Большая Советская энциклопедия

    область физики, в которой изучаются физические процессы, связанные с электромагнитными колебаниями и волнами радиодиапазона (см. Радиоволны): их возбуждение, распространение, приём и преобразование частоты, а также возникающие при этом взаимодействия электрических и магнитных полей с зарядами в вакууме и веществе. Р. сформировалась в 20—30-е гг. 20 в., объединив разделы физики, развитые применительно к изучению задач радиотехники (См. Радиотехника) и электроники (См. Электроника).

    Основные направления исследований: 1) теоретические и экспериментальные исследования электрических колебаний в колебательных системах с сосредоточенными параметрами (см. Колебательные системы,Колебательный контур) и в непрерывных средах (с распределёнными параметрами). Эти исследования — основа для разработки новых методов генерации, усиления и преобразования колебаний с частотами от 1—2 гц до 1011 гц и выше (см. Автоколебания,Генерирование электрических колебаний,Параметрическое возбуждение и усиление электрических колебаний). Исследуются также влияние случайных (флуктуационных) процессов на электрические колебания в конкретных устройствах и методы выделения сигнала, несущего информацию, из совокупности полезных и случайных (например, шумовых) сигналов (Статистическая радиофизика). Обе проблемы тесно связаны с общей математической теорией колебаний (См. Колебания), теорией автоматического регулирования, теорией информации и кибернетикой (См. Кибернетика),которые являются обобщением закономерностей, изучаемых в Р., на процессы, протекающие в различных механических, электрических, биологических и др. системах.

    2) Взаимодействия электрических колебаний и электромагнитных волн радиодиапазона с носителями тока в вакууме, газах и твёрдых телах. Изучение взаимодействия электронных потоков в вакууме с электромагнитными полями позволило создать и усовершенствовать как электронные лампы (См. Электронная лампа) (со статическим управлением электронными потоками), так и электронные приборы СВЧ (Магнетрон,Клистрон,лампа бегущей волны,Лампа обратной волныи пр.). Исследование взаимодействия электромагнитных полей с ионизованным газом привело к созданию газоразрядных приборов (Тиратрон,Тригатрон и др.), которые широко используются в системах радиоэлектроники. Оно примыкает к общим исследованиям физических (в особенности колебательных) свойств плазмы (См. Плазма) и к исследованиям волновых процессов в природной плазме околоземного и межпланетного космического пространства.

    Изучение взаимодействия электрических колебаний и волн радиодиапазона с электронными процессами в полупроводниках (См. Полупроводники),электронно-дырочных переходах (См. Электронно-дырочный переход) и гетероструктурах (см. Полупроводниковый гетеропереход), а также в ряде диэлектрических кристаллов и некоторых сверхпроводящих устройствах позволило создать твердотельные генераторы, усилители и преобразователи электрических колебаний различных частот — от самых низких до частот оптического диапазона (см. Полупроводниковый диод,Транзистор,Ганна диод,Джозефсона эффект,Квантовая электроника).

    3) Излучение и распространение радиоволн. Теоретические и экспериментальные исследования излучения различных типов антенн (См. Антенна), их электродинамический расчёт, а также изучение распространения радиоволн в различных направляющих (Радиоволновод,Фидер) и замедляющих системах (См. Замедляющая система) играют важную роль в создании систем радиосвязи (См. Радиосвязь), передающих и приёмных устройств и др. При изучении распространения радиоволн (См. Распространение радиоволн) над поверхностью земли и под нею с учётом конкретных условий, связанных с непостоянством геофизических и космических факторов, Р. соприкасается с геофизикой (См. Геофизика). Исследование особенностей распространения радиоволн на земных и космических радиотрассах возможно лишь на основе систематического накопления сведений о свойствах тропосферы (См. Тропосфера),ионосферы (См. Ионосфера), приземного и межпланетного космического пространства и их изменчивости во времени. С др. стороны, многие свойства геофизических объектов изучаются в основном радиофизическими методами, т. е по наблюдениям за особенностями протекания волновых и колебательных процессов в радиодиапазоне.

    Развитие Р. сопровождается открытием новых явлений, находящих практическое применение и составляющих основу новых направлений (например, квантовая электроника). Некоторые разделы Р. выделяются в самостоятельные области физики (Радиоастрономия,Радиоспектроскопия,Радиометеорология и др.), где методы Р. служат лишь средством изучения явлений, лежащих за пределами Р. Особую роль сыграло проникновение методов Р. в оптику (см. Нелинейная оптика).

    В. В. Мигулин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Словарь форм слова

    1. ра́диофи́зика;
    2. ра́диофи́зики;
    3. ра́диофи́зики;
    4. ра́диофи́зик;
    5. ра́диофи́зике;
    6. ра́диофи́зикам;
    7. ра́диофи́зику;
    8. ра́диофи́зики;
    9. ра́диофи́зикой;
    10. ра́диофи́зикою;
    11. ра́диофи́зиками;
    12. ра́диофи́зике;
    13. ра́диофи́зиках.
  3. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  4. Малый академический словарь

    , ж.

    Область физики, изучающая физические основы радиотехники и электроники.

  5. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  6. Толковый словарь Ефремовой

    ж.

    Раздел физики, изучающий физические основы радиотехники и смежных с нею отраслей техники.

  7. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  8. Большой энциклопедический словарь

    РАДИОФИЗИКА - область физики, в которой изучаются процессы, связанные с электромагнитными колебаниями и волнами радиодиапазона: их возбуждение, распространение, прием и преобразование частоты, а также возникающие при этом взаимодействия электрических и магнитных полей с зарядами в вакууме и веществе. Радиофизические методы исследования проникают в др. области физики (напр., в оптику) и за ее пределы. Некоторые разделы радиофизики выделяются в самостоятельные области (радиоастрономия, радиоспектроскопия, квантовая электроника и т. д.).

  9. Источник: Большой Энциклопедический словарь. 2000.



  10. Большой англо-русский и русско-английский словарь

    жен. radiophysics

  11. Источник: Большой англо-русский и русско-английский словарь



  12. Англо-русский словарь технических терминов

    radio physics

  13. Источник: Англо-русский словарь технических терминов



  14. Русско-английский словарь математических терминов

    f.radio physics

  15. Источник: Русско-английский словарь математических терминов



  16. Большой итальяно-русский и русско-итальянский словарь

    ж.

    radiofisica

  17. Источник: Большой итальяно-русский и русско-итальянский словарь



  18. Физическая энциклопедия

    РАДИОФИЗИКА

    раздел физики, охватывающий изучение и использование эл.-магн. колебаний и волн радиодиапазона, а также распространение развитых при этом принципов и методов в др. области физики и за её пределы. На шкале электромагнитных волн радиодиапазон занимает интервал частот от 104 до 1010 Гц (см. РАДИОВОЛНЫ), и первоначально радиофиз. исследования придерживались этих границ. В зарубежной лит-ре такому представлению о Р. ограниченно соответствует термин «радионаука» (Radioscience). Co временем, однако, методы Р. проникли и в др. диапазоны частот от очень низких частот (ОНЧ) до g-излучения, а также в область исследований волновых процессов не эл.-магн. природы (напр., в акустику).

    Р. сформировалась в 30—40-е гг. благодаря бурному развитию радиотехники, радиосвязи, радио- и телевещания и др. Появление радиолокации и радионавигации потребовало освоения новых диапазонов частот и разработки общих физ. принципов генерации, излучения, распространения и приёма радиоволн, модуляции и кодирования радиосигналов и т. д. В СССР развитие Р. связано с именами Л. И. Мандельштама, Н. Д. Папалекси и созданной ими школы.

    На первом этапе развитие Р. опиралось на общую теорию колебаний и волн, физ. электронику и электродинамику. Теория колебаний создала матем. аппарат, позволяющий исследовать и управлять процессами в колебат. системах (см. КОЛЕБАНИЙ И ВОЛН ТЕОРИЯ). Важную роль сыграли исследования нелинейных колебаний и особенно автоколебаний, лежащие в основе работы большинства генераторов эл.-магн. колебаний радиодиапазона.

    Быстродействие, простота управления, высокие кпд, перекрытие всех диапазонов частот и мощностей, высокая чувствительность, избирательность и низкий уровень шумов и др. требования, предъявляемые к разл. радиотехнич. устройствам, могут быть удовлетворены только с привлечением разнообразных физ. явлений в газах и конденсированных средах. Поэтому радиофиз. исследованиям сопутствовали, а иногда предшествовали: ас-следование электронной и ионной эмиссии (см. ЭМИССИОННАЯ ЭЛЕКТРОНИКА), разработка методов управления движением заряженных ч-ц (см. ЭЛЕКТРОННАЯ ОПТИКА), исследование вз-ствия эл.-магн. полей с электронными потоками, с газоразрядной плазмой и электронно-дырочной плазмой в тв. теле (см. ПЛАЗМА ТВЁРДЫХ ТЕЛ), изучение невзаимных хар-к ферритов и т. п. В результате развития представлений об автофазировке и автогруппировке эл-нов, о самосогласованном синхронном вз-ствии частиц и эл.-магн. полей вместо вакуумных диодов, триодов и т. п. в коротковолновых диапазонах появились такие приборы, как клистрон, магнетрон, лампа бегущей волны, лампа обратной волны и др.

    Электродинамика, в основном опирающаяся на Максвелла уравнения в линейных средах, обеспечила понимание процессов излучения, распространения и приёма радиоволн. Это позволило создать разл. элементы радиотехнич. аппаратуры как в длинноволновых диапазонах (системы с сосредоточенными параметрами — колебат. контуры, фильтры, трансформаторы и т. п.), так и в коротковолновых диапазонах, особенно на СВЧ, где практически все узлы — системы с распределёнными параметрами (линии передачи, радиоволноводы, объёмные резонаторы и т. п.). Создание множества типов антенн и расчёта трасс распространения радиоволн в атмосфере, земной коре, воде составили содержание автономных разделов Р.

    По мере развития Р. её методы стали проникать в др. области физики. В результате Р. как бы «разветвилась» на «физику для радио» и «радио для физики». Новые задачи, а также освоение диапазонов высоких частот привлекли в Р. идеи и методы из др. областей физики, в частности из оптики (линзы, зеркала, интерферометры, поляроиды и т. д.), что привело к появлению нового раздела Р.— квазиоптики (квазиоптич. линии передачи, открытые резонаторы и т. п.). В свою очередь радиофиз. методы, развитые, напр., для сантиметрового диапазона длин волн, проникнув в оптику, заметно расширили её возможности, вызвав к жизни такие разделы, как волоконная оптика, голография, интегральная оптика и т. п., так что и оптич. диапазон частот стал областью приложения методов Р. Иногда это поясняют термином «радиооптика».

    В результате взаимных «обогащений» с др. областями физики, с одной стороны, и обособления отд. разделов — с др. стороны, внутри Р. образовалось, кроме квазиоптики, и неск. др. важных «дочерних» направлений. В статистической радиофизике исследуются флуктуационные процессы в колебат. системах, стабильность частоты генераторов, шумы усилителей, неравновесное излучение среды в радиодиапазоне, распространение волн в средах со случайными неоднородностями, разработка и применение методов корреляц. анализа сигналов и др. Квантовая Р. (квант. генераторы и усилители радио- и оптич. диапазонов, (см. КВАНТОВАЯ ЭЛЕКТРОНИКА) смыкается с когерентной нелинейной оптикой. Радиоспектроскопия — совокупность тонких методов исследования спектров веществ в радиодиапазоне, позволяющих обнаружить присутствие ничтожных долей примесей (см. ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС, ЭЛЕКТРОННЫЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС). Радиоастрономия — приём и обработка слабых сигналов от косм. источников (спектральная плотность потока излучения до 10-30 Вт/м2 Гц), разработка антенн и интерферометров с высокой направленностью и угловым разрешением до 10-3—10-4 угл. секунды (см. РАДИОТЕЛЕСКОП), исследование природы радиоизлучения косм. источниками (их распространения через косм. среду и т. п.). Содержание микроэлектроники состоит в создании твердотельных приборов, интегральных схем и т. п.

    Т. о., Р. имеет сложную и сильно разветвлённую структуру и ясно выраженную тенденцию как дальнейшего проникновения в др. области естествознания (геофизику и гидрофизику, акустику, биофизику и др.), так и в др. области частот, мощностей и др. параметров, расширяющих традиц. сферы влияния Р. (релятивистская электроника больших мощностей, микроминиатюризация радиоаппаратуры, рентгеновская оптика).

  19. Источник: Физическая энциклопедия



  20. Энциклопедический словарь

    РАДИОФИ́ЗИКА -и; ж. Раздел физики, изучающий физические основы радиотехники и смежных с ней отраслей техники.

    * * *

    радиофи́зика

    область физики, в которой изучаются процессы, связанные с электромагнитными колебаниями и волнами радиодиапазона: их возбуждение, распространение, приём и преобразование частоты, а также возникающие при этом взаимодействия электрических и магнитных полей с зарядами в вакууме и веществе. Радиофизические методы исследований проникают в другие области физики (например, в оптику) и за её пределы. Некоторые разделы радиофизики выделяются в самостоятельные области (радиоастрономия, радиоспектроскопия, квантовая электроника и т. д.).

    * * *

    РАДИОФИЗИКА

    РАДИОФИ́ЗИКА, область физики, в которой изучаются процессы, связанные с электромагнитными колебаниями и волнами радиодиапазона: их возбуждение, распространение, прием и преобразование частоты, а также возникающие при этом взаимодействия электрических и магнитных полей с зарядами в вакууме и веществе. Радиофизические методы исследования проникают в др. области физики (напр., в оптику) и за ее пределы. Некоторые разделы радиофизики выделяются в самостоятельные области (радиоастрономия(см. РАДИОАСТРОНОМИЯ), радиоспектроскопия(см. РАДИОСПЕКТРОСКОПИЯ), квантовая электроника(см. КВАНТОВАЯ ЭЛЕКТРОНИКА) и т. д.).

  21. Источник: Энциклопедический словарь



  22. Большой энциклопедический политехнический словарь

    раздел физики, в к-ром изучаются процессы возбуждения, усиления и преобразования электромагнитных колебаний с частотами от неск. Гц до б ТГц и выше, а также процессы излучения, распространения и приёма радиоволн. Р. является науч. основой радиотехники и электронной техники. Радиофиз. методы исследований широко применяют для изучения строения в-ва (см. Радиоспектроскопия), исследования верх. слоев атмосферы, планет Солнечной системы, Солнца, звёзд, галактик и др. небесных объектов (см. Радиоастрономия, Радиолокация).

  23. Источник: Большой энциклопедический политехнический словарь



  24. Русско-английский политехнический словарь

    radio physics

    * * *

    радиофи́зика ж.

    radiophysics

    ква́нтовая радиофи́зика — quantum radiophysics

    * * *

    radio physics

  25. Источник: Русско-английский политехнический словарь



  26. Dictionnaire technique russo-italien

    ж.

    radiofisica f

    - квантовая радиофизика

  27. Источник: Dictionnaire technique russo-italien



  28. Русско-украинский политехнический словарь

    наук., физ.

    радіофі́зика

  29. Источник: Русско-украинский политехнический словарь



  30. Русско-украинский политехнический словарь

    наук., физ.

    радіофі́зика

  31. Источник: Русско-украинский политехнический словарь



  32. Естествознание. Энциклопедический словарь

    область физики, в к-рой изучаются процессы, связанные с эл.-магн. колебаниями и волнами радиодиапазона: их возбуждение, распространение, приём и преобразование частоты, а также возникающие при этом взаимодействия электрич. и магн. полей с зарядами в вакууме и в-ве. Радиофиз. методы иссл. проникают в др. области физики (напр., в оптику) и за её пределы. Нек-рые разделы Р. выделяются в самостоят. области (радиоастрономия, радиоспектроскопия, квантовая электроника и др.).

  33. Источник: Естествознание. Энциклопедический словарь



  34. Большой Энциклопедический словарь

    РАДИОФИЗИКА
    РАДИОФИЗИКА - область физики, в которой изучаются процессы, связанные с электромагнитными колебаниями и волнами радиодиапазона: их возбуждение, распространение, прием и преобразование частоты, а также возникающие при этом взаимодействия электрических и магнитных полей с зарядами в вакууме и веществе. Радиофизические методы исследования проникают в др. области физики (напр., в оптику) и за ее пределы. Некоторые разделы радиофизики выделяются в самостоятельные области (радиоастрономия, радиоспектроскопия, квантовая электроника и т. д.).

    Большой Энциклопедический словарь. 2000.

  35. Источник: