на последующих этапах; светочувствительность же эмульсий после первого созревания всегда мала.

    2) Второе (т. н. химическое) созревание. На этом этапе эмульсию выдерживают определённое время при повышенной температуре, способствующей протеканию реакций на поверхности МК между AgHal и микрокомпонентами желатины – соединениями двухвалентной серы, восстановителями и т.д. Часто в таких реакциях участвуют специально вводимые вещества, прежде всего соединения серы (если их содержание в желатине мало), а также соли золота. В результате этих реакций и второго созревания в целом на поверхностях МК, в первую очередь на поверхностных дефектах, образуются примесные центры – малые частицы веществ, отличных от AgHal; ими могут быть сульфиды Ag, Au, совместные золото-серебряные сульфиды, металлические частицы Ag и Au и др. Во время экспонирования МК на таких частицах закрепляются подвижные фотоэлектроны; с этого и начинается образование скрытого изображения. Т. о., именно наличие примесных центров в основном определяет способность МК к дальнейшему участию в фотографическом процессе, а природа и размеры примесных центров определяют эффективность этого процесса, т. е., в конечном счёте, светочувствительность всей эмульсии; не случайно их принято называть центрами чувствительности. То обстоятельство, что они расположены на поверхности МК, чрезвычайно важно; центры скрытого изображения при последующем проявлении сразу вступают во взаимодействие с проявляющими веществами и принимают электроны от их молекул. Однако если проводить второе созревание слишком долго или при излишне высокой температуре, реакции желатины с МК заходят слишком далеко, примесные центры становятся избыточно большими и способными принимать электроны от проявляющих веществ без участия скрытого изображения. Такая эмульсия может восстанавливаться в проявителе без экспонирования; в этом случае примесные центры называются центрами вуали. При умеренном втором созревании центры вуали также образуются, но лишь в слабой мере, на немногих МК. Оптимальным можно считать такое второе созревание, в котором достигается максимальная светочувствительность при минимальной вуали. Это условие выполнимо тем труднее, чем больше различаются между собой отдельные МК, и именно здесь сказывается роль предшествующего этапа – первого созревания, определяющего степень разнородности МК по размерам и совершенству кристаллической структуры. Разнородностью МК, как до, так и после второго созревания, в основном определяется также коэффициент контрастности будущего СЧС, в среднем тем меньший, чем разнородность МК больше.

    3) Подготовка эмульсии к поливу. На этом этапе заканчивается формирование сенситометрических свойств будущего СЧС и задаются его основные физико-механические характеристики. С этими целями при подготовке к поливу в эмульсии вводят многочисленные добавки, из которых важнейшими являются: оптические красители-сенсибилизаторы, адсорбирующиеся на МК и расширяющие спектральную область чувствительности СЧС; компоненты цветного проявления (только в цветофотографических материалах (См. Цветофотографические материалы)), участвующие в образовании красочных изображений; стабилизаторы, препятствующие изменению светочувствительности и вуали во время хранения готовых СЧС до экспонирования; дубители, повышающие механическую прочность, упругость и температуру плавления желатины, а тем самым и всего СЧС; пластификаторы, снижающие хрупкость СЧС после дубления; смачиватели, улучшающие контакт эмульсии с подложкой при поливе и позволяющие получить более равномерные СЧС.

    4) Полив. На этом этапе эмульсию наносят тонким (обычно 5–15 мкм) слоем на подложку. Полученный материал высушивают, а затем нарезают на нужный формат. Здесь не только задаются геометрические характеристики СЧС, но и регулируются некоторые др. параметры, например максимально достижимая Оптическая плотность проявленного СЧС.

    Основные виды процессов на AgHal-CЧС. Наиболее распространённым вариантом черно-белой Ф. на AgHal-CЧС до недавнего времени были производимые раздельно Негативный процесс и Позитивный процесс, впервые реализованные ещё в калотипии Толбота. В этом варианте экспонированный СЧС подвергают проявлению фотографическому (См. Проявление фотографическое), в ходе которого до металлический Ag избирательно восстанавливаются только те МК, на которые подействовало (и создало на них скрытое изображение) экспонирующее излучение. На стадии фиксирования фотографического (См. Фиксирование фотографическое), следующей за проявлением, неиспользованные МК растворяются и удаляются из СЧС, а металлический Ag проявленного изображения остаётся в желатине. Наибольшее почернение образуется на участках СЧС с наибольшим оставшимся количеством Ag, т. е. на участках, соответствующих самым светлым участкам объекта; т. о., распределения света и темноты в подобном изображении (негативе) и объекте противоположны. Затем тот же процесс повторяют на др. СЧС, используя в качестве объекта негатив; тогда после проявления полученное изображение передаёт распределение света и темноты противоположно негативу, но правильно по отношению к объекту первоначальной съёмки. Оно представляет собой Позитив. При этом передача действительного соотношения яркостей участков объекта в его изображении (Фотографическое тоновоспроизведение) не обязательно количественно точна: точность передачи ограничивается нелинейностью характеристической кривой AgHal-CЧС и возможна лишь на участке её, характеризуемой фотографической широтой (См. Фотографическая широта).

    После 1950 всё возрастающее распространение получает прямой позитивный вариант черно-белой Ф. на AgHal-CЧС, не требующий получения промежуточного негатива, т. н. Ф. на обращаемых материалах (см. Обращение в фотографии). В этом варианте СЧС после экспонирования также проявляют, но затем его не фиксируют, а переводят металлическое серебро изображения в растворимые в воде соединения (см. Отбеливание фотографическое). Если в таком СЧС удалить Ag, созданное первым проявлением, а затем подвергнуть его вторичному экспонированию и повторно проявить, то на каждом участке число проявленных МК будет тем больше, чем меньше их восстановилось при первом проявлении, чем меньшей была экспозиция от объекта на соответствующем участке СЧС, а значит, и чем меньше была яркость изображаемой детали объекта. Т. о., получаемое изображение есть позитив. В принципе подобный вариант обработки применим к любому СЧС, но хорошего тоновоспроизведения достигают лишь на специальных обращаемых материалах. Наибольшее применение этот вариант Ф. получил при изготовлении снимков в виде Диапозитивов или фильмов для последующей проекции и рассматривания на экране, тогда как при изготовлении отпечатков на бумаге и размножении изображений раздельный негативно-позитивный вариант значительно удобнее.

    Распространение получил также и др. вариант черно-белой Ф. на AgHal-CЧС, основанный на т. н. процессе с диффузионным переносом. В СССР для любительской съёмки этот процесс реализован в фотокомплекте «Момент», за рубежом соответствующие комплекты выпускаются в нескольких разновидностях по лицензиям впервые разработавшей их фирмы «Поляроид» (США). Комплект включает сравнительно крупноформатную (например, с размером кадра 9×12 см) фотокатушечную съёмочную камеру, негативную AgHal-фотоплёнку, вязкий обрабатывающий раствор многоцелевого назначения, равномерно наносимый на поверхность плёнки при её перемотке в камере сразу после экспонирования, и приёмный позитивный слой, прикатываемый к проявляющемуся негативному слою при той же перемотке. Обрабатывающий раствор не только восстанавливает экспонированные МК негативного СЧС, формируя в нём обычное негативное изображение, но также растворяет неэкспонированные МК, переводя содержащееся в них Ag в соли или комплексы, и восстанавливает связанное таким образом Ag из неэкспонированных МК на противолежащих участках позитивного слоя после того, как указанные соединения Ag туда продиффундируют. При этом не требуется, чтобы позитивный слой был светочувствительным; чаще всего это просто бумажный слой с нанесённым на него покрытием, в котором содержатся высокодисперсные (см. Дисперсные системы) зародыши для отложения на них Ag из восстанавливаемых соединений. Вследствие высокой вязкости раствора процесс обработки является практически сухим и позволяет получать, не вынимая негативную плёнку из камеры, готовый высушенный отпечаток на приёмном слое за время порядка минуты после съёмки.

    Особую группу процессов на AgHal-CЧС составляют процессы цветной фотографии (См. Цветная фотография). Их начальные стадии те же, что и в черно-белой Ф., включая возникновение скрытого изображения и его проявление; однако материалом окончательного изображения служит не проявленное серебро, а совокупность трёх красителей, образование и количества которых на каждом участке СЧС «управляются» проявленным серебром, тогда как само серебро впоследствии удаляется из изображения. Как и в черно-белой Ф., здесь имеются раздельный негативно-позитивный процесс с печатью позитивов либо на специальной цветной фотобумаге (с увеличением), либо на плёнке (в контакте), и прямой позитивный процесс на обращаемых цветных фотоматериалах. Распространение получил аналог диффузионного процесса, позволяющий изготовлять цветные изображения.

    Несеребряная фотография и научно-технические применения фотографии.Материалы и процессы на основе AgHal обладают многими исключительно ценными особенностями, такими, как чувствительность к самым разнообразным излучениям, способность аккумулировать их действие и тем самым реагировать на предельно слабые их потоки, способность геометрически правильно передавать изображение в целом и его детали. Вместе с тем постепенно стало ясно, что в ряде новых направлений прикладной науки и техники особенности AgHal-CЧС и процессов на них принципиально ограничивают возможности использования Ф. Так, с появлением голографии резко возросшие требования к разрешающей способности (См. Разрешающая способность) СЧС (порядка нескольких тысяч мм-2) и уровню т. н. фотографических шумов оказались на пределе возможностей AgHal-CЧС вследствие неустранимо присущей им дискретной структуры; поэтому в голографии наряду с AgHal-CЧС получили распространение новые СЧС, прежде всего макроскопически бесструктурные (напылённые слои, полимерные плёнки, стеклообразные вещества и т.д.). Лишь немногим менее жёсткие требования к разрешающей способности СЧС (во всяком случае, выше 1000 мм-1)предъявляются в планарной технологии (См. Планарная технология)производства микроэлектронных схем, в устройствах оптической памяти ЭВМ (См. Память ЭВМ), в микрофильмировании с большим уменьшением. Ещё одним принципиальным недостатком процессов на AgHal-CЧС является относительно большой промежуток времени между экспонированием СЧС и получением на нём видимого изображения, даже не стабилизированного: ни при каких скоростных методах проявления и исключении большинства др. операций этот промежуток не удаётся сделать меньше нескольких сек. Между тем всё чаще бывает необходимо (особенно в информационных системах на основе ЭВМ, техническом телевидении, голографии, при оптической обработке изображений) считывать и обрабатывать записанные на СЧС изображения или последовательности сигналов в т. н. реальном масштабе времен и, т. е. за малые доли секунды; в таких условиях любые процессы на AgHal-CЧС слишком медленны, и переход к несеребряным СЧС становится неизбежным.

    Немалое значение для наметившейся тенденции заменять, где можно, AgHal-CЧС несеребряными Имеет то обстоятельство, что соли Ag становятся всё более дефицитными и дорогими материалами в связи с ограниченностью мировых запасов серебра. Это побуждает, с одной стороны, во всех вновь появляющихся областях применения Ф. сразу ориентироваться на несеребряные СЧС, а с др. стороны – в традиционных областях применения AgHal-CЧС изыскивать возможности их замены. На этом пути возникают значительные трудности, т.к. по уровню чувствительности несеребряные СЧС даже близко не подошли к AgHal-CЧС, во всяком случае, негативным, и едва ли подойдут к ним в обозримые сроки. Поэтому для тех применений Ф., где нужны только высокочувствительные СЧС (профессиональная и любительская Киносъёмка, Аэрофотосъёмка, Космическая съёмка и др.), замена AgHal-CЧС пока неосуществима.

    До 1950-х гг. AgHal-CЧС были практически единственным видом промышленно выпускавшихся СЧС; масштабы применения остальных СЧС, таких, как ферро-, диазо- и цианотипные (на основе соответственно диазония солей (См. Диазония соли) и соединений трёхвалентного железа) для копировальных работ и светозадубливаемые (с соединениями шестивалентного хрома, т. н. Пигментная бумага) для полиграфии, были совершенно несоизмеримы с объёмом использования AgHal-CЧС. Лишь с 1950-х гг. начались в широких масштабах разработка, применение и промышленный выпуск несеребряных СЧС. Однако в те же годы стали значительно расширяться и применения Ф., так что новые СЧС с самого начала использовались почти исключительно во вновь возникших областях применения Ф., а производство AgHal-CЧС продолжало расширяться в соответствии с продолжавшимся расширением традиционных применений Ф. Лишь в одной из традиционных областей несеребряные СЧС оказались более или менее полноценными заменителями AgHal-CЧС: в массовой печати кинофильмов. Для черно-белых фильмов нашёл применение т. н. везикулярный процесс, в котором изображение создаётся светорассеивающими пузырьками газообразного азота, выделяющегося в полимерной плёнке при фотохимическом разложении введённого в неё светочувствительного Диазосоединения. Хотя чувствительность везикулярных СЧС низка, их использование позволяет реально сократить расход AgHal-CЧС в кинематографии. При печати цветных фильмов стали использовать др. несеребряный процесс – гидротипию (См. Гидротипия), в которой различия подействовавшей экспозиции передаются различиями высоты задубленного желатинового рельефа на специальных СЧС. Рельеф затем окрашивают и применяют как матрицу для печати цветоделённого (см. Цветоделение) изображения на несветочувствительном приёмном слое (бланк-фильме).

    Из новых областей применения Ф., в которых используют несеребряные СЧС, раньше других сформировалась как самостоятельная область т. н. репрография, объединяющая «малую» полиграфию, т. е. копирование и размножение печатных, графических и машинописных материалов (текстов, документов, чертежей и т.п.), с микрофильмированием и микрокопированием таких же материалов для архивных целей (т. е. воспроизведением их с большим уменьшением для хранения в компактной форме). Репрография прочно заняла первое место в Ф. по использованию несеребряных СЧС. Из процессов репрографии наибольшее распространение получила Электрофотография, где в качестве СЧС используют слои аморфного селена или слои ZnO с полимерным связующим, а в последнее время также слои органического полупроводника поли-N-винилкарбазола. Электрофотография применяется исключительно при копировально-множительных работах, и на её долю приходится до 80% общего объёма таких работ. Наряду с ней определённое место в копировально-множительной технике занимают др. несеребряные процессы: Термография, Диазотипия (на СЧС, содержащих диазосоединения), упомянутый выше везикулярный процесс, в котором также используется светочувствительность диазосоединений, диффузионные процессы с переносом красителя. Пока масштабы архивного микрорепродуцирования были сравнительно скромными, основную роль в микрофильмировании и микрокопировании играли высокоразрешающие AgHal-CЧС. В 70-е гг. 20 в. одновременно происходят и бурный рост микрорепродуцирования, и постепенное вытеснение из этой области AgHal-CЧС диазотипными, везикулярными и т. н. фотохромными СЧС (см. Фотохромные материалы), сдерживаемое пока низким уровнем чувствительности перечисленных несеребряных СЧС.

    Др. новая область применения, основанная исключительно на несеребряных материалах и процессах, связана с использованием Ф. совместно с электроннолучевыми приборами (См. Электроннолучевые приборы), прежде всего в телевидении. Здесь изображение регистрируется не как целое, а как последовательность сигналов, полученных при поэлементном разложении изображения. Основным видом материалов для записи таких сигналов являются деформируемые полимерные слои, на которых записывающий электронный или световой пучок создаёт или изменяет поверхностное распределение зарядов. При последующем размягчении полимера нагреванием возникшие при облучении электростатические силы деформируют его поверхность в соответствии с распределением потенциала на ней и т. о. создают рельеф. Этот рельеф, модулирующий слой по толщине, и есть запись изображения. Процессы, используемые для получения такой записи, как и форма самой записи (канавки, лунки, беспорядочные структуры типа «изморози»), весьма разнообразны (см., например, Термопластическая запись,Фазовая рельефография). Начинают применяться двухслойные системы из деформируемого слоя и фотопроводника (см. Фотопроводимость), что позволяет сочетать запись по методу фазовой рельефографии с электрофотографической регистрацией. Считывание записанного изображения также ведётся в поэлементной последовательности, причём толщина рельефа записи служит модулятором считывающего светового пучка по фазе, т. е. этот вид Ф. относится к фазовой Ф.

    Ещё одна новая область Ф. – Фотолитография, возникшая в связи с развитием микроэлектроники (См. Микроэлектроника). Здесь используются не только несеребряные СЧС – Фоторезисты, но и AgHal-CЧС высокого разрешения, с помощью которых изготовляют фотошаблоны (через фотошаблоны затем экспонируют фоторезисты). В последней трети 20 в. и в этой области началась постепенная замена AgHal-CЧС высокоразрешающими несеребряными СЧС: предложены СЧС на основе солей палладия, подвергаемые физическому проявлению с отложением неблагородных металлов (меди, никеля), разработаны СЧС на основе напылённых слоев галогенидов свинца и таллия, окислов молибдена и др.

    Быстрое развитие ИК-техники, в том числе появление разнообразных ИК-излучающих Лазеров, поставило вопрос о расширении границ Ф. в длинноволновую сторону. Поскольку для AgHal-CЧС это исключено, то применения Ф. в этой области базируются исключительно на несеребряных СЧС и процессах. Один из методов Ф. в ИК-области спектра – Эвапорография, в которой в качестве СЧС используют тонкие покрытия летучих веществ на ИК-поглощающих зачернённых подложках. Практически реализованы также такие СЧС, как слои холестерических жидкокристаллических (см. Жидкие кристаллы) веществ и ферромагнитные плёнки с полосовой доменной структурой (см. Магнитная тонкая плёнка). Большими возможностями, ещё не полностью реализованными, располагает полупроводниковая Ф. на основе ИК-чувствительных узкозонных полупроводников, материалов с электронно-дырочными переходами (См. Электронно-дырочный переход) и полупроводниковыми гетеропереходами (См. Полупроводниковый гетеропереход). Для исключения действия рассеянного теплового излучения окружающих тел в таких фотоматериалах «выключают» чувствительность до начала и после окончания экспонирования: возникновение какой-либо записи вне этого временного интервала невозможно потому, что любая запись фотографической информации на этих материалах требует замкнутой электрической или электрохимической цепи, а замыкание цепи либо происходит с участием фотогенерированных носителей тока в полупроводниковом СЧС, либо осуществляется в необходимый момент человеком, производящим запись, синхронно с началом экспонирования (как и последующее размыкание цепи – синхронно с окончанием экспонирования).

    Как метод записи оптической информации в двоичном Коде (сигналы «да» и «нет») Ф. получила применение в устройствах оптической памяти ЭВМ. Здесь AgHal-CЧС не являются оптимальными ни для долговременной, ни особенно для оперативной памяти: их недостатки – ограниченная информационная ёмкость (плотность записи на единицу площади СЧС), медленность процесса обработки, задерживающая доступ к информации, невозможность стирания записанной информации после полной её обработки и повторного использования СЧС. Поэтому в устройствах памяти ЭВМ начали применяться фотохромные СЧС, при экспонировании обратимо изменяющие спектральную область поглощения, т. е. фотохимически окрашивающиеся. В качестве таких СЧС наиболее употребительны слои органических красителей класса спиропиранов, но началось использование и неорганических фотохромных СЧС из числа щёлочногалоидных солей (KCl и др.). Благодаря бесструктурности эти СЧС обладают чрезвычайно большой разрешающей способностью и, как следствие, большой информационной ёмкостью; малая длительность процесса фотохимического окрашивания обеспечивает требуемое быстродействие, а обратимость окрашивания позволяет путём термического или оптического воздействия стирать запись с достаточной скоростью и использовать после этого СЧС повторно.

    Приведённые данные не исчерпывают ни имеющихся видов несеребряных СЧС и процессов на них, ни их применений, хотя дают некоторую общую картину того, как далеко отошла Ф. от своих первоначальных форм. Несмотря на столь быстрый рост числа видов и применений несеребряной Ф., научно-технической Ф. на основе AgHal-CЧС полностью сохраняет своё значение, а области её применения также непрерывно расширяются. Примерами таких областей служат исследования высокотемпературной плазмы (См. Плазма), изучение движения тел со сверхзвуковыми скоростями в аэродинамике (См. Аэродинамика) и баллистике (См. Баллистика), исследования ударных волн (См. Ударная волна) (в частности, при Взрыве и детонации (См. Детонация)), исследования планет (их поверхности, атмосферы, излучений) наземными приборами и с космических летательных аппаратов (См. Космический летательный аппарат), исследования ядерных излучений и ядерных реакций (См. Ядерные реакции), изучение технологических процессов и работы механизмов в химическом и механическом оборудовании и т.д. В большинстве случаев в этих исследованиях применяется динамическая Ф.: либо как получение серии последовательных изображений объекта, обычно через очень малые промежутки времени (вплоть до 10-9 сек), либо в виде непрерывной записи изображения, получаемой с помощью развёртки оптической (См. Развёртка оптическая), в которой изменения почернения по длине плёнки содержат информацию о развитии процесса во времени. Значительное распространение получила и статическая Ф., в частности при исследовании биологических и геологических объектов; применительно к биологическим объектам используется также динамическая Ф., прежде всего в форме цейтраферной киносъёмки (См. Цейтраферная киносъёмка) медленно протекающих изменений. В связи с задачами внеземного исследования астрофизических процессов резко расширилось применение Ф. для съёмки в далёкой УФ-области спектра, вплоть до границы с мягким рентгеновским излучением; поэтому потребовалось создание специальных СЧС, содержащих AgHal в качестве чувствительного элемента, но почти или полностью не содержащих желатины, поскольку она в этой части спектра целиком задерживает излучение. Полностью сохранила своё значение Ф. в таких традиционных для неё областях, как Астрономия и Астрофотометрия, причём для резкого повышения чувствительности к световым потокам от слабейших звёзд здесь получили распространение т. н. электронные камеры, сочетающие AgHal-CЧС с тем или иным электронным усилителем изображения, например электроннооптическим преобразователем (См. Электроннооптический преобразователь). Фотографические методы используют в факсимильной связи (См. Факсимильная связь) и во множестве др. процессов в самых различных областях науки и техники (см. также Ослабление фотографическое, Фотографическая запись, Усиление фотографическое).

    Лит.: Раскин Н. М, Ж. Н. Ньепс, Л. Ж. М. Дагерр, В. Г. Ф. Талбот, Л., 1967; Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973; Шашлов Б. А., Теория фотографического процесса, М., 1971; Баршевский Б. У., Иванов Б. Т., Объёмная фотография, М., 1970; Слуцкин А. А., Щеберстов В. И., Копировальные процессы и материалы репрографии и малой полиграфии, М., 1971; Джакония В. Е., Запись телевизионных изображений, Л., 1973; Фотолитография и оптика, М. – Берлин, 1974; Дубовик А. С., Фотографическая регистрация быстропротекающих процессов, 2 изд., М., 1975; Федин Л. А., Барский И. Я., Микрофотография, Л., 1971; Вокулер Ж., Астрономическая фотография, пер. с англ., М., 1975.

    А. Л. Картужанский.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. фотогра́фия;
    2. фотогра́фии;
    3. фотогра́фии;
    4. фотогра́фий;
    5. фотогра́фии;
    6. фотогра́фиям;
    7. фотогра́фию;
    8. фотогра́фии;
    9. фотогра́фией;
    10. фотогра́фиею;
    11. фотогра́фиями;
    12. фотогра́фии;
    13. фотогра́фиях.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Даля

    жен., греч. искусство снимать предметы на бумагу посредством света; светопись, солнопись.

    | Картина, сим способом снятая, фотографическое изображенье.

    | Заведенье, устройство, мастерская художника фотографа, светописца. Фотометр, снаряд для измеренья степени, силы света.

  7. Источник: Толковый словарь Даля. В.И. Даль. 1863-1866.



  8. Толковый словарь Ожегова

    ФОТОГРА́ФИЯ, -и, жен.

    1. Получение изображений предметов на светочувствительных пластинках, плёнках. Заниматься фотографией.

    2. Снимок, полученный таким способом. Удачная ф. Семейная ф.

    3. Учреждение, мастерская для съёмки и изготовления таких снимков.

    | прил. фотографический, -ая, -ое (к 1 и 2 знач.).

  9. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  10. Малый академический словарь

    , ж.

    1.

    Способ получения видимого изображения предметов на светочувствительных материалах с помощью специального оптического аппарата.

    Фотография — это прекрасное изобретение, посредством которого каждый из нас может передавать другим в верной копии все, чем было заинтересовано его зрение. Чернышевский, Новости литературы, искусств, наук и промышленности.

    2.

    Изображение, отпечаток, полученные таким способом; снимок.

    Горница просторна и чиста. На стенах чучела фазанов и лис, противогазы, портреты вождей и большая увеличенная фотография мужчины. Павленко, Ночь.

    || перен. чего.

    То, что является точным воспроизведением, точной передачей чего-л.

    Лист доказал, что фортепьяно вовсе не такой бедный инструмент, он способен на разнообразные эффекты и может служить превосходной фотографией оркестра. Кюи, Франц Лист.

    Не то у Лермонтова: каждое его стихотворение представляет собою, так сказать, фотографию его душевного состояния в данную минуту. Михайловский, Герой безвременья.

    3.

    Мастерская для съемки и изготовления таких отпечатков, снимков.

    Он завтра в этом костюме поедет по фотографиям и снимет с себя портреты в разных приятных позах. А. Островский, О театральных школах.

    В тот же день Аглая Федоровна повела сына в фотографию. После долгих совещаний решили снять Буланина во весь рост. Куприн, На переломе.

    4. чего. спец.

    Наблюдение и хронометрированная фиксация каких-л. действий, процессов и т. п.

    Фотография рабочего времени. Фотография погрузки.

    Шлифовщица Битулева установила, что значительная часть его [рабочего дня] уходит на правку круга. Фотография ее рабочих приемов подтвердила это. Российский, Труд и мир.

    [От греч. φω̃ς, φωτός — свет и γράφω — пишу]

  11. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  12. Толково-фразеологический словарь Михельсона

    (иноск.) — о совершенно верном сходстве, о верной, вполне правдивой передаче события, о точном во всех отношениях

    Ср. "Это фотография!" — фотографически точно.

    Ср. В "Воспоминаниях" моих нет и тени вымысла: это точная фотография без всякой какой-либо ретушовки...

    Мои воспоминания.

    Ср. (Юшков)... у меня под этим же именем воспроизведен, смею сказать, фотографически, в романах моих...

    Маркевич. Из прожитых дней. 2

    Ср. Photographie (φως, свет — γράφειν, писать) — светопись.

  13. Источник: Русская мысль и речь. Свое и чужое. Опыт русской фразеологии. Сборник образных слов и иносказаний. Т.Т. 1—2. Ходячие и меткие слова. Сборник русских и иностранных цитат, пословиц, поговорок, пословичных выражений и отдельных слов. СПб., тип. Ак. наук.. М. И. Михельсон. 1896—1912.



  14. Толковый словарь Ушакова

    ФОТОГРА́ФИЯ, фотографии, жен. (от греч. phos - свет и grapho - пишу).

    1. только ед. Получение изображений предметов с помощью оптического аппарата (камеры) на светочувствительных пластинках. «В последнее время он пристрастился к фотографии.» А.Тургенев. Заниматься фотографией.

    2. Отпечаток, снимок, полученный таким способом. Удачная фотография. По стенам висели фотографии детей. Альбом с семейными фотографиями.

    3. Предприятие, мастерская для съемки и изготовления снимков, отпечатков по заказу. Пойти в фотографию. Открылась новая фотография.

  15. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  16. Толковый словарь Ефремовой

    I

    ж.

    1.

    Получение изображения предметов посредством фотографирования [фотографирование 1.].

    отт. Искусство точного воспроизведения кого-либо или чего-либо таким способом.

    2.

    Изображение, отпечаток, полученные посредством фотографирования; фотоснимок.

    3.

    Точное воспроизведение действительности.

    отт. перен. То, что является слишком прямолинейным, буквальным воспроизведением, копированием в творчестве художника, писателя и т.п.

    II

    ж.

    Предприятие, мастерская для фотографической съёмки и изготовления фотоснимков.

  17. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  18. Большой энциклопедический словарь

    ФОТОГРАФИЯ (от фото... и ...графия) - теория и методы получения видимого изображения объектов на светочувствительных фотографических материалах (галогеносеребряных и бессеребряных); различают фотографию черно-белую и цветную, художественную и научно-техническую (аэрофотографию, микрофотографию, рентгеновскую, инфракрасную и др.). Основоположники фотографии - изобретатели Л. Ж. М. Дагер (1839) и Ж. Н. Ньепс (Франция), У. Г. Ф. Толбот (1840-41, Великобритания). Цветные фотоизображения впервые получил Л. Дюко дю Орон (1868-69, Франция).

  19. Источник: Большой Энциклопедический словарь. 2000.



  20. Современная энциклопедия

    ФОТОГРАФИЯ (от фото... и...графия, буквально - светопись), теория и методы получения видимого изображения объектов на светочувствительных материалах (галогеносеребряных и бессеребряных). Различают фотографию цветную и черно-белую, художественную, документальную и научно-техническую (аэрофотография, микрофотография и другие). Датой изобретения фотографии принято считать 7 января 1839. Основоположники фотографии - Ж.Н. Ньепс, Л.Ж.М. Дагер, У.Г.Ф. Толбот; цветное фотоизображение впервые получил в 1868 - 69 Л. Дюко дю Орон (Франция). Обычно процесс получения фотоснимка предусматривает съемку фотографическим аппаратом, химико-фотографическую обработку экспонированного (подвергшегося воздействию света) фотоматериала (чаще всего фотопленки) и фотопечать (контактную или проекционную); при использовании так называемых обращаемых фотоматериалов фотопечать не нужна (например, при изготовлении слайдов). В 1947 американский изобретатель Э. Ленд разработал диффузионный фотографический процесс, позволяющий получать готовые фотоснимки (в единственном числе), как черно-белые, так и цветные, сразу же после съемки непосредственно в фотокамере (фотоаппараты типа "Поляроид"). Методы и средства фотографии легли в основу кинематографии.

  21. Источник: Современная энциклопедия. 2000.



  22. Большой англо-русский и русско-английский словарь

    жен.
    1) photography (получение изображения) он занимается теперь фотографией ≈ he has taken up photography он хочет заняться фотографией ≈ he wants to take up photography;
    he wants to go in for photography цветной способ фотографии ≈ colour-process групповая фотография ≈ group photograph заниматься фотографией цветная фотография
    2) photograph, photo (снимок)
    3) photographer's (studio) (учреждение)фотографи|я - ж.
    1. (искусство) photography;
    заниматься ~ей go* in for photography;
    цветная ~ colour photography;

    2. (снимок) photograph;

    3. (ателье) photographer`s (studio).

  23. Источник: Большой англо-русский и русско-английский словарь



  24. Большой немецко-русский и русско-немецкий словарь

    фотография ж 1. (получение изображений) Fotografieren n 1, Fotografie f цветная фотография Farbfotografie f заниматься фотографией fotografieren vi 2. (снимок) Foto n 1, pl -s, Aufnahme f c, Fotografie f c 3. (учреждение) Fotoatelier ( - l J e: ] n 1, pl -s

  25. Источник: Большой немецко-русский и русско-немецкий словарь



  26. Большой немецко-русский и русско-немецкий словарь

    ж

    1)(получение изображений) Fotografieren n, Fotografie f

    цветная фотография — Farbfotografie f

    заниматься фотографией — fotografieren vi

    2)(снимок) Foto n, pl -s, Aufnahme f, Fotografie f

    3)(учреждение) Fotoatelier n, pl -s

  27. Источник: Большой немецко-русский и русско-немецкий словарь



  28. Большой французско-русский и русско-французский словарь

    ж.

    1)(получение изображения) photographie f, photo f

    цветная фотография — photo(graphie) en couleur; photochromie f

    заниматься фотографией — faire de la photo(graphie)

    2)(снимок) photographie f, épreuve f, photo f

    моментальная фотография — instantané m

    увеличенная фотография — agrandissement m

    семейная фотография — photo de famille

    3)(учреждение) atelier m de photographie

  29. Источник: Большой французско-русский и русско-французский словарь



  30. Большой испано-русский и русско-испанский словарь

    ж.

    1)fotografía f; toma de vistas(фотографирование)

    цветна́я фотогра́фия — fotografía en colores, fotocromía f

    занима́ться фотогра́фией — aprender a fotografiar (la fotografía); ocuparse en la fotografía

    2)(снимок) fotografía f, foto f

    момента́льная фотогра́фия — instantánea f

    3)(мастерская) fotografía f

  31. Источник: Большой испано-русский и русско-испанский словарь



  32. Большой итальяно-русский и русско-итальянский словарь

    ж.

    1)fotografia

    цветная фотография — fotografia a colori, fotocolore m, cromofotografia

    моментальная фотография — istantanea

    2)перен.(точная передача явления) fotografismo m

    3)(мастерская) studio fotografico

  33. Источник: Большой итальяно-русский и русско-итальянский словарь



  34. Физическая энциклопедия

    ФОТОГРАФИЯ

    -совокупность методов получения стабильных во времени изображений предметов на свето-чувствит. слоях (СЧС) путём закрепления фотохим. или фотофиз. изменений, возникающих в СЧС под действием излучения, испускаемого или отражаемого объектом.

    Независимо от выбора СЧС и процесса получения стабильного изображения на нём общая схема Ф. включает: формирование на поверхности СЧС изображения в виде распределения освещённостей, к-рое вызывает в СЧС хим. или физ. изменения, различные по величине в разных участках СЧС и однозначно определяемые кол-вом освещения, сообщённым каждому участку; усиление физ. или хим. изменений, если они малы для непосредственного восприятия глазом или прибором; стабилизацию возникших изменений (непосредственных или усиленных), позволяющую сохранить полученные изображения для последующего рассматривания или анализа; извлечение информации из полученного изображения - рассматривание, считывание, измерение и т. д. Эта общая схема может быть дополнена печатью и размножением изображений и т. п., отдельные перечисленные стадии могут быть разделены на более дробные или совмещены, но в целом схема одинакова для всех процессов Ф.

    Совр. Ф. является важнейшим средством документирования и сохранения информации, составляет основу кинематографии, входит в число осн. техн. средств полиграфии, фотолитографии и фототелеграфной техники (включая фотофаксную связь), является одним из средств в научных исследованиях.

    Независимо от области применения Ф. можно подразделить по ряду признаков: на статическую и динамическую (напр., кинематография)-по временному характеру изображения; на серебряную (строго - галогенидосеребряную) и несеребряную-по хим. составу СЧС; на чёрно-белую и цветную-по способности передавать только яркостью или также и цветовые различия в объекте; на амплитудную и фазовую - в зависимости от того, передаются ли свойства объекта различиями поглощения света в изображении или различиями оптич. длины пути света (а следовательно, фазы) в изображении; на плоскостную и объёмную - по пространственному характеру изображения. Особым видом объёмной Ф. можно считать и голографию, хотя в ней способ записи оптич. информации об объекте принципиально иной, нежели в Ф., сходство состоит в использовании СЧС для записи изображения.

    Историческая справка. Ф. как способ фиксации спроецированных на СЧС изображений возникла на основе открытия светочувствительности мн. веществ, но оформилась, когда появились приёмы использования и сохранения изменений в них. В числе первых светочувствит. веществ были открыты и исследованы соли Ag. Датой изобретения Ф. считают 1839, когда Л. Дагер (L. Dagerr) открыл способ, в к-ром получают сразу позитивное зеркальное изображение, что упрощает процесс, но делает невозможным копирование. В др. способе - калотипии, открытом в 1841 У. Толботом (W. Talbot), получают негатив, с к-рого можно сделать любое число отпечатков. В этом калоти-пия совпадает с совр. Ф., др. совпадение состоит в том, что проявление используют не только как средство визуализации скрытого изображения, но и как средство усиления. Ныне в качестве СЧС наиб. распространены сухие желатиновые слои с диспергированными в них микрокристаллами галогенидов серебра AgHal (Hal = Cl, Br, Cl + Br, Cl+I, Cl + Br +I, Br + I) на плёночной или бумажной подложке.

    Важнейшую роль в развитии Ф. на AgHal-СЧС сыграло открытие спектральной сенсибилизации (Фогель, 1873) - расширения спектральной области чувствительности СЧС введением в них красителей, поглощающих свет в ином участке спектра, нежели AgHal. Этим был преодолен недостаток имевшихся СЧС, чувствительность к-рых была ограничена областью поглощения AgHal (УФ-область и коротковолновый край видимой области-синей части спектра). Уже в 1880-х гг. большинство СЧС выпускалось ортохроматическими, чувствительными вплоть до жёлтой части, а с 1920-х гг. осн. часть составляли панхроматические, чувствительные к оранжево-красной части видимой области. В дальнейшем появились также AgHal-СЧС для научно-техн. целей, чувствительные к излучению ближней ИК-области до длин волн ~ 1,5 мкм.

    В коротковолновую сторону чувствительность AgHal-СЧС не ограничена: на них оказывают действие не только излучения видимой и близкой УФ-области, но и рентг. и гамма-излучения, а также ядерные частицы и электронные пучки. Поэтому AgHal-СЧС применяются для получения изображений в рентг. лучах и электронных пучках (см. Электронная микроскопия); они также используются для регистрации ионизирующих излучений и измерения их дозы (см. Дозиметрия). Нек-рые из этих излучений, как и ряд элементарных частиц, были открыты именно с помощью AgHal-СЧС.

    Технология изготовления фотоматериалов. Изготовление AgHal-СЧС и формирование их свойств-результат сложной хим. технологии. Слои получают нанесением эмульсии- взвеси микрокристаллов AgHal в желатине-на подложку, движущуюся относительно поливного устройства. Наиб. важные характеристики СЧС, такие, как светочувствительность, вуаль, коэф. контрастности, спектральная чувствительность и структурные характеристики, связанные с размером микрокристаллов, формируются до полива, хотя зависят также от толщины наносимого слоя. Ниже рассмотрены осн. этапы изготовления AgHal-СЧС.

    Э м у л ь с и ф и к а ц и я и ф и з и ч е с к о е с о з р е в а н и е. На этом этапе формируют твёрдую фазу эмульсии, т. е. микрокристаллы, к-рые образуются при сливании в водный раствор желатины растворов AgNO3 и соответствующих галогенидов калия. При поочерёдном сливании образование отд. микрокристаллов не совпадает во времени, что ведёт к перекристаллизации и образованию микрокристаллов разл. размеров (полидисперсность), т. к. более крупные растут за счёт мелких. При одноврем. сливании растворов равными малыми порциями формирование микрокристаллов происходит одновременно, рост их при добавлении новых порций реагентов идёт за счёт добавляемых реагентов, а не за счёт друг друга, т. е. микрокристаллы почти однородны по размерам (монодисперсны). Форма микрокристаллов зависит от молярного соотношения реагентов: при избытке AgNO3 формируются кубические, а при избытке KHal - октаэдрич. кристаллы. Добавление в желатину веществ, избирательно препятствующих росту тех или иных граней микрокристаллов (т. н. модификаторов роста), позволяет получить весьма сложные огранки.

    В 1980-90-х гг. получили распространение эмульсии с кристаллами спец. формы и структуры. Это структуры "ядро-оболочка", где внутр. объём и поверхностный слой микрокристалла различны по составу ("оболочки" наращивают обычным путём на предварительно сформированные монодисперсные "ядра", к-рые в принципе могут быть и несеребряными), и т. н. Т-кристаллы - пластинчатые микрокристаллы, толщина к-рых в 50-100 раз меньше поперечника. Такие кристаллы также могут быть неоднородными по составу, но наращивание "оболочек" (иногда до 3-4) идёт по периметру, а не по плоскостям (т. н. латеральные Т-кристаллы). Особенности микрокристаллов "ядро - оболочка" состоят в возможности формировать в них по желанию глубинное (на границе "ядро - оболочка") или поверхностное скрытое изображение. Это практически использовано в прямопозитивных и нек-рых спец. эмульсионных СЧС. Т-кристаллич. эмульсии обладают принципиально иными оптич. свойствами, нежели обычные: они не рассеивают свет на микрокристаллах, а почти зеркально отражают его или пропускают практически нерассеянным, что позволяет сочетать высокую чувствительность слоя эмульсии с высокой разрешающей способностью. Такие СЧС обладают чувствительностью ~3000 единиц ASA, что всего в 5-7 раз ниже теоретич. предела (поглощение 1 квант/микрокристалл).

    Х и м и ч е с к о е с о з р е в а н и е. На этом этапе эмульсию выдерживают при повыш. темп-ре для протекания реакций AgHal с микрокомпонентами желатины и добавками к ней - соединениями двухвалентной серы, восстановителями и т. д.-на поверхности микрокристаллов; часто в реакциях участвуют специально вводимые соли золота. Результатом реакций является образование на поверхности кристаллов примесных центров, отличных от AgHal. Эти центры представляют собой островки высокой локальной концентрации межузельных ионов Ag+, притягивающие фотоэлектроны; они же обеспечивают положит. заряд на растущей частице скрытого изображения, что важно при поступлении электронов извне на стадии проявления. Т. о., наличие примесных центров определяет способность микрокристаллов к дальнейшему участию в фо-тографич. процессе, а природа и размеры примесных центров- эффективность этого процесса и, в конечном счёте, светочувствительность эмульсии; поэтому их принято называть центрами чувствительности. Т. к. они расположены на поверхности микрокристаллов, скрытое изображение на них при последующем погружении СЧС в проявитель сразу вступает во взаимодействие с проявляющими веществами, принимая электроны от их молекул.

    Если проводить хим. созревание излишне долго или при излишне высокой темп-ре, примесные центры становятся избыточно большими и способны принимать электроны от проявляющих веществ без участия скрытого изображения. Такая эмульсия будет восстанавливаться в проявителе без экспонирования, и в изготовленном из неё СЧС всегда будет возникать равномерное почернение - вуаль; в этом случае примесные центры наз. центрами вуали. При умеренном созревании центры вуали образуются в слабой мере. Оптимально такое созревание, в к-ром достигается макс. чувствительность при мин. вуали. Это условие выполняется легче при монодисперсности микрокристаллов.

    П о д г о т о в к а э м у л ь с и и к п о л и в у. На этом этапе задаются осн. физ.-механич. характеристики СЧС, для чего в эмульсию вводят добавки: спектральные сенсибилизаторы-красители, расширяющие спектральную область чувствительности СЧС в длинноволновую сторону; компоненты цветного проявления, участвующие в образовании красителей изображения в цветофотографич. материалах; стабилизаторы светочувствительности и вуали для хранения готовых СЧС перед экспонированием; дубители, повышающие механич. прочность, упругость и темп-ру плавления желатины, а тем самым всего СЧС; пластификаторы, снижающие хрупкость СЧС после дубления; смачиватели, улучшающие контакт эмульсии с подложкой при поливе и равномерность полива слоев, и др.

    П о л и в. На этом этапе эмульсию наносят тонким слоем (обычно 5-15 мкм) на подложку, слой высушивают и нарезают для получения нужного формата. Здесь не только определяются геом. характеристики СЧС, но и регулируются нек-рые другие, напр. максимально достижимая в изображении оптич. плотность.

    Основные виды процессов фотографии на AgHal-СЧС. Сначала самым распространённым видом чёрно-белой Ф. на AgHal-СЧС был раздельный негативно-позитивный процесс. В нём экспонированный СЧС подвергают проявлению, в ходе к-poro до металлич. Ag избирательно восстанавливаются только те микрокристаллы, на к-рые действовало излучение, сформировав в них скрытое изображение. Вслед за проявлением на стадии фиксирования неиспользованные микрокристаллы растворяют и удаляют из СЧС, оставляя проявленное Ag-изображение в желатине. Наиб. кол-во восстановленных до Ag микрокристаллов и соответственно наиб. почернение образуются на участках СЧС, соответствующих наиб. светлым участкам объекта, т. е. изображение негативно. Затем такой же процесс повторяют на др. СЧС, используя негатив в качестве объекта; после проявления полученное изображение передаёт распределение света и темноты противоположно негативу, но правильно относительно объекта первоначальной съёмки, т. е. изображение позитивно. При этом количественно передача соотношения яркостей объекта в его изображении (т. н. тоновоспроизведение) не обязательно точна.

    В 1990-х гг. широкое распространение получил вариант прямой позитивной чёрно-белой Ф. на AgHal-СЧС без промежуточного негатива - Ф. на обращаемых СЧС. После экспонирования СЧС проявляют, но не фиксируют, а подвергают равномерному экспонированию, при к-ром создаётся скрытое изображение во всех ещё присутствующих непроявленных микрокристаллах. Если в таком СЧС удалить Ag, созданное первоначальным проявлением, повторно проявить и отфиксировать, то на каждом участке число проявленных микрокристаллов будет тем больше, чем меньше их восстановилось при первом проявлении, чем меньшее кол-во освещения подействовало на соответствующий участок СЧС при экспонировании его объекта, т. е. чем меньше была яркость детали изображения объекта. В принципе такой вариант возможен на любом СЧС, но для хорошего тоновоспроизведения используют спец. обращаемые СЧС. Наиб. распространён этот вариант при изготовлении снимков в виде диапозитивов и узкоформатных любительских фильмов.

    Другой вариант прямопозитивного процесса использует СЧС с кристаллами типа "ядро - оболочка", причём центры чувствительности формируют на "ядрах" до наращивания "оболочек",. а поверхность последних преднамеренно вуалируют обработкой в хим. восстановителе, т. е. серебрят. При экспонировании фотоэлектроны к поверхности кристалла не выходят, т. к. захватываются центрами чувствительности, а дырки (атомы Hal) выходят к поверх-ности и окисляют Ag до AgHal. При проявлении в нерастворяющем проявителе восстанавливаются лишь кристаллы, сохранившие Ag на поверхности (неэкспонированные, где генерации дырок не было), и не восстанавливаются экспонированные микрокристаллы; в результате возникает позитивное изображение.

    Ещё один позитивный вариант чёрно-белой Ф. на AgHal-СЧС использует процесс с диффузионным переносом на спец. фотокомплектах. Комплект включает крупноформатную (напр., с кадром 9 х 12 см 2) катушечную съёмную камеру, негативную AgHal-фотоплёнку, вязкий про-являюще-фиксирующий раствор, равномерно нанесённый на поверхность отснятого кадра при его перемотке в камере сразу после экспонирования, и приёмный позитивный слой, прикатываемый к проявляющемуся негативному при той же перемотке. Обрабатывающий раствор одновременно восстанавливает экспонированные микрокристаллы негативного СЧС, растворяет неэкспонированные, переводя содержащиеся в них соли Ag в комплексы, и восстанавливает связанное серебро из неэкспонированных кристаллов на противолежащих участках позитивного слоя, после того как указанные комплексы к нему продиффундируют. При этом позитивный слой не должен быть светочувствительным; чаще всего это просто бумажный слой с покрытием, содержащим высокодисперсные зародыши для отложения на них Ag из восстанавливаемых комплексов. Благодаря высокой вязкости раствора процесс обработки является практически сухим и позволяет получать, не вынимая плёнку из камеры, готовый высушенный отпечаток на приёмном слое за время порядка 1 мин после съёмки. Для копирования и размножения такие снимки и оставшийся от них негатив не предназначены.

    Особую группу процессов на AgHal-СЧС составляет ц в е т н а я Ф. Сами материалы отличаются от чёрно-белых прежде всего наличием нескольких (обычно трёх) СЧС, один поверх другого, причём каждый чувствителен лишь в своей части видимой области спектра. Экспонирование и нач. стадия проявления те же, что в чёрно-белой Ф., но дальнейшая обработка более сложна вследствие того, что окончат. изображение формирует не Ag, а три красителя. Ag удаляют в конце обработки путём отбеливания, но лишь после того, как оно приняло участие в управлении кол-вом образующегося красителя в каждом слое. Это достигается введением при изготовлении в каждый из трёх СЧС бесцветной цветообразующей компоненты (в каждом-своей), реагирующей после проявления (т. е. восстановления AgHal до Ag) с окисленной формой восстановителя-проявляющего вещества - и образующей с ним соответствующий краситель в кол-вах, пропорциональных кол-вам восстановленного Ag, а в конечном счёте - экспозициям от излучений, действовавших на каждый СЧС. Как и в чёрно-белой Ф., здесь возможны раздельный негативно-позитивный процесс с печатью позитивов на спец. цветной бумаге (с увеличением) или позитивной цветной плёнке (в контакте) и прямой позитивный процесс на обращаемых цветных фотоматериалах.

    Имеется также аналог сухого диффузионного процесса (см. выше) получения цветных изображений, разработанный в неск. вариантах фирмой "Полароид" (США). В нём использованы специально разработанные сложные орга-нич. вещества, сочетающие в одной молекуле проявляющую и цветообразующую или окрашенную группы; при расщеплении молекул и диффузии фрагментов в щелочной среде группы функционируют независимо и одна участвует в проявлении, а другая-в формировании соответствующего красителя в приёмном слое. В рамках этого процесса удалось также перейти от многослойной AgHal-системы к прямопозитивной однослойной, содержащей сразу три красителя будущего изображения, поверх к-рой нанесён трёхцветный мозаичный растр, выполняющий функцию цветоделения на малых участках СЧС.

    Необычным прямопозитивным является и процесс с отбеливанием красителей проявляющимся Ag, реализованный фирмой "Циба" (Швейцария) на трёхслойных AgHal-системах, каждый СЧС к-рой заранее прокрашен одним из трёх красителей будущего изображения так, что в сумме они непрозрачны. После экспонирования и обычного проявления краситель в каждой точке каждого слоя разрушается тем больше, чем большее число микрокристаллов проявилось там и чем прозрачнее от красителя становится соответствующий участок слоя. Отбеливанием всего проявившегося Ag (роль к-рого исчерпана) и фиксированием неиспользованных кристаллов формирование изображения завершается. Такие материалы ограничены по чувствительности, но дают высокостабильное цветона-сыщенное изображение.

    Для 2-й пол. 20 в. характерно вытеснение чёрно-белой Ф. и переход к цветной во всех наиб. массовых применениях Ф. на AgHal-СЧС, прежде всего в кинематографии и любительской съёмке, где доля цветной Ф. перешла за 90% (в России существенно меньше). Причины вытеснения- не только высокая информативность и эстетич. достоинства цветных изображений, но и отсутствие Ag в окончат. изображении, что в сочетании с централизованным фирменным проявлением цветных СЧС и осуществляемой при этом почти полной регенерацией Ag из обрабатывающих растворов (до 94-96%) даёт большой эко-номич. эффект.

    Несеребряная фотография и её научно-технические применения. Материалы и процессы на основе AgHal обладают мн. достоинствами, такими, как высокая чувствительность к разнообразным излучениям, способность реагировать на предельно слабые потоки за счёт аккумуляции действия излучения, способность геометрически правильно передавать изображение в целом и его детали. Вместе с тем особенности AgHal-СЧС и процессов на них принципиально ограничивают возможности использования Ф. в ряде направлений прикладной науки и техники. Так, с появлением голографии резко возросшие требования к разрешающей способности СЧС (до неск. тысяч мм -1) и уровню шумов оказались на границе возможностей AgHal-СЧС вследствие неизбежной в них дискретной структуры, и в голографии наряду с AgHal-СЧС получили распространение иные СЧС, структурированные на молекулярном уровне (полимеры, стеклообразные слои и т. д.). Лишь немногим менее жёстки требования к разрешающей способности в планарной технологии произ-ва микроэлектроники (>~1000 мм -1), в устройствах оптич. памяти ЭВМ, в микрофильмировании с большим уменьшением. Ещё одним принципиальным недостатком процессов на AgHal-СЧС является относительно большой промежуток времени между экспонированием СЧС и получением видимого изображения, даже не стабилизированного: менее неск. секунд сделать его не удаётся. Поэтому считывать и обрабатывать записанные изображения или последовательности сигналов в реальном времени невозможно.

    Немалое значение для тенденции к замене AgHal-СЧС на несеребряные СЧС имеет то, что серебро всё более дефицитно и его использование всё менее оправдано экономически. Это побуждает во вновь возникающих областях применения Ф. сразу ориентироваться на несеребряные СЧС, а в традиц. областях применения AgHal-СЧС изыскивать возможности их замены. Это непросто, т. к. по уровню чувствительности AgHal-СЧС, во всяком случае негативные, далеко опередили все остальные. Там, где нужны только высокочувствительные AgHal-СЧС (профессиональная и любительская киносъёмка, аэрофотосъёмка, космич. съёмка), замена, видимо, просто невозможна.

    До 1950-х гг. AgHal-СЧС были практически единственными массово выпускавшимися. С 1950-х гг. начались в широких масштабах разработка, использование и пром. выпуск несеребряных СЧС, но одновременно стали быстро расширяться и применения Ф., так что новые СЧС с самого начала предназначались для вновь возникающих областей использования Ф., а произ-во AgHal-СЧС продолжало расширяться в соответствии с расширением традиц. областей их применения. Только в массовой печати кинофильмов для них была найдена замена. Для чёрно-белых фильмов стал применяться везикулярный процесс, в к-ром формируют светорассеивающее изображение из пузырьков N2, выделяющихся в полимерной плёнке при фотохим. разложении введённой в неё светочувствит. диазосоли; несмотря на низкую чувствительность таких СЧС, их использование реально сокращает расход AgHal-СЧС в кинематографии. При печати цветных фильмов применяется гидротипия, в к-рой различия подействовавших экспозиций передаются различиями высоты задублённого желатинового рельефа на спец. СЧС. Рельеф окрашивают введением в него красителя и используют как матрицу для печати цветоделённого изображения на несветочувствит. приёмном слое (бланкфильме).

    Одна из новых областей применения Ф.- репрография, объединяющая "малую" полиграфию, т. е. копирование и малотиражное размножение печатных, машинописных и графич. материалов, и микрофильмирование и микрокопирование тех же материалов для архивных целей, т. е. воспроизведение их с большим уменьшением для хранения в компактной форме. Репрография прочно занимает первое место в Ф. при применении несеребряных СЧС, а в ней на первом месте находится электрофотография, в к-рой используются СЧС из полупроводников, способных увеличивать свою электропроводность под действием света. В репрографии применяют др. несеребряные процессы, такие, как термография, диазотипия, диффузионные процессы с переносом испаряющихся красителей. Для микрофотографии высокоразрешающие AgHal-СЧС играли осн. роль при скромных масштабах микрорепродуцирования, но бурный рост этой области привёл к постепенному вытеснению их разл, СЧС с молекулярным уровнем структурированности (диазо- и везикулярные слои, электрофотографии, прозрачные слои из органич. полимерных фотопроводников).

    Другая новая область применения исключительно несеребряных СЧС и процессов - использование Ф. совместно с электронно-лучевыми трубками. Здесь изображение регистрируют не как целое, а как последовательность сигналов от поэлементного разложения изображений. Такие сигналы записываются на СЧС из равномерно заряженных деформируемых полимерных слоев, на к-рых записывающий электронный или световой пучок создаёт или изменяет поверхностное распределение зарядов. Процессы получения такой записи и её формы (канавки, лунки, изморозь) весьма разнообразны (см. Фазовая рельефография).

    Ещё одна новая область Ф.- фотолитография, возникшая в связи с развитием микроэлектроники. Для защиты полупроводниковой базы от травления, напыления и иных видов формирования рисунков используют фоторезисты, чаще всего полимерные органические, но для получения на них защитного рисунка применяют AgHal-СЧС высокого разрешения. Замена AgHal-СЧС на несеребряные возможна и здесь и уже частично идёт: предложены разл. СЧС на основе осаждённых или напылённых слоев металлов (напр., Pd) и их солей, физически проявляемых с отложением неблагородных металлов (Сu, Ni); используются СЧС с галогенидами Рb и Тl, окислами Мо и др.

    Быстрое развитие ИК-техники на основе соответствующих лазеров потребовало расширения границ Ф. в длинноволновую сторону, где любой несеребряный СЧС предпочтителен перед AgHal-СЧС. Широко применяются элек-трофотографич. СЧС на основе замещённых фталоцианинов (во мн. принтерах), слои жидкокристаллич. (холестерич.) веществ, ферромагн. плёнки с полосовой доменной структурой. Для лазеров с более длинноволновым излучением, обладающих значит, тепловым действием, использована эвапорография на СЧС из тонких покрытий испаряющихся веществ на ИК-поглощающих зачернённых подложках. Здесь пригодны и обычные AgHal-СЧС, если после прогрева СЧС изображением теплового объекта равномерно осветить весь СЧС и проявить: места действия ИК-излучения оказываются сенсибилизированными к последующей засветке и дают почернение, величина к-рого зависит от экспозиции ИК-излучением. Большими возможностями в ИК-диапазоне обладает полупроводниковая Ф. на основе чувствительности к ИК-излучению узкозонных полупроводников, р-п-переходов и гетеропереходов. Для исключения действия окружающего рассеянного теплового излучения в такой Ф. используют выключение чувствительности на всё время, кроме рабочего экспонирования: образование изображения возможно лишь при замкнутой электрич. или эл.-хим. цепи, к-рая появляется при фотогенерации носителей тока в полупроводниковом СЧС.

    Как метод записи оптич. информации в двоично-кодированной форме Ф. получила применение в устройствах оперативной памяти ЭВМ. Здесь AgHal-СЧС далеки от оптимальных вследствие ограниченной информац. ёмкости (слишком велик единичный элемент дискретной структуры, т. е. микрокристалл), медленной обработки, невозможности стирания записи после обработки для повторного использования СЧС. Поэтому здесь целесообразно применение фотохромных материалов, среди к-рых наиб, употребительны слои органич. соединений, а также маг-нитооптич. среды с фотоиндуцированным перемагничива-нием СЧС и др.

    Несмотря на быстрый рост способов и применений несеребряной Ф., научно-техн. Ф. на основе AgHal-СЧС не только сохранила значение, но и расширила области использования, напр, в исследованиях высокотемпературной плазмы, движения тел со сверхзвуковыми скоростями в аэродинамике и баллистике, ударных волн при взрывных и дегонац. явлениях, в исследованиях пданет (поверхности, атмосферы, излучений) с земных и внеземных станций, в исследованиях космич. лучей, ядерных излучений и ядерных реакций, технол. процессов и работы механизмов в хим. и механич. оборудовании и т. п. В большинстве таких случаев применяют динамич. Ф. либо в форме серии последоват. изображений объекта с временными промежутками вплоть до не и пс, либо в форме непрерывной записи изображения с помощью устройств оптической развёртки, когда изменения почернения по длине плёнки СЧС содержат информацию о развитии процесса во времени. Распространение получила и статич. Ф., в частности при исследовании биол. и геологич. объектов; в исследованиях биол. объектов используют также динамич. Ф., прежде всего цейтраферную съёмку медленно протекающих изменений. В связи с внеземными исследованиями астрофиз. процессов резко расширилось применение Ф. для съёмки в далёкой УФ-области вплоть до границы с мягким рентг. излучением. Это потребовало создания спец. AgHal-СЧС, почти или вовсе не содержащих желатины, к-рая в этой области спектра практически непрозрачна. Т. о., наряду с существованием и широким применением несеребряной Ф., классич. AgHal-Ф. продолжает занимать важнейшее место не только в изобразит. Ф., но и в научно-технической.

    Лит.: Основы технологии светочувствительных материалов, под ред. В. И. Шеберстова, М., 1977; Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1980; Несеребряные фотографические процессы, под ред. А. Л. Картужанского, Л., 1984; Перспективы и возможности несеребряной фотографии, под ред. А. Л. Картужанского, Л., 1988. А. Л. Картужанский.

  35. Источник: Физическая энциклопедия



  36. Русско-китайский словарь: пресса, интернет, радио, телевидение

    照片, 照相

  37. Источник: Русско-китайский словарь: пресса, интернет, радио, телевидение



  38. Энциклопедический словарь

    ФОТОГРА́ФИЯ -и; ж. [от греч. phōs (phōtos) - свет и graphō - пишу]

    1. Получение видимого изображения предметов на светочувствительных материалах с помощью специального оптического аппарата. Заниматься, увлекаться фотографией.

    2. Изображение, отпечаток, полученные таким способом; снимок. На стене висит ф. Сделать несколько фотографий. Увеличенная ф. Семейная ф. Ф. отца, бабушки. Хорошо вышел (получился) на фотографии кто-л. Сделать фотографию на паспорт (сняться для паспорта).

    3. чего. Точное воспроизведение, передача чего-л. Ф. душевного состояния. Не картина, а ф. с натуры.

    4. Мастерская для съёмки и изготовления таких отпечатков, снимков. Сфотографироваться в фотографии. Детская, взрослая ф. Художественная ф.

    5. Разг.-сниж. Лицо, физиономия. Опять он с синяком на фотографии. Смазать по фотографии (ударить по лицу).

    Фотографи́ческий (см.).

    * * *

    фотогра́фия

    (от фото... и...графия), теория и методы получения видимого изображения объектов на светочувствительных фотографических материалах (галогеносеребряных и бессеребряных); различают фотографию чёрно-белую и цветную, художественную и научно-техническую (аэрофотографию, микрофотографию, рентгеновскую, инфракрасную и др.). Основоположники фотографии — изобретатели Л. Ж. М. Дагер (1839) и Ж. Н. Ньепс (Франция), У. Г. Ф. Толбот (1840—1841, Великобритания). Цветные фотоизображения впервые получил Л. Дюко дю Орон (L. Ducos du Hauron; 1868—69, Франция).

    * * *

    ФОТОГРАФИЯ

    ФОТОГРА́ФИЯ, теория и методы получения видимого изображения объектов на светочувствительных фотографических материалах (галогеносеребряных и бессеребряных); различают фотографию черно-белую и цветную, художественную и научно-техническую (аэрофотографию, микрофотографию, рентгеновскую, инфракрасную и др.). Основоположники фотографии — изобретатели Л.Ж.М. Дагер(см. ДАГЕР Луи Жак Манде) (1839) и Ж.Н. Ньепс(см. НЬЕПС Нисефор) (Франция), У.Г.Ф. Толбот(см. ТОЛБОТ Уильям Генри Фокс) (1840—41, Великобритания). Цветные фотоизображения впервые получил Л. Дюко дю Орон (1868—69, Франция).

  39. Источник: Энциклопедический словарь



  40. Сводная энциклопедия афоризмов

    ФОТОГРАФИЯ

    Если вы выглядите как ваше фото на загранпаспорте, вам, вероятно, необходимо отдохнуть за границей.

    Видоизмененный Эрл Уилсон

    Некоторые лица на негативе выглядят позитивнее.

    Доминик Опольский

    В наше время все существует ради того, чтобы окончиться фотографией. Фотография мумифицирует время.

    Анри Базен

    Жизнь — кинематограф, смерть — фотография.

    Сьюзан Зонтаг

    Я думаю, дьявол — и тот огорчился бы, если бы его фотокарточка выдала его безобразие и ту низкую роль, которую он играет во вселенной.

    Карел Чапек

    Электронная эра имеет свои неудобства. Раньше отцы донимали нас фотографиями своих сыновей, теперь — полуторачасовыми видеофильмами.(см. ВНЕШНОСТЬ, НАРУЖНОСТЬ)

  41. Источник: Сводная энциклопедия афоризмов



  42. Большой энциклопедический политехнический словарь

    (or фото... и ...графия, буквально - светопись) - область науки, техники и искусства, использующая и изучающая методы получения на светочувствит. материалах изображений (фотоснимков) объектов или способы регистрации оптич. и др. излучений. Практич. развитие Ф. получила с сер. 19 в. В основе Ф. лежит использование спец. материалов, в светочувствительном слое к-рых в результате действия излучения (напр., оптич., рентгеновского) и последующей хим.-фотогр. обработки происходят фотохим. реакции. Обычно фотогр. материалы используются в сочетании с тем или иным оптич. устройством: фотографическим аппаратом, фотографическим увеличителем, копировальным станком и т. д., создающим на светочувствит. слое оптич. изображение. Различают чёрно-белую и цветную Ф., статич. (собственно Ф.) и динамич. Ф. (кинематографию). Ф. применяется в самых разнообразных областях нар. х-ва и культуры. См. также ст. Фотосъёмка.

  43. Источник: Большой энциклопедический политехнический словарь



  44. Большая политехническая энциклопедия

    ФОТОГРАФИЯ — область науки, техники и искусства, использующая и изучающая аналоговые методы получения на светочувствительных материалах видимых изображений объектов (фотографий) или способы регистрации явлений, излучений и др. физ. и хим. процессов. Различают Ф. чёрно-белую и цветную, аэрофотографию, микрофотографию, рентгеновскую, инфракрасную, астрономическую и т. п. Ф. может быть плоской и объёмной (стереоскопической). С развитием компьютерной техники в конце XX в. появилась цифровая Ф., позволяющая моментально получать, просматривать и пересылать по электронной почте результаты съёмки, минуя традиционную многоступенчатую обработку фотоплёнки и процесс получения с неё снимков на бумаге. (См. цифровые съёмочные устройства.)

  45. Источник: Большая политехническая энциклопедия



  46. Русско-английский политехнический словарь

    photo, photograph,(область науки и техники) photography

    * * *

    фотогра́фия ж.

    1. (still) photography

    2. (фотоснимок) (still) photograph, still picture

    3. (фотоателье) photographic studio

    безли́нзовая фотогра́фия — lensless photography

    документа́льная фотогра́фия — documentary photography

    изобрази́тельная фотогра́фия — pictorial photography

    инфракра́сная фотогра́фия — infra-red photography

    момента́льная фотогра́фия — snapshot photography

    подво́дная фотогра́фия — underwater photography

    прикладна́я фотогра́фия — applied photography

    стереоскопи́ческая фотогра́фия — stereoscopic photography

    тенева́я фотогра́фия — shadowgraph

    техни́ческая фотогра́фия — technical photography

    худо́жественная фотогра́фия — artistic photography

    цветна́я фотогра́фия

    1. colour photography

    2. colour photograph

    чё́рно-бе́лая фотогра́фия

    1. black-and-white photography

    2. black-and-white photograph

    электро́нная фотогра́фия — electronic photography

    я́дерная фотогра́фия — nuclear photography

  47. Источник: Русско-английский политехнический словарь



  48. Dictionnaire technique russo-italien

    ж.

    1)(фотосъёмка) fotografia f

    2)(снимок) foto(grafia) f

    3)(фотоателье) studio m fotografico


    высокоскоростная фотография, высокочастотная фотография — fotografia ultrarapida [ad alta frequenza]

    - астрономическая фотография

    - инфракрасная фотография

    - космическая фотография

    - моментальная фотография

    - научная фотография

    - подводная фотография

    - прикладная фотография

    - профессиональная фотография

    - спектральная фотография

    - стереоскопическая фотография

    - техническая фотография

    - трёхцветная фотография

    - ультрафиолетовая фотография

    - художественная фотография

    - цветная фотография

    - чёрно-белая фотография

    - электронная фотография

    - ядерная фотография

  49. Источник: Dictionnaire technique russo-italien



  50. Русско-украинский политехнический словарь

    астр., техн., физ.

    фотогра́фія;(действие - ещё) фотографува́ння

    - астрономическая фотография

    - голографическая фотография

    - контактная фотография

    - космическая фотография

    - репродукционная фотография

    - стереоскопическая фотография

    - телескопическая фотография

    - трёхцветная фотография

  51. Источник: Русско-украинский политехнический словарь



  52. Русско-украинский политехнический словарь

    астр., техн., физ.

    фотогра́фія;(действие - ещё) фотографува́ння

    - астрономическая фотография

    - голографическая фотография

    - контактная фотография

    - космическая фотография

    - репродукционная фотография

    - стереоскопическая фотография

    - телескопическая фотография

    - трёхцветная фотография

  53. Источник: Русско-украинский политехнический словарь



  54. Естествознание. Энциклопедический словарь

    (отфото... и ...график), теория и методы получения видимого изображения объектов на светочувствит. фотогр. материалах (галогеносеребряных и бессеребряных); различают Ф. чёрно-белую и цветную, худ. и науч.-техн. (аэрофотографию, микрофотографию, рентгеновскую, инфракрасную и др.). Основоположники Ф,- изобретатели Л. Ж. М. Дагер (1839), Ж.Н. Ньепс, У. Г. Ф. Толбот (1840-1841).

  55. Источник: Естествознание. Энциклопедический словарь



  56. Юридическая энциклопедия

    Фотография: исполнители, оказывающие услуги по фотосъемке, химико-фотографической обработке полученных фотоматериалов и фотопечати с них

    Источник: " УСЛУГИ БЫТОВЫЕ . ФОТОУСЛУГИ. ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ. ГОСТ Р 52112-2003"

    (утв. Постановлением Госстандарта России от 23.07.2003 № 251-ст)

  57. Источник: Юридическая энциклопедия



  58. Москва (энциклопедия)

  59. Источник:



  60. Большой Энциклопедический словарь

    ФОТОГРАФИЯ
    ФОТОГРАФИЯ (от фото... и ...графия) - теория и методы получения видимого изображения объектов на светочувствительных фотографических материалах (галогеносеребряных и бессеребряных); различают фотографию черно-белую и цветную, художественную и научно-техническую (аэрофотографию, микрофотографию, рентгеновскую, инфракрасную и др.). Основоположники фотографии - изобретатели Л. Ж. М. Дагер (1839) и Ж. Н. Ньепс (Франция), У. Г. Ф. Толбот (1840-41, Великобритания). Цветные фотоизображения впервые получил Л. Дюко дю Орон (1868-69, Франция).

    Большой Энциклопедический словарь. 2000.

  61. Источник:



  62. Толковый словарь Даля

  63. Источник: