«Измельчение»

Измельчение в словарях и энциклопедиях

Значение слова «Измельчение»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Ожегова
  5. Малый академический словарь
  6. Толковый словарь Ушакова
  7. Толковый словарь Ефремовой
  8. Большой энциклопедический словарь
  9. Словарь металлургических терминов
  10. Большой англо-русский и русско-английский словарь
  11. Англо-русский словарь технических терминов
  12. Русско-английский словарь математических терминов
  13. Большой французско-русский и русско-французский словарь
  14. Большой испано-русский и русско-испанский словарь
  15. Химическая энциклопедия
  16. Энциклопедический словарь
  17. Геологическая энциклопедия
  18. Большой энциклопедический политехнический словарь
  19. Русско-английский политехнический словарь
  20. Dictionnaire technique russo-italien
  21. Русско-украинский политехнический словарь
  22. Русско-украинский политехнический словарь
  23. Юридическая энциклопедия
  24. Словарь антонимов
  25. Тезаурус русской деловой лексики
  26. Большой Энциклопедический словарь

    Словарь Брокгауза и Ефрона

    см. Дробильные машины.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    в технике, тонкое дробление (до частиц размером меньше 5 мм) какого-либо твёрдого материала. И. широко применяется для обогащения полезных ископаемых в горном деле, а также в металлургии, химической, строительной и др. отраслях промышленности.

    И. известно с древнейших времён. Пест и ступка из камня были известны за 8000 лет до н. э. За 3500 лет до н. э. ручные мельничные жернова применялись в Египте и Китае для И. зерна и лишь отчасти в горном деле. С 16 века для И. руд использовались толчеи (падающие песты). Машинное И. стало развиваться со 2-й половины 19 в. Принцип действия шаровой мельницы, основного измельчающего аппарата, был известен уже 150 лет тому назад; прототип современной мельницы изобретён в 70-х гг. 19 в.

    Способы И. — раздавливание, удар, истирание, при которых основное значение имеют деформации сжатия и сдвига. По существу И. является процессом образования новых поверхностей. Под действием внешних сил в куске возникают напряжения, вызывающие микротрещины, которые способны частично закрываться (самозаживляться) при снятии нагрузки. Некоторая предельная концентрация микротрещин в единице объёма может вызвать возникновение по крайней мере одной большой трещины, которая приводит к распадению куска на части. Поверхностно-активные молекулы веществ, присутствующих в окружающей среде, адсорбируясь на стенках трещин, препятствуют их самозаживлению («эффект Ребиндера»). При повторном нагружении куска такие трещины могут дать начало большой трещине и т. д. Это явление концентрации вещества на поверхности трещин объясняет действие понизителей твёрдости, способствующих И. По мере уменьшения размера кусков в процессе И. их прочность возрастает, так как в мелких частицах оказывается меньше структурных дефектов. При очень тонком И. частицы размерами в несколько мкм и мельче могут под действием сил молекулярного сцепления образовывать хлопья и сростки. В этом случае при И. одновременно возникают новые мелкие кусочки, происходит их частичное укрупнение вследствие агрегатирования. Для предотвращения агрегатирования добавляют поверхностно-активные вещества, покрывающие частицы тончайшей плёнкой, которая препятствует слипанию. И. во многих случаях сопровождается химическими превращениями на поверхности частиц. Распределение частиц по крупности в продуктах И. обычно носит закономерный характер. Мерой крупности продукта может служить удельная поверхность, так как она обратно пропорциональна среднему размеру частиц.

    Для И. полезных ископаемых и материалов цементной и химической промышленности применяются в основном барабанные мельницы: шаровые, стержневые, галечные и самоизмельчения (см. Мельница);в промышленности строительных материалов для И. глин, кварца, полевого шпата используют бегуны. В роликовых и кольцевых мельницах измельчаются мягкие и средней твёрдости неабразивные материалы (например, фосфориты, угли). Для очень тонкого И. небольших количеств материала с размерами зёрен от 1—2 мм до 0,05 мм применяют вибрационные мельницы. Сверхтонкое И. материалов крупностью 0,1—0,2 мм до частиц размером 2—10 мкм осуществляется в струйных мельницах. Показатели производительности машин для И. включают не только массу, но и крупность исходного материала и продукта. Расход энергии на И. зависит от прочности (измельчаемости) материала и крупности исходного материала, степени загрузки мельницы и др. Для повышения производительности мельниц и уменьшения переизмельчения материала И. часто осуществляют в замкнутом цикле с классифицирующим аппаратом; при этом из материала, разгружающегося из мельницы, выделяется готовый измельченный продукт, а крупный материал возвращается в мельницу (рис. 1). Мельницы эффективно работают только при определённой степени И. (см. Дробление), поэтому для получения тонкого продукта И. часто ведут в два, реже в три приёма (стадии). При этом возможны разные схемы И.; например, при двухстадийной схеме мельница первой стадии может работать в открытом цикле, а мельница второй — в замкнутом (рис. 2). На рис. 3 в качестве примера показана распространённая схема мокрого И. руд в шаровой мельнице.

    Получают развитие новые принципы И., основанные на использовании электрогидравлического эффекта (электрический разряд в воде), токов высокой частоты, соударения встречных потоков воздуха, несущих твёрдые частицы (так называемые струйные мельницы), и др.

    Лит.: Ромадин В. П., Пылеприготовление, М. — Л., 1953; Моргулис М. Л., Вибрационное измельчение материалов, М., 1957; Ребиндер П. А., Физико-химическая механика, М., 1958; Олевский В. А., Размольное оборудование обогатительных фабрик, М., 1963; Дешко Ю. И., Креймер М. Б., Крыхтин Г. С., Измельчение материалов в цементной промышленности, 2 изд., М., 1966; Акунов В. И., Струйные мельницы, 2 изд., М., 1967; Козулин Н. А., Горловский И. А., Оборудование заводов лакокрасочной промышленности, 2 изд., М., 1968.

    В. А. Перов.

    Рис. 1. Схема замкнутого цикла измельчения.

    Рис. 2. Схема двухстадийного измельчения.

    Рис. 3. Схема мокрого измельчения в шаровой мельнице в замкнутом цикле со спиральным классификатором I и с гидроциклоном II: 1 — бункер дроблёной руды; 2 — питатель руды; 3 — конвейер ленточный; 4 — весы конвейерные; 5 — мельница шаровая: 6 — классификатор спиральный; 7 — грохот барабанный; 8 — гидроциклон; 9 — насос песковый; 10 — контейнер (а — дроблёная руда мельче 30 мм; б — измельченная руда — слив мельче 0,2 мм; в — пески, оборотный продукт; г — обломки шаров, куски руды).

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. измельче́ние;
    2. измельче́ния;
    3. измельче́ния;
    4. измельче́ний;
    5. измельче́нию;
    6. измельче́ниям;
    7. измельче́ние;
    8. измельче́ния;
    9. измельче́нием;
    10. измельче́ниями;
    11. измельче́нии;
    12. измельче́ниях.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Ожегова

    МЕЛЬЧА́ТЬ, -а́ю, -а́ешь; несов. Становиться мелким (в 3, 6 и 7 знач.), мельче. Хозяйства крестьян мельчают. Интересы мельчают. Озеро мельчает.

  7. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  8. Малый академический словарь

    , ср.

    Действие по знач. глаг. измельчить—измельчать 2.

    Измельчение грубых кормов.

    Макшеев и Каштанов будут заняты измельчением серы. Обручев, Плутония.

  9. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  10. Толковый словарь Ушакова

    ИЗМЕЛЬЧЕ́НИЕ, измельчения, мн. нет, ср. (спец.). Действие по гл. измельчить-измельчать; состояние по гл. измельчиться-измельчаться. Измельчение пороха. Измельчение горной породы.

  11. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  12. Толковый словарь Ефремовой

    ср.

    1.

    процесс действия по гл. измельчать II, измельчаться II 1.

    2.

    Результат такого действия.

  13. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  14. Большой энциклопедический словарь

    ИЗМЕЛЬЧЕНИЕ - дробление (до частиц менее 5 мм) какого-либо твердого материала. Производится в основном мельницами.

  15. Источник: Большой Энциклопедический словарь. 2000.



  16. Словарь металлургических терминов

    Comminution — Измельчение.

    (1) Размол руды на мелкие фрагменты. (2) Размельчение металла до порошка механическим способом. (3) Действие или процесс измельчения порошковых частиц обычно, но не обязательно, путем размола или мелкого дробления.

  17. Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.



  18. Большой англо-русский и русско-английский словарь

    ср. decomposition, poundingpulverizing

  19. Источник: Большой англо-русский и русско-английский словарь



  20. Англо-русский словарь технических терминов

    blending бтх, breakage, breakdown, breaking, breakup, chipping, comminution, crush, crushing, degradation горн., desintegration, disintegration, milling, grind, grinding, size reduction, reduction, shredding

  21. Источник: Англо-русский словарь технических терминов



  22. Русско-английский словарь математических терминов

    n.refinement; измельчение сетки, mesh refinement

  23. Источник: Русско-английский словарь математических терминов



  24. Большой французско-русский и русско-французский словарь

    с. горн.

    concassage m; bocardage m

  25. Источник: Большой французско-русский и русско-французский словарь



  26. Большой испано-русский и русско-испанский словарь

    с.

    desmenuzamiento m, trituración f; pulverización f

  27. Источник: Большой испано-русский и русско-испанский словарь



  28. Химическая энциклопедия

    разрушение твердых тел до требуемых размеров. По размеру (крупности) измельченного продукта различают: грубое (300-100 мм), среднее (100-25 мм) и мелкое (25-1 мм) дробление; грубый (1000-500 мкм), средний (500-100 мкм), тонкий (100-40 мкм) и сверхтонкий ( < 40 мкм) помол. Цель дробления - получение кускового продукта необходимой крупности и гранулометрического, или фракционного, состава, подготовка к помолу. Цель помола - увеличение дисперсности твердого материала, придание ему определенных гранулометрич. состава и формы частиц (остроугольные, скатанные, чешуйчатые и т. п.), дезагрегирование. И. способствует: улучшению однородности смесей (напр., произ-во СК); ускорению и повышению глубины протекания гетерог. хим. р-ций (в произ-ве минер. удобрений, ультрамарина и др.); повышению интенсивности сочетаемых с ним др. технол. процессов (перемешивание, сушка, обжиг, хим. р-ции); снижению применяемых т-р и давлений (напр., при варке стекла); улучшению физ.-мех. св-в и структуры материалов и изделий (твердые сплавы, бетон, керамика, огнеупоры и т. п.); повышению красящей способности пигментов и красителей, активности адсорбентов и катализаторов; переработке полимерных композиций, включающих высокодисперсные наполнители (напр., сажу, слюду, хим. и иные волокна), отходов произ-ва, бракованных и изношенных изделий (резиновые шины, термо- и реактопласты и др.) и т. д. Осн. характеристики процесса: изменение дисперсности; степень И. - отношение среднего размера кусков (зерен) исходного материала к среднему размеру кусков (зерен, частиц) измельченного продукта; уд. энергетич. затраты (в кВт. ч на 1 т продукта). Главные характеристики продукта И. - гранулометрич. состав (в %) и уд. пов-сть (в см 2/г). И. может быть сухим (как правило, при грубом и среднем дроблении) и мокрым (часто при мелком дроблении и помоле). Сухое И. проводят в воздушной среде или в инертных газах (при переработке окисляющихся, пожаро- и взрывоопасных, а также токсичных материалов). Мокрое И. (исходный материал смешивают с жидкостью, преим. с водой) применяют при обогащении руд методом флотации, при послед. обработке измельченного материала в виде суспензии (напр., в произ-ве ТiO2), при повыш. влажности материала и наличии в нем комкующих примесей, при необходимости исключить пылеобразование. И. может осуществляться периодически либо непрерывно. Периодич. процесс применяют при небольших масштабах произ-ва, т. к. он сравнительно малоэкономичен, сопровождается сильными нагреванием (И. происходит в замкнутом объеме) и агрегированием обрабатываемого материала и дает возможность получать продукт только широкого гранулометрич. состава, содержащий значит. кол-ва мелких и крупных фракций. Непрерывный процесс осуществляют по двум осн. схемам. При работе в открытом цикле, используемом чаще всего для грубого и среднего И., материал проходит через измельчитель только один раз, не возвращаясь в него, и также характеризуется широким гранулометрич. составом. Наилучшие показатели по качеству продукта, производительности измельчителя и энергетич. затратам достигаются в случае И. в замкнутом цикле с непрерывным отбором тонкой фракции. Тонкое дробление (или помол) производят, как правило, в замкнутом цикле "И. - классификация". В нем материал с размерами кусков больше допустимого предела многократно возвращается в машину на доизмельчение, а целевая фракция отбирается в результате послед. классификации с помощью: 1) грохотов (см. Грохочение) при дроблении, 2) гидравлических (см. Классификация гидравлическая) либо воздушных (см. Сепарация воздушная) сепараторов соотв. при сухом и мокром помоле. При содержании в исходном материале не менее 30-40% требуемого тонкого продукта И. в открытом или замкнутом цикле проводят с предварит. классификацией сырья. При высокой степени И. резко возрастает расход энергии. С целью его снижения процесс осуществляют в неск. стадий (обычно в две, реже в три), направляя материал в установленные последовательно дробилки или мельницы для грубого, среднего и тонкого И. Для И. используют разл. способы. В пром. измельчителях чаще всего применяют след. виды мех. воздействий: свободный удар, раздавливание, истирание, а также их комбинации. Выбор усилия зависит от крупности и прочности материала. Машины для И. подразделяют на дробилки и мельницы. В данной статье рассмотрены измельчители, наиб. распространенные в хим. и смежных отраслях пром-сти, а также в хим. лабораториях. Дробление производят в осн. с помощью дробилок четырех типов: щековых, конусных, валковых, роторных. Щековые дробилки (рис. 1, а) служат для грубого и среднего дробления, напр., серного колчедана в произ-ве H2SO4. В них материал раздавливается между неподвижной и подвижной плитами, наз. щеками, рабочие пов-сти к-рых имеют зубчатую форму; расстояние между щеками уменьшается в направлении движения материала. Осн. достоинства: высокая производительность, простота конструкции, широкая область применения (в т. ч. для дробления крупнокусковых материалов большой твердости), компактность, легкость обслуживания; недостатки: периодичность воздействия на материал (только при сближении щек), неполная уравновешенность движущихся масс, что является причиной шума и сотрясений зданий, где работают дробилки, интенсивный износ рабочих органов; степень измельчения 3-6.

    161_180-29.jpg

    Рис. 1. Основные типы дробилок: а - щековая (1,2 - соотв. неподвижная и подвижная щеки); б - конусная (1,2 - соотв. неподвижный и качающийся конусы, 3 - вал); в - валковая; г - роторная (1 - ротор с молотками либо билами, 2 - статор, 3 - колосники).

    В конусных, или гирационных, дробилках (рис. 1, б) предназначенных для среднего и мелкого дробления, материал подвергается раздавливанию (и частично излому) между неподвижным наружным конусом и внутренним, вращающимся в нем эксцентрично; зазор между конусами уменьшается книзу (по ходу материала). Осн. достоинства: надежность работы, высокая степень измельчения; недостатки: сложность конструкции и обслуживания. Эти дробилки применяют, напр., в произ-ве фосфоритов; степень измельчения 3-6. Валковые дробилки (рис. 1, в), используемые для мелкого дробления, напр., в произ-ве кам.-уг. пека, состоят из одной или двух пар горизонтальных зубчатых валков, к-рые, вращаясь навстречу друг другу, захватывают и раздавливают куски материала; при разной частоте вращения валков происходит также истирание материала. Осн. достоинства: простота конструкции, равномерность И. материала; недостатки: малая производительность и непригодность для дробления высокотвердых материалов, неравномерный износ валков; степень измельчения 2-4. Для дробления всех видов служат роторные, или молотковые, дробилки (рис. 1, г), где материал измельчается ударами вращающихся шарнирно подвешенных молотков либо жестко закрепленных на роторе бил, а также при ударах кусков материала друг о друга и о пов-сть статора или отбойных плит. Осн. достоинства: компактность конструкции, высокие производительность и степень И. (10-120), низкие энергозатраты; недостаток - повыш. абразивный износ. Эти машины используют, напр., для дробления доломитов и известняков. Помол осуществляют с помощью мельниц со свободными и закрепленными мелющими телами и без них (рис. 2). К машинам со своб. мелющими телами (металлич., керамич. и др. шары, стержни, скатанная кремневая галька и т. п.) относятся: тихоходные вращающиеся барабанные мельницы - шаровые, стержневые, галечные (для грубого, среднего и тонкого помола); быстроходные мельницы - центробежно-шаровые, вибрационные, планетарные, магнитные, бисерные и др. (для тонкого и сверхтонкого помола). Барабанные шаровые мельницы (рис. 2,а) загружены мелющими телами обычно на 35-40% объема, в межшаровом пространстве находится материал, к-рый измельчается в результате совместного действия шаров и крупных кусков, а также взаимного истирания частиц.

    161_180-30.jpg

    Рис. 2. Основные типы мельниц: а - барабанная шаровая (1 - корпус, 2 - мелющие тела, 3 - футеровочные плиты, 4 - привод); б - барабанная бесшаровая (1 - корпус, 2 - привод, 3 - диафрагма); в - центробежно-шаровая (1,12 - привод, 2 - корпус, 3 - чаша, 4 - отбойная пов-сть статора, 5 - отражательная решетка, 6 - воздушный сепаратор, 7 - воздухопровод, 8 - вентилятор, 9 - шары, 10, 11 - штуцеры для подачи соотв. исходного материала и воздуха); г - вибрационная шаровая(1 - корпус, 2 - дебалансы, 3 - электродвигатель); д - планетарная(1 - привод, 2 - зубчатое колесо, 3 - малая шестерня, 4 - барабан, 5 - водило).

    Осн. достоинства: возможность применения в многотоннажных произ-вах, простота конструкции; недостатки: большая металлоемкость, значительный износ мелющих тел, сильный шум, производимый при работе. Эти измельчители используют для помола разл. материалов, напр., в произ-вах барита и фосфоритной муки; степень измельчения 20-100. Барабанные бесшаровые мельницы, или машины самоизмельчения (рис. 2,б), применяемые, напр., в произ-ве асбеста, при переработке горнохим. сырья и т. п., по принципу действия аналогичны шаровым измельчителям; мелющие тела - крупные куски материала. Осн. достоинство -возможность получения высокочистых измельченных продуктов; недостатки: большие габариты, возможность накапливания фракций средних размеров, к-рые приходится возвращать на доизмельчение; степень измельчения 180-300. В центробежно-шаровых мельницах (рис.2,в), используемых для помола талька, мела и др., шары из вращающейся чаши отбрасываются центробежными силами к отбойной пов-сти статора, измельчая материал действием стесненного удара, а затем снова падают в чашу. Материал увлекается воздушным потоком, создаваемым вентилятором, при этом в чашу на доизмельчение падают наиб. крупные куски и зерна, отраженные соотв. решеткой и сепаратором. Осн. достоинство - высокая уд. производительность; недостатки: сильный износ рабочих органов, высокий уровень шума; степень измельчения 5-100. Вибрационные мельницы (рис. 2,г) заполнены шарами на 80-90% объема; под действием вращающихся дебалансов корпус, опирающийся на пружины, совершает частые круговые колебания, и шарам сообщаются импульсы, в результате они движутся по сложным траекториям, интенсивно измельчая и перемешивая материал, находящийся в межшаровом пространстве. Осн. достоинства: возможность получения высокодисперсных продуктов (степень измельчения 20-200), малая продолжительность помола, компактность; недостатки: ограниченная производительность, высокий уровень шума. В этих машинах измельчают, напр., гидрокарбонат Na, сурик, охру, пигменты, кварц, графит. В планетарных мельницах (рис. 2,д) неск. барабанов смонтировано на общем водиле. На оси каждого барабана насажена малая шестерня, к-рая находится в зацеплении с неподвижным центральным зубчатым колесом. При вращении водила малые шестерни обкатываются вокруг колеса, и барабаны одновременно вращаются вокруг своих осей и центр. вала; в результате мелющие тела приобретают сложное движение при больших ускорениях, что обусловливает весьма интенсивное И. материала. Осн. достоинство - высокая эффективность И.; недостатки: малая производительность, периодичность процесса, возможность использования, как правило, в малотоннажных произ-вах, сильный разогрев продуктов вследствие значит. выделения теплоты. Эти мельницы применяют, напр., в горнохим. пром-сти (при переработке руд РЗЭ и титановых), а также в качестве быстродействующих лаб. устройств (подготовка проб для экспресс-анализов); степень измельчения 20-300. Бисерные мельницы (рис. 2,е), широко применяемые в произ-вах красок, эмалей, грунтовок и др., примерно на 2/3 или 3/4 объема заполнены спец. кварцевым бисером (диаметр 1-2 мм) или износостойким песком. Предварительно подготовленная суспензия, напр., из пигмента и связующего, подается насосом (на рис. не показан) в цилиндр. поднимается вверх, проходит через слой бисера (песка), подвергаемый действию вращающегося дискового ротора, интенсивно измельчается, перетирается, фильтруется через сито и выводится из ниж. части мельницы. Осн. достоинство - высокая гомогенность продуктов; недостатки: ограниченные габариты и производительность, необходимость частой замены мелющих тел; степень измельчения 200-300. К машинам с закрепленными мелющими телами (ролики, катки, вальцы и т. п.) относятся: среднеходовые мельницы - бегуны (для грубого и среднего помола), кольцевые, жернова, краскотерки и др. (для среднего и тонкого помола); быстроходные центробежные мельницы - ножевые, штифтовые, дисмембраторы, дезинтеграторы и т. п. (для грубого, среднего и тонкого помола). В бегунах (рис. 2,ж), служащих в осн. для И. вязких материалов (часто в сочетании с перемешиванием), напр., в горнохим. и коксохим. отраслях пром-сти (угольные шихты и др.), при вращении вала катки, к-рые свободно сидят на полуосях, катятся ("бегут") по дну чаши, раздавливая и истирая находящийся в ней материал. Под действием центробежных сил его куски перемещаются к наружному борту чаши, откуда возвращаются на катки с помощью спец. скребков. Осн. достоинство - простота конструкции; недостатки: низкая производительность, ограниченная степень И. (10-40).

    161_180-31.jpg

    Рис. 2. Основные типы мельниц: е - бисерная (1 - корпус, 2 - цилиндр, 3 - кожух, 4 - вал, 5 - диски, 6 - мелющие тела, 7 - сито, 8 - приемник переработанной суспензии, 9 - дисковый ротор, 10 - электродвигатель, 11 - станина, 12 -кран); ж- бегуны (1 - каток, 2 - полуось катка, 3 - водило, 4 - центральный вал, 5 -чаша, 6 - привод); з - ролико - кольцевая маятниковая (1 -размолыюе кольцо, 2 - ролик или каток, 3 - крестовина, 4 - маятник, 5 - вал, 6 - привод. 7 - скребок); и- жернова (1 - загрузочная воронка, 2 - пружина, 3, 4 - соотв. верхний и нижний каменные круги, 5 - патрубок для выгрузки готового продукта); к - краскотерка (1 - корпус, 2 - валок, 3 - загрузочная воронка, 4 - разгрузочный лоток); л - ножевая (1 - корпус-статор, 2 - ротор, 3, 4 - соотв. вращающийся и неподвижный ножи, 5 - перфорир. решетка); м - дсзинтегратор (1, 2 - роторы с рабочими пальцами, 3 - станина с подшипниками, 4 - привод).

    Ролико-кольцевые маятниковые мельницы (рис. 2, з) предназначены для И. мягких, хрупких и нелипких материалов (напр., каолина, белых пигментов, ильменита, цементного клинкера). В них катки или ролики катятся, прижимаясь центробежными силами к внутр. пов-сти размольного кольца и измельчая материал в зазоре между мелющими телами и кольцом. Измельченный материал увлекается воздушным потоком в сепаратор, где разделяется на готовый продукт и грубую фракцию, возвращаемую на доизмельчение. В зону И. исходный материал перемещается посредством скребков. Осн. достоинство - возможность изменения степени И. в широких пределах (5-100); недостатки: интенсивный износ рабочих органов, сложность конструкции. В жерновах (рис. 2, и), применяемых гл. обр. в произ-вах красителей, а также бумаги и картона, материал через загрузочную воронку поступает внутрь верхнего (неподвижного) корундового круга-жернова, к-рый своей тяжестью и пружинами прижимается к ниж. вращающемуся кругу. Под воздействием центробежных сил и благодаря направляющим насечкам на рабочих пов-стях кругов материал втягивается в кожух и выгружается через спец. патрубок. Осн. достоинство - высокая степень помола; недостатки: низкая производительность, необходимость частой замены рабочих органов; степень измельчения 5-100. Краскотерки (рис. 2,к) позволяют диспергировать или перетирать материал (в произ-вах красок, полимерных паст и др.) в регулируемом узком зазоре между параллельно установленными валками, вращающимися навстречу друг другу с разной скоростью. Готовый продукт удаляется через лоток, снабженный скребковым устройством. Осн. достоинство - удобство регулирования степени И. (20-300); недостатки: ограниченная производительность, неравномерный износ валков. В ножевых мельницах (рис. 2,л) материал подвергается рубящему и режущему действию ножей ротора и статора. Измельченный продукт выгружается из мельницы через перфорир. решетку. Осн. достоинство - возможность эффективной переработки эластичных отходов (линолеума, резины) без глубокого охлаждения в отличие от др. мельниц; степень измельчения 10-50. Дезинтеграторы (рис. 2,м) служат преим. для сухого помола хрупких, мягких материалов с малой абразивной способностью (напр., каолин, мел, литопон). Исходный материал через загрузочную воронку поступает в центр. часть одного из роторов, вращающихся в противоположных направлениях, и попадает между их пальцами. Под действием центробежных сил куски (зерна) материала продвигаются от центра к периферии роторов, многократно ускоряются, ударяясь о пальцы и сталкиваясь. Измельченный продукт отбрасывается из роторов в кожух и ссыпается через спец. патрубок. Осн. достоинства: простота устройства, высокий смешивающий эффект; недостатки: интенсивный износ пальцев, большое пылеобразование, значит. расход энергии; степень измельчения 5-10. К машинам без мелющих тел относятся: барабанные мельницы самоизмельчения (для грубого, среднего и тонкого помола); воздухо-, паро- и газоструйные (для тонкого и сверхтонкого помола); пневматические (для среднего и тонкого помола); кавитационные (для переработки суспензий); коллоидные, ультразвуковые, электрогидравлические и др. (преим. для тонкого и сверхтонкого помола). В струйных противоточных мельницах (рис. 2,н) И. происходит за счет энергии потока компримированного газа, напр., воздуха, или перегретого пара. Два встречных потока, несущих с большой скоростью исходный материал в виде мелких кусков, пройдя сопла, к-рые установлены в разгонных трубах, соударяются, и частицы измельчаются. Восходящие потоки увлекают материал в зону предварит. сепарации грубых фракций и далее в сепаратор, где отделяется тонкая готовая фракция, улавливаемая сначала в циклоне и окончательно в фильтре. Грубые фракции непрерывно возвращаются из сепаратора в размольную камеру. Осн. достоинство - возможность диспергирования термолабильных материалов [кубовых красителей, (NH4)2SO4 и т. п.]; недостаток - необходимость установки дополнит. оборудования (компрессора, газогенератора, мощной пылеулавливающей системы). Такие машины предназначены для И. кокса, слюды, известняка, пластмасс, инсектицидов и др.; степень измельчения 20-120. Кавитационные мельницы (рис. 2,о) работают в системе с напорными баками, что обеспечивает многократную циркуляцию и высокую степень диспергирования материала.

    161_180-32.jpg

    Рис. 2. Основные типы мельниц: н - струйная противоточная (1 - сопло, 2 - разгонная труба, 3 - размольная камера, 4 - воздушный сепаратор); о - кавитационная (1 - ротор, 2 - статор).

    Действуя как насос, мельница прокачивает диспергируемую суспензию через кольцевой зазор между ротором и статором, причем благодаря наличию на их пов-стях продольных канавок сечение прохода то возрастает, то уменьшается, что вызывает значит. колебания давления и, как следствие, кавитационный эффект. В результате суспензия интенсивно измельчается и по окончании цикла переработки отводится через спец. кран в ниж. части машины. Осн. достоинство - высокая гомогенность получаемых суспензий; недостатки: интенсивный износ рабочих органов, малая производительность. Эти измельчители применяют для приготовления резиновых смесей, в лакокрасочных и др. произ-вах; степень измельчения 5-40. В т. наз. коллоидных мельницах материал измельчается (до частиц размером неск. мкм и менее), многократно проходя через малый зазор между быстро вращающимся конич. диском (ротором) и неподвижным кольцом (статором) либо через зазор между пальцами ротора и корпусом машины. Из-за высокого износа рабочих пов-стей и малой производительности эти мельницы применяют в осн. в лаб. практике для помола небольших порций материала. В ультразвуковых мельницах помол происходит под действием высокочастотных звуковых колебаний (более 20 тыс. в 1 с). Сравнительно небольшая мощность совр. генераторов ультразвука и высокий уровень шума ограничивают область использования таких мельниц; их применяют преим. для получения высокодисперсных (средний размер частиц - мкм и доли мкм) и однородных суспензий, напр., в произ-вах красителей и лек. ср-в. В электрогидравлич. измельчителях твердое тело подвергается высокоинтенсивному воздействию импульсных давлений, возникающих при высоковольтном разряде в жидкости; эти машины м. б. использованы как для тонкого помола, так и для дробления. Выбор способа и технол. схемы И., типоразмеров, материалов рабочих органов и режима работы измельчителей зависит от прочности, твердости, упругости, липкости, термостойкости, хим. активности, токсичности, склонности к загоранию и взрыву измельчаемых материалов, а также от гранулометрич. состава, необходимой формы частиц, чистоты, белизны, насыпной массы, текучести и т. д. продукта И. Процессы И. связаны со значит. расходом энергии. Для выражения зависимости между затратами энергии и результатами И., т. е. размерами кусков (зерен) продукта, предложен ряд теорий, гипотез и эмпирич. соотношений, к-рые м. б. использованы, однако, лишь с целью качеств. сопоставления измельчающих машин. Практически для выбора типов и размеров машин, а также расчета их производительности, продолжительности процесса и дисперсности продуктов экспериментально изучают в равных условиях кинетику И. исследуемого и эталонного материалов и определяют т. наз. коэф. измельчаемости, к-рый характеризует сопротивляемость материала И. в конкретной машине. Далее выбирают тип измельчителя и с использованием соответствующих таблиц - параметры и режим его работы. Повышению эффективности И., наряду с совмещением его с классификацией и проведением процесса в неск. стадий, способствует рациональный выбор уд. энергетич. затрат, мех. усилий и частот их воздействия на материал, соотношений твердое: жидкое при мокром помоле и др. Для получения высокодисперсных продуктов из материалов, склонных к агрегированию, их подвергают сначала сухому, а затем мокрому помолу с добавками ПАВ. Последние препятствуют агрегированию мелких частиц и позволяют получать тонкие порошки с модифицированной (гидрофобизированной или гидрофилизированной) пов-стью. Одновременно ПАВ облегчают возникновение и развитие в измельчаемом материале пластич. сдвигов и трещин, что снижает его сопротивляемость И. Перспективен также метод т. наз. упругодеформационного И., заключающийся в совместном воздействии на материал т-ры, давления и деформации сдвига. С помощью этого метода на модифицированных экструзионных и вальцевальных машинах получают сверхтонкие порошки из вторичных полимерных материалов, напр., изношенных резин (размер частиц до 60 мкм) или полиэтиленовой пленки (до 10 мкм). Для поддержания заданных характеристик продуктов И. необходимо контролировать и корректировать параметры процесса (влажность, крупность, измельчаемость, др. св-ва исходных материалов, производительность машин). Для этого мощные дробильные и помольные установки оснащают системами автоматич. регулирования. С целью уменьшения износа оборудования при И. абразивных материалов ограничивают скорость движения рабочих органов, применяют быстросъемные узлы и детали, подвергаемые легкому изнашиванию, футеруют рабочие пов-сти; в ряде случаев осуществляют совместную обработку абразивного и мягкого компонентов композиции, при к-рой первый способствует И. второго, а мягкий полирует твердый, снижая его абразивность. Для уменьшения износа машин при мокром И. в жидкость вводят ингибиторы коррозии. При И. пожаро- и взрывоопасных материалов необходимо соблюдать правила техники безопасности. Установки и помещения для И. необходимо проектировать и эксплуатировать с учетом ниж. концентрац. пределов и т-р воспламенения, а также способности исходных материалов к электризации и т. п. Должны быть обеспечены прочность и герметичность корпусов измельчителей и коммуникаций, установлены разрывные предохранит. мембраны. Для изготовления мелющих тел и корпусов измельчителей необходимо использовать материалы, исключающие возможность искрообразования при соударениях. Установки для И. следует заземлять и оснащать защитой от атм. и статич. электричества, вместо пневматич. транспорта применять механический с изготовлением его деталей (напр., ковшей элеватора) из цветных металлов. Электрооборудование должно быть во взрывобезопасном исполнении, а категория помещений выбрана в соответствии с санитарными нормами и правилами. Пылеулавливающие устройства (циклоны, фильтры) следует монтировать в отдельном помещении; анализ пылесодержания воздушной среды и мокрую очистку трактов, оборудования и помещений от осевшей пыли необходимо проводить строго по графику. Эффективны также замена сухого И. на мокрое, И. в среде азота, оснащение установок системами автоматич. дистанц. контроля, управления и сигнализации. Лит.: Сиденко П. М, Измельчение в химической промышленности, 2 изд., М., 1977; Андреев С. Е., Перов В. А, Зверевич В. В., Дробление, измельчение и грохочение полезных ископаемых, 3 изд., М., 1980; Справочник по обогащению руд. Подготовительные процессы, 2 изд., М., 1982. М. Л. Моргулис.

  29. Источник: Химическая энциклопедия



  30. Энциклопедический словарь

    ИЗМЕЛЬЧЕ́НИЕ см. Измельчи́ть.

    * * *

    измельче́ние

    дробление (до частиц менее 5 мм) какого-либо твёрдого материала. Производится в основном мельницами.

    * * *

    ИЗМЕЛЬЧЕНИЕ

    ИЗМЕЛЬЧЕ́НИЕ, дробление (до частиц менее 5 мм) какого-либо твердого материала. Производится в основном мельницами.

  31. Источник: Энциклопедический словарь



  32. Геологическая энциклопедия

    (a.grinding, comminution; н.Zerkleinerung, Pochen; ф.broyage, concassage; и.molienda, trituracion fina) - процесс разрушения (дезинтеграции) кусков (частиц) твёрдого материала для доведения их размера до требуемой крупности (от 5 мм до десятков микрон), гранулометрич. состава или заданной степени раскрытия минералов. И. известно c древнейших времён. Пест и ступка из камня применялись за 8 тыс. лет до н.э., ручные мельничные жернова - за 3 тыс. лет до н.э. C 16 в. для И. руд использовали толчеи (падающие песты). C освоением энергии пара в кон. 19 в. И. проводили в шаровых мельницах. И. применяют в горной, металлургич. и др. отраслях промети. B цветной и чёрной металлургии И. подвергается практически весь объём горн. массы. И. осуществляют методами раздавливания, раскалывания, излома, срезывания и истирания (см. Дробление). Пo виду необратимой деформации (разрушения) частиц выделяют И., основанное на сжатии, растяжении, изгибе и сдвиге, по способу И. - на мокрое и cyxoe. Eсли материал подвергается действию не статич. усилий, a динамич. нагрузок, то И. наз. ударным. Пo виду реализации методов И. различают механическое (в т.ч. c мелющими телами), пневмомеханическое и аэродинамическое - в струйных аппаратах без мелющих тел. Пo способу воздействия на материал процесс И. является преим. динамическим. Mеханич. И. реализуют в барабанной Мельнице - шаровой, стержневой, галечной, рудно-галечной, рудного самоизмельчения, барабанно-роликовой, a также в роликово-кольцевой, чашевой (бегуны), дисковой (истиратель - жернова). Пневмомеханич. и аэродинамич. И. осуществляют в струйных размольных аппаратах, в к-рых разрушение кусков происходит в результате разгона материала струёй газа (воздуха) и последующего удара o неподвижную броню или взаимных ударов.

    Для процесса И. наиболее важными характеристиками материала являются прочность (крепость) и измельчаемость частиц. При очень тонком И. (см. Истирание) частицы размерами в неск. мкм и мельче могут образовывать хлопья и сростки. И. во мн. случаях сопровождается хим. превращениями на поверхности частиц. При обогащении п. и. измельчают, как правило, дроблёные материалы, кроме процесса рудного самоизмельчения, где измельчаются продукты крупностью до 400 мм. И. комбинируют c операциями Классификации. B практике применяют разнообразные схемы И., отличающиеся числом стадий измельчения и видом схемы. Пo виду схемы различают И. в открытом цикле без предварит. классификации, c предварит. классификацией и c раздельной выдачей двух продуктов И. Cхемы в открытом цикле на обогатит. ф-ках применяют редко, но широко используют в цем. и глинозёмном произ-вах, где требуется миним. разжижение (увлажнение) готового продукта и допускается переизмельчение. Для повышения производительности мельниц и уменьшения переизмельчения материала И. часто осуществляют в замкнутом цикле c классифицирующим аппаратом, при этом из материала, разгружающегося из мельницы, выделяется готовый измельчённый продукт (слив), a крупный материал (пески) возвращается в мельницу. Mельницы эффективно работают только при определ. степени И., поэтому для получения тонкого продукта И. часто ведут в два, реже в три приёма (стадии). При этом возможны разные схемы И., напр. при двухстадийной схеме мельница первой стадии может работать в открытом цикле, a мельница второй стадии - в замкнутом (рис. 1).

     Pис. 1. Cхема двухстадийного измельчения

    Pис. 1. Cхема двухстадийного измельчения.

     Pис. 2. Cхема мокрого измельчения в шаровой мельнице в замкнутом цикле co спиральным классификатором (I) и c гидроциклоном (II): 1 - бункер дроблёной руды; 2 - питатель; 3 - конвейер ленточный; 4 - весы конвейерные; 5 - мельница шаровая; 6 - классификатор спиральный; 7 - грохот барабанный; 8 - гидроциклон; 9 - насос песковый; 10 - контейнер; a - дроблёная руда (мельче 30мм), б - измельчённая руда (слив мельче 0,2мм), в - пески, оборотный продукт, г - обломки шаров, куски руды

    Pис. 2. Cхема мокрого измельчения в шаровой мельнице в замкнутом цикле co спиральным классификатором (I) и c гидроциклоном (II): 1 - бункер дроблёной руды; 2 - питатель; 3 - конвейер ленточный; 4 - весы конвейерные; 5 - мельница шаровая; 6 - классификатор спиральный; 7 - грохот барабанный; 8 - гидроциклон; 9 - насос песковый; 10 - контейнер; a - дроблёная руда (мельче 30мм), б - измельчённая руда (слив мельче 0,2мм), в - пески, оборотный продукт, г - обломки шаров, куски руды.

    Pаспространена схема мокрого И. руд в шаровой мельнице (рис. 2). Получают развитие новые принципы И., основанные на использовании электрогидравлич. эффекта (электрич. разряд в воде), соударения встречных потоков воздуха, несущих твёрдые частицы (т.н. струйные мельницы) и др.Литература: Cправочник по обогащению руд. Подготовительные процессы, Под редакцией B. A. Oлевского, (и др.), 2 изд., M., 1982.B. З. Персиц.

  33. Источник: Геологическая энциклопедия



  34. Большой энциклопедический политехнический словарь

    в технике - тонкое дробление (мельче 5 мм) к.-л. твёрдого продукта. Осн. аппараты для И. - мельницы и бегуны. И. применяют в горной, металлургич., хим., строит., комбикормовой и др. отраслях пром-сти.

  35. Источник: Большой энциклопедический политехнический словарь



  36. Русско-английский политехнический словарь

    blending бтх, breakage, breakdown, breaking, breakup, chipping, comminution, crush, crushing, degradation горн., desintegration, disintegration, milling, grind, grinding, size reduction, reduction, shredding

    * * *

    измельче́ние с.

    grinding; milling; comminution

    осуществля́ть измельче́ние в за́мкнутом ци́кле с классифика́тором — carry out grinding in a close circuit with classification, gang [team] a grinder with a classifier

    измельче́ние истира́нием — grinding by attrition

    мо́крое измельче́ние — wet grinding

    измельче́ние разда́вливанием — grinding by crushing

    сухо́е измельче́ние — dry milling

    тонча́йшее измельче́ние — atomization, atomizing

    измельче́ние у́гля (непреднамеренное) — breakage [degradation] of coal

    измельче́ние уда́рным де́йствием — impact grinding, grinding by impact

    * * *

    powdering

  37. Источник: Русско-английский политехнический словарь



  38. Dictionnaire technique russo-italien

    с.

    sminuzzamento m, sminuzzatura f; frantumazione f; macinazione f; triturazione f

    - грубое измельчение

    - измельчение зёрен

    - измельчение истиранием

    - мокрое измельчение

    - измельчение полезных ископаемых

    - предварительное измельчение

    - измельчение раздавливанием

    - сухое измельчение

    - тонкое измельчение

  39. Источник: Dictionnaire technique russo-italien



  40. Русско-украинский политехнический словарь

    1) техн. подрі́бнювання, подрі́бнення, дрі́бнення, здрі́бнювання, здрі́бнення, кри́шення

    2) матем. подрі́бнення

    - барицентрическое измельчение

    - измельчение диаграмм

  41. Источник: Русско-украинский политехнический словарь



  42. Русско-украинский политехнический словарь

    1) техн. подрі́бнювання, подрі́бнення, дрі́бнення, здрі́бнювання, здрі́бнення, кри́шення

    2) матем. подрі́бнення

    - барицентрическое измельчение

    - измельчение диаграмм

  43. Источник: Русско-украинский политехнический словарь



  44. Юридическая энциклопедия

    42) измельчение - процесс получения частиц материала (порошка) посредством дробления или размалывания (категория 1);

    Источник: Приказ ФТС России от 27.03.2012 № 575 (редакция от 30.10.2012) "О контроле за экспортом товаров и технологий двойного назначения, которые могут быть использованы при создании вооружений и военной техники и в отношении которых осуществляется экспортный контроль"

  45. Источник: Юридическая энциклопедия



  46. Словарь антонимов

  47. Источник:



  48. Тезаурус русской деловой лексики

  49. Источник:



  50. Большой Энциклопедический словарь

  51. Источник: