Большая Советская энциклопедия

    (от латинского lumen — свет и греческого phoros — несущий)

    твёрдые и жидкие вещества, способные люминесцировать под действием различного рода возбуждений (см. Люминесценция). По типу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры. Некоторые Л. могут выступать в качестве Л. смешанных типов (например, ZnS·Cu является фото-, катодо- и электролюминофором). По химической природе различают органические Л. — органолюминофоры, и неорганические — фосфоры. Фосфоры, имеющие кристаллическую структуру, называются кристаллофосфорами.

    Свечение Л. может быть обусловлено как свойствами основного вещества, так и наличием примеси — активатора. Активатор образует в основном веществе (основании) Центры свечения. Название активированных Л. складывается из названия основания и названия активаторов, например: ZnS·Cu, Co обозначает Л. ZnS, активированный Cu и Со. Если основание смешанное, то перечисляют сначала названия оснований, а затем активаторов (например, ZnS, CdS·Cu, Со).

    Л. применяют для преобразования различных видов энергии в световую. В зависимости от условий применения предъявляются определённые требования к тем или иным параметрам Л.: типу возбуждения, спектру возбуждения (для фотолюминофоров), спектру излучения, выходу излучения (отношению излученной энергии к поглощённой), временным характеристикам (времени возбуждения свечения и длительности послесвечения). Наибольшее разнообразие параметров можно получить у кристаллофосфоров (См. Кристаллофосфоры), варьируя активаторы (в основном тяжёлые металлы) и состав основания, причём в зависимости от концентрации активаторов свойства Л. в значительной степени меняются. Например, для ZnS·Cu при концентрации Cu 10-5г/г оптимальным является фотовозбуждение, а при концентрации Cu > 10-4г/г — электровозбуждение.

    Спектр возбуждения различных фотолюминофоров меняется от коротковолнового ультрафиолетового до ближнего инфракрасного. Спектр излучения может лежать в видимой, инфракрасной и ультрафиолетовой областях. Ширина спектральных полос излучения отдельных Л. меняется от тысяч Å (для органолюминофоров) до единиц Å (для кристаллофосфоров, активированных редкоземельными элементами) и сильно зависит от концентрации Л. и активатора, а также от температуры.

    Энергетический выход излучения Л. зависит от вида возбуждения, его спектра (при фотолюминесценции) и механизма преобразования энергии в световую. Он резко падает при повышении концентрации Л. и активатора (концентрационное тушение) и температуры (температурное тушение). Яркость люминесценции Л. нарастает с начала возбуждения в течение промежутка времени от 10-9сек до нескольких мин. Длительность послесвечения различных Л. колеблется от 10-9сек до нескольких ч и определяется характером преобразования энергии и временем жизни возбуждённого состояния. Наиболее короткое время послесвечения имеют органолюминофоры, наиболее длительное — кристаллофосфоры. В зависимости от условий применения могут играть существенную роль и другие свойства Л. — стойкость к действию света, тепла, влаги и так далее.

    Основными типами применяемых Л. являются кристаллофосфоры, органические Л., люминесцирующие стекла. Наибольшее распространение получили кристаллофосфоры. Значительная часть их представляет собой полупроводниковые соединения с шириной запрещенной зоны 1—10 эв, люминесценция которых обусловлена примесью (активатора) или дефектами решётки. Концентрация активатора варьируется в пределах 10-3—10-7 г/г. Некоторые посторонние примеси, например Fe, в концентрациях уже 10-6 г/г могут уменьшать яркость люминесценции, поэтому приготовление Л. требует особого контроля чистоты исходных материалов. Такие Л. изготовляют путём прокалки шихты. Для улучшения процесса кристаллизации в шихту добавляются плавни — соли типа KCI, LiF, CaCI2 и тому подобные. Люминесцирующие монокристаллы выращиваются из расплава, раствора или газовой фазы.

    В люминесцентных лампах (См. Люминесцентная лампа) применяются смеси кристаллофосфоров [например, смеси MgWO4 и (ZnBe)2 SiO4·Mn] или однокомпонентные Л., например галофосфат кальция, активированный Sb и Mn. Л. подбираются так, чтобы их свечение имело спектральное распределение, близкое к распределению дневного света. Катодолюминофоры применяют для экранов электронно-лучевых трубок, осциллографов, черно-белых и цветных Кинескопов и тому подобное. Для цветных кинескопов разработаны люминофоры, дающие три основных цвета свечения: синий (ZnS·Ag), зелёный (ZnSe·Ag), красный [Zn3(PO4)2·Mn]. Для рентгеноскопии применяются (Zn, Cd) S·Ag и CaWO4, дающие свечение в области максимальной чувствительности глаза и позволяющие максимально использовать чувствительность рентгеновской плёнки и уменьшить дозу облучения. Электролюминофоры на основе ZnS·Cu используют для создания светящихся индикаторов, табло, панелей.

    Органические Л. могут люминесцировать в растворах (флуоресцеин, родамин) и твёрдом состоянии (пластические массы и антрацен, стильбен и другие органические кристаллы). Органические Л. могут обладать ярким свечением и очень высоким быстродействием. Цвет люминесценции органических Л. может быть подобран для любой части видимой области. Они применяются для люминесцентного анализа (См. Люминесцентный анализ), изготовления люминесцирующих красок, указателей, оптического отбеливания тканей и т.д. Многие органические Л. (красители цианинового, полиметинового рядов и другие) используют в качестве активных элементов жидкостных Лазеров. Кристаллические органические Л. применяют в качестве сцинтилляторов для регистрации γ-лучей и быстрых частиц (см. Сцинтилляционный счётчик и Люминесцентная камера). Органические Л. выпускаются промышленностью СССР под торговым наименованием люминоры.

    Люминесцирующие стёкла изготовляют на основе стеклянных матриц различного состава. При варке стекла в шихту добавляют активаторы, чаще всего соли редкоземельных элементов или актиноидов (См. Актиноиды). Выход, спектр и длительность свечения люминесцентных стекол определяются свойствами активатора. Они обладают хорошей оптической прозрачностью и многие из них могут быть использованы в качестве лазерных материалов, а также для визуализации изображений, полученных в ультрафиолетовом излучении.

    Э. А. Свириденков.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Толковый словарь Ефремовой

    мн.

    Вещества, способные люминесцировать под действием внешних факторов.

  3. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  4. Большой энциклопедический словарь

    ЛЮМИНОФОРЫ (от лат. lumen - свет и греч. phoros - несущий) - органические и неорганические вещества, способные светиться (люминесцировать) под действием внешних факторов (см. Люминесценция). Важнейший вид люминофоров - кристаллофосфоры. Люминофоры используют в люминесцентном анализе, производстве светящихся красок и т. д.

  5. Источник: Большой Энциклопедический словарь. 2000.



  6. Современная энциклопедия

    ЛЮМИНОФОРЫ, органические и неорганические вещества, способные светиться под воздействием различных факторов (смотри Люминесценция). Используют для изготовления телевизионных и других светящихся экранов, индикаторов, люминесцентных красок, ламп дневного света, в некоторых видах анализа веществ, в качестве активной среды лазеров и т.д.

  7. Источник: Современная энциклопедия. 2000.



  8. Физическая энциклопедия

    ЛЮМИНОФОРЫ

    (от лат. lumen, род. п. luminis — свет и греч. phoros— несущий), твёрдые и жидкие в-ва, способные люминесцировать под действием разл. рода возбуждений (см. ЛЮМИНЕСЦЕНЦИЯ). По типу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры; по хим. природе различают органич. Л.— о р г а н о л ю м и н о ф о р ы и неорганические — ф о с ф о р ы. Фосфоры, имеющие крист. структуру, наз. кристаллофосфорами.

    Свечение Л. может быть обусловлено как св-вами его осн. в-ва (основания), так и примесями — активаторами. Активатор образует в основании центры люминесценции. Названия активированных Л. складываются из названий основания и активаторов, напр.: ZnS
    • Cu, Co обозначает Л. ZnS, активированный Сu и Со. Смешанные Л. могут состоять из неск. оснований и активаторов (напр., ZnS, CdS
    • Cu, Co).

    Л. применяют для преобразования разл. видов энергии в световую. В зависимости от условий применения предъявляются определ. требования к тем или иным параметрам Л.: типу возбуждения, спектру возбуждения (для фотолюминофоров), спектру излучения, энергетич. выходу излучения, временным хар-кам (времени возбуждения и длительности послесвечения).

    Спектры возбуждения и излучения разл. фотолюминофоров могут лежать в интервале от коротковолнового УФ до ближнего ИК диапазона. Ширина спектральных полос варьируется от тысяч?.(для органолюминофоров) до единиц? (для кристаллофосфоров, активированных редкоземельными элементами).

    Энергетич. выход излучения Л. зависит от вида возбуждения, его спектра (при фотолюминесценции) и механизма преобразования энергии в световую. Он резко падает при повышении концентрации Л. и активатора и темп-ры (тушение люминесценции). Длительность послесвечения разл. Л. колеблется от 10-9 с до неск. ч. Наиболее короткое время послесвечения имеют органолюминофоры, наиболее длительное — кристаллофосфоры. В зависимости от условий применения могут играть существ. роль и др. свойства Л.— стойкость к действию света, теплоты, влаги и т. д.

    Осн. типами применяемых Л. явл. кристаллофосфоры, органолюминофоры, люминесцирующие стёкла. Наибольшее распространение получили к р и с т а л л о ф о с ф о р ы. Смеси кристаллофосфоров (напр., смеси MgWO4 и (ZnBe)2SiO4
    • Mn) применяются в люминесцентных лампах, катодолюминофоры — для экранов электронно-лучевых трубок (см. КАТОДОЛЮМИНЕСЦЕНЦИЯ). Для рентг. экранов применяются (Zn,Cd)S
    • Ag и CaWO4, дающие синее свечение. Электролюминофоры на основе ZnS
    • Сu используют для создания светящихся индикаторов, табло, панелей (см. ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ).

    Органолюминофоры могут люминесцировать в р-рах (флуоресцин, родамин) и в тв. состоянии (пластич. массы, антрацен, стильбен и др.). Они могут обладать ярким свечением и очень высоким быстродействием. Цвет люминесценции органич. Л. может быть подобран для любой части видимой области спектра. Они применяются для люминесцентного анализа, изготовления люминесцирующих красок, указателей, оптич. отбеливания тканей и т. д. Многие органич. Л. (красители цианинового, полиметинового рядов и др.) используются в кач-ве активных элементов жидкостных лазеров. Крист. органич. Л. используются как сцинтилляторы.

    Л ю м и н е с ц и р у ю щ и е с т ё к л а изготовляются на основе стеклянных матриц разл. состава. При варке стекла в шихту добавляются активаторы, чаще всего соли редкозем. элементов или элементов актиноидного ряда. Выход люминесценции, спектр и длительность свечения люминесцентных стёкол определяются св-вами активатора. Они обладают хорошей прозрачностью, и многие из них могут быть использованы в кач-ве лазерных материалов, а также для визуализации изображений, полученных в УФ излучении.

  9. Источник: Физическая энциклопедия



  10. Медицинская энциклопедия

    (лат. lumen, luminis свет + греч. phoros несущий)

    вещества, обладающие способностью люминесцировать: некоторые Л. используются в аппаратуре и реактивах медико-биологического назначения.

  11. Источник: Медицинская энциклопедия



  12. Химическая энциклопедия

    (от лат. lumen, род. падеж luminis - свет и греч. phoros - несущий), синтетич. в-ва, способные преобразовывать разл. виды энергии в световую - люминесцировать. По типу возбуждения подразделяются на фото-, катодо-, электро-, рентгено-, радио-, хемилюминофоры и др. (см. также Люминесценция, Хемилюминесценция).

    Неорганические Л. (фосфоры). Их свечение м. б. обусловлено как св-вами в-ва основы, так и наличием примесей - активаторов, к-рые образуют в осн. в-ве центры свечения, соактиватора и сенсибилизатора. Концентрация активатора обычно составляет 10-1-10-3%. Существуют самоактивир. Л., не содержащие активаторов, напр. CaWO4. Л. обозначают ф-лой основы с указанием активатора и сенсибилизатора, часто соактиватора, напр. ZnS: Ag, Ni; в-во после знака ":" - активатор, соактиватор или сенсибилизатор. Большинство неорг. Л. имеет кристаллич. структуру и относятся к кристаллофосфорам. Требования к Л. - яркость и цвет свечения, длительность послесвечения, дисперсность, термостойкость и др. - определяются параметрами устройств, в к-рых их применяют. Л. обычно используют в виде относительно тонких поликристаллич. слоев (1-100 мкм), наносимых на внутр. пов-сть светящихся - экранов электровакуумных приборов. Состав нек-рых фото- и катодолюминофоров и области их применения представлены в таблице. Фотолюминофоры возбуждаются оптич. излучением в диапазоне от вакуумной УФ до ближней ИК области. наиб. широкое применение фотолюминофоры находят в люминесцентных лампах низкого давления. В лампах для общего освещения используют галофосфат Са -3[Са 3 (РО 4)2].Са(Сl, F)2 : Sb, Mn, в лампах высокого давления с исправленной цветопередачей - смеси на основе фосфатов и силикатов, излучающие в синей, зеленой и красной областях спектра. Свечение возбуждается резонансной линией Hg с l =253,7 нм. Световая отдача (отношение светового потока лампы к мощности) ламп с галофосфатным Л. составляет 85 Лм/Вт, ламп со смесями - от 50 до 60 Лм/Вт. Созданы лампы "нового поколения" с Л. на основе РЗЭ (алюминаты, фосфаты и др.), сочетающие высокую светоотдачу ( ~ 95 Лм/Вт) с высоким качеством цветопередачи. Фотолюминофоры применяют для исправления цветности ламп высокого давления, ламп, излучающих в УФ области, и т. д. (см. табл.). Катодолюминофоры возбуждаются пучком электронов; используются в экранах кинескопов, в электронных микроскопах, электроннолучевых и радиолокац. установках. В кинескопах цветного изображения применяют Л. с синим (l макс 455 нм), зеленым (l макс 525 нм) и красным (l макс 612 и 620 нм) цветом свечения. Их наносят на экран кинескопа в виде точек, расположенных треугольником, или чередующихся полос. Суммарный цвет изображения получается при сложении трех цветов свечения нанесенных Л. и зависит от соотношения их яркостей. Для получения хорошей цветопередачи цвет свечения исходных Л. должен быть по возможности более насыщенным, для чего поверхность "синего" Л. пигментируют СоАl2 О 4, а "красного" - Fe2O3.

    601_621-26.jpg

    601_621-27.jpg

    * При напряжении 6 кВ. ** При напряжении 14 кВ. *** При напряжении 12 кВ.

    Покрытие кинескопов черно-белого изображения состоит из смеси Л., имеющих синий и желто-зеленый (l макс 560 нм) цвет свечения, обеспечивающих в целом белый свет свечения кинескопа. Для повышения контрастности используют пигментирование "синего" Л. красителем. Электролюминофоры возбуждаются переменным или постоянным электрич. полем. Hаиб. распространенные электролюминофоры - ZnS: Сu и Zn(Cd)S(Se): Сu. В зависимости от введенного дополнительно к Сu соактиватора (Сl, Аl, Вr, Са или Mn) получают Л., обладающие голубым, зеленым, желтым, оранжевым и красным цветом свечения. Рентгенолюминофоры возбуждаются рентгеновскими лучами; применяются при рентгенологич. обследованиях человека и в пром. дефектоскопии. Л. CaWO4 нашел применение в мед. экранах, пром. рентгенографии с использованием малосeребряных материалов и дефектоскопии при высоких напряжениях. В разл. типах мед. рентгенологич. экранов применяют также BaSO4 : Pb; (Sr,Ba)SO4 : Eu; BaF,Cl: Eu; Ba3(PO4)2 : Eu; LaOBr: Tb,Yb; ZnS: Ag; ZnS.CdS: Ag; CsI: Tl. Радиолюминофоры возбуждаются радиоактивным излучением; применяются для дозиметрии и радиометрии. При дозиметрии обычно используют св-во нек-рых Л. высвечивать при повышении т-ры энергию, запасенную при возбуждении. Для дозиметрии g- и рентгеновского излучения применяют LiF: Mg,Ti и MgB4O7 : Dy, для быстрых нейтронов - CaS: Na, Bi, Zn; для a-радиометрии - ZnS: Ag. Среди неорг. Л. большое практич. применение находят также люминесцирующие стекла. Их получают при варке стекла, добавляя в шихту активаторы, чаще соли РЗЭ или актиноиды. Стекла обладают хорошей оптич. прозрачностью и могут применяться в качестве лазерных материалов, а также визуализаторов изображения.

    Органические Л. (люминоры, органолюминофоры). Их свечение обусловлено хим. строением орг. соед. и сохраняется в разл. агрегатных состояниях. По хим. строению различают след. орг. Л.: ароматич. углеводороды или их производные (полифенильные углеводороды, углеводороды с конденсированными ароматич. ядрами или арилэтиленовой и арилацетиленовой группировками), 5- и 6-членные гетероциклы и их производные, соед. с карбонильными группами; к орг. Л. относят также комплексы металлов с орг. лигандами. Орг. фотолюминофоры применяют в качестве флуоресцентных красок, свечение к-рых вызывается УФ и коротковолновым видимым излучением. Пигменты красок представляют собой твердые р-ры орг. Л. или их смесей с красителями в разл. смолах (чаще всего в составе карбамид-и меламиноформальдегилных смол, модифицированных одно- и многоатомными спиртами или арилсульфамидами). Для получения желтого цвета используют обычно 3-метоксибензантрон, голубого - арилэтиленовые замещенные 2,5-диарилоксазолов, оранжевого - смесь 3-метоксибензантрона с родаминами С и 6Ж. Нек-рые орг. Л. применяют для окрашивания пластмасс и синтетич. волокон, оптич. отбеливания тканей, бумаги, натуральных и искусств. волокон и разл. покрытий. Так, для окрашивания сополимеров винилхлорида применяют родамин С (красный цвет), 2,2'-дигидрокси-1,1'-нафтальазин (желтый), смесь 2,2'-дигидрокси-1,1'-нафтальазина с фталоцианином меди (зеленый), производные пиримидинантрона (красно-оранжевый), для окрашивания полистирола в оранжево-красные окраски - нафтоиленбензилимидазолы и его замещенные. При оптич. отбеливании Л., поглощая свет в ближней УФ-области, флуоресцируют в фиолетовой (l макс 415-429 нм), синей (430-440 нм) или зелено-синей (441-466 нм) частях видимой области спектра. Оптич. наложение их флуоресценции и желтых лучей, отраженных отбеливаемым материалом, вызывает ощущение белизны. При оптич. отбеливании используют производные стильбена, кумарина, пиразолина, нафталимида, бензоксазола и др. Орг. Л., способные испускать свет под действием радиоактивных излучений, применяют в качестве сцинтилляторов. Существуют монокристаллич. (антрацен, тетрацен, пирен, карбазол, арилзамещенные этилена и оксазола), жидкие (полифенильные углеводороды, 2,5-диарилзамешенные оксазола) и пластмассовые орг. сцинцилляторы. Последние представляют собой твердые р-ры жидких сцинцилляторов в полимерных основах (полистироле, поливинилксилоле). Многие орг. Л. - активные среды жидкостных лазеров, напр. цианиновые, полиметиленовые и др. красители, люминесцентные индикаторы. Кроме того, орг. Л. применяют в люминесцентной дефектоскопии и аналит. химии (см. Люминесцентный анализ), а также в мол. биологии и медицине (флуоресцеин, акридин и др.) в качестве меток или зондов (см., напр., Липидные зонды). О хеминолюминофорах см. Хемилюминесценция. Лит.: Гугель Б. М., Люминофоры для электровакуумной промышленности, М.. 1967; Неорганические люминофоры, М., 1975; Карнаухов В. Н., Люминесцентный спектральный анализ клетки, М., 1978; Красовицкий Б. М., Болотин Б. М., Органические люминофоры, 2 изд., М., 1984; Тезисы докладов 5-го Всесоюзного совещания "Синтез, свойства, исследования, технология и применение люминофоров", ч. 1-2. Ставрополь. 1985. И. Ф. Голубев.

  13. Источник: Химическая энциклопедия



  14. Энциклопедический словарь

    люминофо́ры

    (от лат. lumen — свет и греч. phorós — несущий), органические и неорганические вещества, способные светиться (люминесцировать) под действием внешних факторов (смотри Люминесценция). Важнейший вид люминофоров — кристаллофосфоры. Люминофоры используют в люминесцентном анализе, производстве светящихся красок и т. д.

    * * *

    ЛЮМИНОФОРЫ

    ЛЮМИНОФО́РЫ (от лат. lumen — свет и греч. phoros — несущий), вещества, способность которых светиться под действием внешних факторов (см. Люминесценция(см. ЛЮМИНЕСЦЕНЦИЯ)), используется для практических целей. Люминофоры применяют для преобразования различных видов энергии в световую.

    По химической природе различают органические люминофоры (органолюминофоры), и неорганические (фосфоры). Фосфоры, имеющие кристаллическую структуру, называются кристаллофосфорами(см. КРИСТАЛЛОФОСФОРЫ).

    По типу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры и т. д. Некоторые вещества могут люминесцировать при различных видах возбуждения, т. е. являются люминофорами смешанного типа (например, ZnS, легированный Cu, является фото-, катодо- и электролюминофором).

    Требования к параметрам люминофоров определяются условиями их применения. Люминофоры различаются по типу возбуждения, спектру возбуждения (для возбуждения различных фотолюминофоров меняется от коротковолнового ультрафиолетового до ближнего инфракрасного), спектру излучения, выходу излучения, времени возбуждения, свечения и длительности послесвечения.

    Цвет свечения определяется материалом основы люминофора, природой и концентрацией вводимых примесей-активаторов, которые образуют в основном веществе (основании) центры свечения. Подбором люминофора и соответствующих центров свечения можно варьировать длину волны люминесценции. Даже в одном люминофоре, меняя тип примесей, можно регулировать спектральный состав излучения. Например, люминофоры на основе ZnS отличаются высокой яркостью и светоотдачей в видимой области спектра. При введении в ZnS активаторов получаем для кристаллов ZnS (Ag) свечение голубое, для ZnS(Cu) — зеленое, а для ZnS(Mn) — оранжевое. Если же в ZnS ввести CdS, то спектр люминесценции сместится в сторону более длинных волн. Люминесценция в красной области спектра получается при использовании в качестве основы люминофора полупроводниковых твердых растворов Zn1-xCdxS и ZnS1-xSex.

    Органические люминофоры представляют собой сложные высокомолекулярные соединения: ароматические углеводороды и их производные, гетероциклические соединения, комплексные соединения атомов металла с органическими лигандами и т.д. Механизм свечения органических люминофоров обычно внутрицентровой. Органические люминофоры могут люминесцировать в растворах (флуоресцеин, родамин) и в твердом состоянии (пластические массы и антрацен, стильбен и другие органические кристаллы), обладают ярким свечением и очень высоким быстродействием. Цвет люминесценции органических люминофоров может быть подобран для любой части видимой области. Применяются для люминесцентного анализа, изготовления люминесцирующих красок, указателей, оптического отбеливания тканей и т. д.

    Основное применение среди неорганических люминофоров имеют кристаллофосфоры. К твердым неорганическим люминофорам относятся также люминесцирующие стекла, порошки, тонкие пленки. Люминесцирующие стекла изготовляют на основе стеклянных матриц различного состава. При варке стекла(см. СТЕКЛО НЕОРГАНИЧЕСКОЕ) в шихту добавляют активаторы, чаще всего соли редкоземельных элементов или актиноидов. Такие люминофоры применяются в лазерах. В светотехнике широко используют различные порошковые люминофоры, многие их которых являются бертоллидами, т. е. имеют переменный химический состав (Zn0,6Cd0,4S, Zn0,75Cd0,25S, Zn S0,85Se0,15). На основе порошковых электролюминофоров изготовляются плоские безвакуумные источники света сравнительно большой площади, которые нашли применение в светящихся панелях, табло, управляемых шкалах, мнемонических схемах, твердотельных экранах и т. д. Благодаря согласованию по спектральным характеристикам электролюминофоров с фотосопротивлениями создаются различные оптоэлектронные системы: приборы автоматики — оптроны, усилители и преобразователи изображения, например для рентгеноскопии. Получены тонкопленочные электролюминесцентные излучатели, которые позволяют получать яркость, сопоставимую по величине с яркостью обычного телевизионного экрана. В качестве активного слоя в них используется сульфид цинка, легированный марганцем или фторидами редкоземельных элементов. Излучатели на их основе, обладая большой яркостью, дают возможность получить полную цветовую гамму в плоскостных экранах для дисплеев. На их основе уже созданы эффективные излучатели сине-зеленого свечения (SrS (Cе), зеленого (СаS (Се)), красного (СаS (Еu), СаS (Еr)) и белого свечения (CaS (Рr, К), SrS (Но, Nd), SrS:(Sm, Cе)).

  15. Источник: Энциклопедический словарь



  16. Большой энциклопедический политехнический словарь

    [от лат. lumen (luminis) - свет и греч. phoros - несущий] - вещества, способные преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). По хим. природе Л. разделяются на неорганич. (кристаллофосфоры) и органические. Свечение неорганич. Л. обусловлено б. ч. присутствием посторонних катионов, содержащихся в малых кол-вах (до 0,001%). Такие примеси (активаторы) обычно являются катионами металлов: напр., свечение сульфида цинка активируется катионом меди. Неорганич. Л. применяются в люминесцентных лампах, ЭЛТ, для изготовления рентгеновских экранов, служат индикаторами радиации и др. Органич. Л. (люмогены) применяются для изготовления ярких флуоресцентных красок, люминесцирующих материалов, используются в чувствит. люминесцентном анализе в химии, биологии, медицине и криминалистике.

  17. Источник: Большой энциклопедический политехнический словарь



  18. Большая политехническая энциклопедия

    ЛЮМИНОФОРЫ — твёрдые и жидкие вещества, в которых под действием внешних физ. факторов возникает люминесценция (см.). По хим. природе Л. разделяются на органические и неорганические. Их используют в люминесцентном анализе, при производстве светящихся красок, в химии, биологии, медицине, криминалистике и др.

  19. Источник: Большая политехническая энциклопедия



  20. Естествознание. Энциклопедический словарь

    (от лат. lumen - свет и греч. phoros - несущий), органич. и неорганич. в-ва, способные светиться (люминесцировать) под действием внеш. факторов (см. Люминесценция). Важнейший вид Л, - кристаллофосфоры. Л. используют в люминесцентном анализе, произ-ве светящихся красок и т.д.

  21. Источник: Естествознание. Энциклопедический словарь



  22. Большой Энциклопедический словарь

  23. Источник: