Большая Советская энциклопедия

    один из типов стационарного электрического разряда в газах (См. Электрический разряд в газах). Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808—09 Г. Дэви. Светящийся токовый канал этого разряда был дугообразно изогнут, что и обусловило название Д. р.

    Формированию Д. р. предшествует короткий нестационарный процесс в пространстве между электродами — разрядном промежутке. Длительность этого процесса (время установления Д. р.) обычно Дуговой разряд 10-6—10-4 сек в зависимости от давления и рода газа, длины разрядного промежутка, состояния поверхностей электродов и т.д. Д. р. получают, ионизуя газ в разрядном промежутке (например, с помощью вспомогательного, так называемого поджигающего электрода). В др. случаях для получения Д. р. разогревают один или оба электрода до высокой температуры либо раздвигают сомкнутые на короткое время электроды. Д. р. может также возникнуть в результате пробоя электрического (См. Пробой электрический) разрядного промежутка при кратковременном резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то нестационарным процессом, предшествующим Д. р., является Искровой разряд.

    Типичные параметры Д. р. Для Д. р. характерно чрезвычайное разнообразие принимаемых им форм: он может возникать практически при любом давлении газа — от менее 10-5 мм рт. ст. до сотен атм; разность потенциалов между электродами Д. р. может принимать значения от нескольких вольт до нескольких тысяч вольт (высоковольтный Д. р.). Д. р. может протекать не только при постоянном, но и при переменном напряжении между электродами. Однако полупериод переменного напряжения обычно намного больше времени установления Д. р., что позволяет рассматривать каждый электрод в течение одного полупериода как катод, а в следующем полупериоде — как анод. Отличительными особенностями всех форм Д. р. (тесно связанными с характером эмиссии электронов из катода в этом типе разряда) являются малая величина катодного падения (См. Катодное падение) и высокая плотность тока на катоде. Катодное падение в Д. р. обычно порядка ионизационного потенциала (См. Ионизационный потенциал) рабочего газа или ещё ниже (1—10 в); плотность тока на катоде составляет 102—107 а/см2. При столь большой плотности тока сила тока в Д. р. обычно также велика — порядка 1—10 a и выше, а в некоторых формах Д. р. достигает многих сотен и тысяч ампер. Однако существуют и Д. р. с малой силой тока (например, Д. р. с ртутным катодом может гореть при токах 0,1 a и ниже).

    Электронная эмиссия в Д. р. Коренное отличие Д. р. от др. типов стационарного электрического разряда в газе заключается в характере элементарных процессов, происходящих на катоде и в прикатодной области. Если в тлеющем разряде (См. Тлеющий разряд) и отрицательном коронном разряде (См. Коронный разряд) имеет место Вторичная электронная эмиссия, то в Д. р. электроны вылетают из катода в процессах термоэлектронной эмиссии (См. Термоэлектронная эмиссия) и автоэлектронной эмиссии (называется также туннельной эмиссией (См. Туннельная эмиссия)). Когда в Д. р. происходит только первый из этих процессов, его называют термоэмиссионным. Интенсивность термоэмиссии определяется температурой катода; поэтому для существования термоэмиссионного Д. р. необходимо, чтобы катод или отдельные его участки были разогреты до высокой температуры. Такой разогрев осуществляют, подключая катод к вспомогательному источнику энергии (Д. р. с внешним накалом; Д. р. с искусственным подогревом). Термоэмиссионный Д. р. возникает и в том случае, когда температуру катода в достаточной степени повышают удары положительных ионов, образующихся в разрядном промежутке и ускоряемых электрическим полем по направлению к катоду. Однако чаще при Д. р. без искусственного подогрева интенсивность термоэлектронной эмиссии слишком мала для поддержания разряда, и значительную роль играет процесс автоэлектронной эмиссии. Сочетание этих двух видов эмиссии носит название термоавтоэмиссии.

    Автоэлектронная эмиссия из катода требует существования у его поверхности сильного электрического поля. Такое поле в Д. р. создаётся объёмным зарядом положительных ионов, удалённым от катода на расстояние порядка длины свободного пробега (См. Длина свободного пробега) этих ионов (10-6—10-4 см). Расчёты показывают, что автоэлектронная эмиссия не может самостоятельно поддерживать Д. р. и всегда в той или иной степени сопровождается термоэлектронной эмиссией. Вследствие сложности исследования процессов в тонком прикатодном слое при высоких плотностях тока экспериментальных данных о роли автоэлектронной эмиссии в Д. р. накоплено ещё недостаточно. Теоретический же анализ пока не может удовлетворительно объяснить все явления, наблюдаемые в различных формах Д. р.

    Связь между характеристиками Д. р. и процессами эмиссии. Слой, в котором возникает электрическое поле, вызывающее автоэлектронную эмиссию, настолько тонок, что не создаёт большого падения разности потенциалов у катода. Однако для того чтобы это поле было достаточно сильным, плотность объёмного заряда ионов у катода, а следовательно, и плотность ионного тока должны быть велики. Термоэлектронная эмиссия также может происходить при малой кинетической энергии ионов у катода (т. е. при малом катодном падении), но требует в этих условиях высокой плотности тока — катод нагревается тем сильнее, чем больше число бомбардирующих его ионов. Т. о., отличительные черты Д. р. (малое катодное падение и высокая плотность тока) обусловлены характером прикатодных процессов.

    Плазма Д. р. Разрядный промежуток Д. р. заполняет Плазма, состоящая из электронов, ионов, нейтральных и возбуждённых атомов и молекул рабочего газа и вещества электродов. Средние энергии частиц различного сорта в плазме Д. р. могут быть разными. Поэтому, говоря о температуре Д. р., различают ионную температуру, электронную температуру и температуру нейтральной компоненты. В случае равенства этих температур плазму называют изотермической.

    Несамостоятельный Д. р. Несамостоятельным называется Д. р. с искусственным подогревом катода, поскольку поддержание такого разряда нельзя осуществить за счёт его собственной энергии: при выключении внешнего источника накала он гаснет. Разряд легко зажигается без вспомогательных поджигающих электродов. Повышение напряжения такого Д. р. вначале усиливает его ток до величины, определяемой интенсивностью термоэлектронной эмиссии из катода при данной температуре накала. Затем вплоть до некоторого критического напряжения ток остаётся почти постоянным (так называемый свободный режим). Когда напряжение превышает критическое, характер эмиссии из катода меняется: существенную роль в ней начинают играть Фотоэффект и вторичная электронная эмиссия (энергия положительных ионов становится достаточной для выбивания электронов из катода). Это приводит к резкому возрастанию тока разряда — он переходит в несвободный режим.

    При определённых условиях Д. р. с искусственным подогревом продолжает устойчиво гореть, когда напряжение между электродами понижают до значений, меньших не только ионизационного потенциала рабочего газа, но и наименьшего его потенциала возбуждения. Эту форму Д. р. называют низковольтной дугой. Её существование обусловлено возникновением вблизи катода максимума потенциала, превышающего потенциал анода и близкого к первому потенциалу возбуждения газа, вследствие чего становится возможной ступенчатая ионизация (см. Ионизация).

    Самостоятельный Д. р. Поддержание такого Д. р. осуществляется за счёт энергии самого разряда. На тугоплавких катодах (вольфрам, молибден, графит) самостоятельный Д. р. носит чисто термоэмиссионный характер — бомбардировка положительными ионами нагревает катод до очень высокой температуры. Вещество легкоплавкого катода интенсивно испаряется при Д. р.; испарение охлаждает катод, и его температура не достигает значений, при которых разряд может поддерживаться одной термоэлектронной эмиссией — наряду с ней происходит автоэлектронная эмиссия.

    Самостоятельный Д. р. может существовать как при крайне малых давлениях газа (так называемые вакуумные дуги), так и при высоких давлениях. Плазму самостоятельного Д. р. низкого давления отличает неизотермичность: ионная температура лишь ненамного превышает температуру нейтрального газа в пространстве, окружающем область разряда, в то время как электронная температура достигает десятков тысяч градусов, а в узких трубках и при больших токах — сотен тысяч. Объясняется это тем, что более подвижные электроны, получая энергию от электрического поля, не успевают передать её тяжёлым частицам в редких столкновениях.

    В Д. р. высокого давления плазма изотермична (точнее — квазиизотермична, т. к., хотя температуры всех компонент равны, температура в разных участках столба Д. р. не одинакова). Эта форма Д. р. характеризуется значительной силой тока (от 10 до 103 а) и высокой температурой плазмы (порядка 104 К). Наибольшие температуры в таком Д. р. достигаются при охлаждении дуги потоком жидкости или газа — токовый канал «охлаждаемой дуги» становится тоньше и при той же величине тока нагревается сильнее. Именно эту форму Д. р. называют электрической дугой — под действием направленных извне или конвекционных, вызванных самим разрядом, потоков газа токовый канал Д. р. изгибается.

    Катодные пятна. Самостоятельный Д. р. на легкоплавких катодах отличает то, что термоавтоэмиссия электронов происходит в нём лишь с небольших участков катода — так называемых катодных пятен. Малые размеры этих пятен (менее 10-2 см) обусловлены Пинч-эффектом — стягиванием токового канала его собственным магнитным полем. Плотность тока в катодном пятне зависит от материала катода и может достигать десятков тысяч а/см2. Поэтому в катодных пятнах происходит интенсивная эрозия — из них вылетают струи паров вещества катода со скоростью порядка 106 см/сек. Катодные пятна образуются и при Д. р. на тугоплавких катодах, если давление рабочего газа меньше примерно 102 мм рт. cт. При более высоких давлениях термоавтоэмиссионный Д. р. с хаотически перемещающимися по катоду катодными пятнами переходит в термоэмиссионный Д. р. без катодного пятна.

    Применения Д. р. Д. р. широко применяется в дуговых печах (См. Дуговая печь) для выплавки металлов, в газоразрядных источниках света (См. Газоразрядные источники света), при электросварке (См. Электросварка), служит источником плазмы в Плазматронах. Различные формы Д. р. возникают в газонаполненных и вакуумных преобразователях электрического тока (ртутных выпрямителях тока (См. Выпрямитель тока), газовых и вакуумных выключателях электрических (См. Выключатель электрический) и т.п.). Д. р. с искусственным подогревом катода используется в люминесцентных лампах (См. Люминесцентная лампа), Газотронах, Тиратронах, ионных источниках и источниках электронных пучков.

    Лит.: Электрический ток в газе. Установившийся ток, М., 1971; Кесаев И. Г., Катодные процессы электрической дуги, М., 1968; Финкельнбург В., Meккep Г., Электрические дуги и термическая плазма, пер. с нем., М., 1961; Энгель А., Ионизованные газы, пер. с англ., М., 1959; Капцов Н. А., Электрические явления в газах и вакууме, М.—Л., 1947.

    А. К. Мусин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ДУГОВОЙ разряд - электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией или автоэлектронной эмиссией с катода. Температура газа в канале дугового разряда при атмосферном давлении достигает 5000-7000 К, что позволяет использовать его для сварки металлов и в качестве нагревательного устройства.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Большой англо-русский и русско-английский словарь

    эл. flash, voltaic arc, arc-over, arc discharge

  5. Источник: Большой англо-русский и русско-английский словарь



  6. Англо-русский словарь технических терминов

    voltaic arc, arc, arc-over, arc discharge, flash эл.

  7. Источник: Англо-русский словарь технических терминов



  8. Физическая энциклопедия

    ДУГОВОЙ РАЗРЯД

    самостоятельный квазистационарный электрический разряд в газе, горящий практически при любых давлениях газа, превышающих 10-2—10 -4 мм рт. ст., при постоянной или меняющейся с низкой частотой (до 103 Гц) разности потенциалов между электродами. Д. р. отличается высокой плотностью тока на катоде (102—108 А/см2) и низким катодным падением потенциала, не превышающим эфф. потенциала ионизации среды в разрядном промежутке. Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо от него в 1808—09 англ. учёным Г. Дэви. Светящийся токовый канал этого разряда при горизонтальном расположении электродов под действием конвективных потоков дугообразно изогнут, что и обусловило название.

    Известно множество разновидностей Д. р., каждая из к-рых существует только при определённых внешних и граничных условиях. Почти у всех видов Д. р. ток на катоде стянут в малое очень яркое пятно, беспорядочно перемещающееся по всей поверхности катода (катодное пятно). Темп-ра поверхности в пятне достигает величины темп-ры кипения (или возгонки) материала катода. Поэтому значительную (иногда главную) роль в катодном механизме переноса тока играет термоэлектронная эмиссия. Над катодным пятном образуется слой положит. пространственного заряда, обеспечивающего ускорение эмиттируемых эл-нов до энергий, достаточных для ударной ионизации атомов и молекул газа. Т. к. толщина этого слоя крайне мала (менее длины пробега эл-на), он создаёт высокую напряжённость поля у поверхности катода, особенно вблизи естеств. микронеоднородностей поверхности, благодаря чему существенной оказывается и автоэлектронная эмиссия. Высокая плотность тока в катодном пятне и «перескоки» пятна с точки на точку создают условия для проявления взрывной электронной эмиссии. Известны и др. катодные механизмы Д. р. (факельный вынос, плазменный катод и т. д.). Относит. роль каждого из них зависит от конкретного вида Д. р.

    Непосредственно к зоне катодного падения потенциала примыкает положительный столб, простирающийся до анода. Прианодного скачка потенциала обычно не наблюдается. На аноде формируется яркое анодное пятно, несколько большего размера и менее подвижное, чем катодное. Нагретый до высокой темп-ры и ионизованный газ в столбе находится в состоянии плазмы. Электропроводность плазмы в зависимости от вида Д. р. может принимать практически любые значения, вплоть до электропроводности металлов, но обычно она на неск. порядков меньше последней. Выделяющаяся в столбе джоулева теплота восполняет все потери энергии из столба плазмы, поддерживая неизменным её состояние, к-рое определяется хар-ром распределения энергии по всем степеням свободы. Полностью равновесные статистические распределения, строго говоря, в плазме Д. р. никогда не реализуются. Однако состояние сверхплотной плазмы при концентрации заряж. ч-ц N?1018 см-3 может быть близким к полному термодинамич. равновесию. Кинетика плазмы в столбе Д. р. при таких плотностях определяется в основном процессами соударений. При меньших плотностях (1018>N>1015 см-3) может реализоваться состояние т. н. локального термич. равновесия (ЛТР), при к-ром в каждой точке плазмы все статистич. распределения близки к равновесным при одном значении Т, но Т явл. ф-цией координат. Исключение в этом случае составляет лишь излучение плазмы: оно далеко от равновесного (планковского) и определяется составом плазмы и скоростями конкретных радиац. процессов (линейчатое, сплошное тормозное, рекомбинационное излучения и т. д.). При очень ограниченных размерах столба Д. р. (неск. мм), даже в плотной плазме N?1018 см-3 для Не и N?1016 см-3 для др. газов), состояние ЛТР может нарушаться за счёт процессов переноса, включая радиац. потери. Нарушение ЛТР выражается в сильном отклонении состава плазмы и заселённостей возбуждённых уровней от их равновесных значений. По мере дальнейшего снижения плотности плазмы радиационные процессы играют всё большую роль.

    Длина столба Д. р. может быть произвольной, но его диаметр жёстко определяется условиями баланса выделяющейся и теряемой энергии. С ростом тока или давления неоднократно меняются механизмы потерь, обусловленные теплопроводностью газа, теплопроводностью эл-нов, амбиполярной диффузией, радиац. потерями и т. д. При таких сменах может происходить контракция (самосжатие) столба (см. КОНТРАГИРОЕАННЫЙ РАЗРЯД).

    Классич. примером Д. р. явл. разряд пост. тока, свободно горящий в воздухе между угольными электродами. Его типичные параметры: ток от 1А до сотен А, катодное падение потенциала =10 В, межэлектродпое расстояние от мм до неск. см, темп-ра плазмы =7000К, темп-pa поверхности анодного пятна =3900К. Применяется как лабораторный эталонный источник света и в технике (дуговые лампы). Д. р. с угольным анодом, просверлённым и заполненным исследуемыми в-вами или пропитанным их р-рами, применяется в спектральном анализе руд, минералов, солей и т. п. Используется Д. р. в плазмотронах, а также в дуговых печах для выплавки металлов, как сварочная дуга при электросварке. Разл. формы Д. р. возникают в газонаполненных и вакуумных преобразователях электрич. тока (ртутных выпрямителях тока, газовых и вакуумных электровыключателях и т. п.), в нек-рых газоразрядных источниках света и т. д.

  9. Источник: Физическая энциклопедия



  10. Энциклопедический словарь

    дугово́й разря́д

    электрический разряд в газах, горящий практически при любых давлениях газа, превышающих 10-2 - 10-3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался в 1802 В. В. Петровым в воздухе между двумя угольными электродами. При горизонтальном расположении электродов токовый канал под действием конвективных потоков дугообразно изогнут, что и обусловило название. Температура газа в канале дугового разряда достигает 5000—7000 К, что позволяет использовать его для сварки металлов.

    * * *

    ДУГОВОЙ РАЗРЯД

    ДУГОВО́Й РАЗРЯ́Д, электрический разряд в газах, характеризуемый большой плотностью тока и малым падением потенциала вблизи катода. Поддерживается термоэлектронной эмиссией(см. ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ) или автоэлектронной эмиссией(см. АВТОЭЛЕКТРОННАЯ ЭМИССИЯ) с катода. Температура газа в канале дугового разряда при атмосферном давлении достигает 5000—7000 К, что позволяет использовать его для сварки металлов и в качестве нагревательного устройства.

  11. Источник: Энциклопедический словарь



  12. Большой энциклопедический политехнический словарь

    один из типов стационарного электрического разряда в газе, характеризующийся большой плотностью тока и малым падением напряжения (сравнимым с потенциалом ионизации газа). Д. р. может возникнуть в результате электрич. пробоя разрядного промежутка при кратковрем. резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то Д. р. предшествует искровой разряд. Д. р. используется в дуговых печах, в газоразрядных источниках света, при дуговой сварке, в плазматронах и т. д.

  13. Источник: Большой энциклопедический политехнический словарь



  14. Большая политехническая энциклопедия

    ДУГОВОЙ РАЗРЯД — один из видов самостоятельного электрического разряда в газе, характеризуемый высокой плотностью тока. Нагретый до высокой температуры ионизированный газ в столбе между электродами, к которым подведено электрическое напряжение, находится в состоянии плазмы (см.). Её температура при атмосферном давлении достигает 5000 — 7000 К (см. кельвин), что позволяет осуществлять сварку металлов и их плавку в дуговых печах (см.).

  15. Источник: Большая политехническая энциклопедия



  16. Русско-английский политехнический словарь

    voltaic arc, arc, arc-over, arc discharge, flash эл.

    * * *

    arc discharge

  17. Источник: Русско-английский политехнический словарь



  18. Dictionnaire technique russo-italien

    scarica ad arco

  19. Источник: Dictionnaire technique russo-italien



  20. Русско-украинский политехнический словарь

    дугови́й розря́д

  21. Источник: Русско-украинский политехнический словарь



  22. Русско-украинский политехнический словарь

    дугови́й розря́д

  23. Источник: Русско-украинский политехнический словарь



  24. Естествознание. Энциклопедический словарь

    электрич. разряд в газах, горящий практически при любых давлениях газа, превышающих 10-2-10-3 мм рт. ст.; характеризуется большой плотностью тока на катоде и малым падением потенциала. Впервые наблюдался В. В. Петровым (1802) и Г. Дэви (1810) в воздухе между двумя угольными электродами. При горизонтальном расположении электродов токовый канал под действием конвективных потоков дугообразно изогнут, что и обусловило название. Темп-pa газа в канале Д. р. достигает 5000-7000 К, что позволяет использовать его для сварки металлов.

  25. Источник: Естествознание. Энциклопедический словарь



  26. Большой Энциклопедический словарь

  27. Источник: