Большая Советская энциклопедия

    раздел современной коллоидной химии (См. Коллоидная химия), изучающий зависимость структурно-механических свойств дисперсных систем (См. Дисперсные системы)и материалов от физико-химических явлений на поверхностях раздела фаз (поверхностных явлений (См. Поверхностные явления)). Ф.-х. м. возникла в 30–40-х гг. 20 в. и оформилась как самостоятельная научная дисциплина в 50-х гг. преимущественно благодаря работам сов. учёных, прежде всего П. А. Ребиндера.Ф.-х. м. тесно связана с др. областями коллоидной химии (учением о поверхностных явлениях и поверхностных силах, физико-химией адсорбции (См. Адсорбция) и поверхностно-активных веществ (См. Поверхностно-активные вещества), исследованиями устойчивости дисперсных систем, молекулярно-кинетических, оптических, электрических свойств дисперсных систем), а также с молекулярной физикой (См. Молекулярная физика), физикой и физико-химией реального твёрдого тела, физико-химией полимерных материалов, реологией (См. Реология), механохимией, с рядом разделов геологических и биологических наук.

    Объекты изучения Ф.-х. м. – природные дисперсные системы (горные породы и почвы, ткани растений и животных), дисперсные системы в различных технологических процессах (порошки (См. Порошок), Пасты, Суспензии, например промывочные растворы для бурения, Эмульсии, Смазочно-охлаждающие жидкости) и разнообразные материалы, используемые в промышленности (инструментальные, конструкционные, строительные) и в быту. Ф.-х. м. рассматривает характерное для этих систем и материалов гетерогенное макро- или микронеоднородное строение, в котором проявляется универсальность дисперсного состояния вещества. Такие системы и материалы состоят из связанных между собой частиц (глобул, зёрен, волокон и др.), весьма разнообразных по размерам, но существенно превышающих размеры отдельных молекул и сохраняющих все основные физико-химические, в том числе механические, свойства данного вещества.

    Ф.-х. м. различает следующие основные типы пространственных структур, образуемых частицами, в различных физико-химических условиях. Коагуляционные структуры, в которых взаимодействие частиц ограничивается их соприкосновением – непосредственным (например, в сыпучих структурах) или через остаточные слои дисперсионной среды (в суспензиях и пастах); при этом сила сцепления в контакте (прочность) не превосходит обычно 10-8–10-7 н (10-3–10-2 дин).Для таких структур характерна механическая обратимость, обусловливающая, в частности, их тиксотропию (См. Тиксотропия). Структуры с фазовыми контактами, развитыми на площади, значительно превосходящей молекулярные размеры. Эти структуры, как правило, механически необратимы, прочность контактов в них 10-7–10-6 н (10-2–10-1 дин) и выше. Фазовые контакты развиваются в различных неорганических и органических, кристаллических и аморфных дисперсных системах и материалах при спекании, прессовании, изотермической перегонке, а также при выделении новой, высокодисперсной фазы в пересыщенных растворах и расплавах, например в минеральных вяжущих и полимерных материалах; сплошные материалы, в частности металлы и сплавы, можно рассматривать как предельный случай полного срастания зёрен. Каждая структура характеризуется определённой дисперсностью: размером частиц и, следовательно, числом контактов на 1 см2 сечения, которое составляет, например, 102–103 для порошков с частицами в десятые доли мм и достигает 1011–1012 для таких высокодисперсных систем, как алюмосиликагели. Ф.-х. м. рассматривает механические (реологические) свойства – наиболее общие и важные характеристики всех дисперсных систем и материалов в зависимости от их структуры, обусловленной взаимодействием частиц; таковы вязкость, пластичность, тиксотропное поведение коагуляционных структур с определённой зависимостью сопротивления сдвигу от скорости течения, упруго-пластическое и упруго-хрупкое поведение твердообразных дисперсных систем и материалов (с фазовыми контактами), характеризующихся определённой прочностью, долговечностью, износостойкостью. Так, в простом случае глобулярной пористой монодисперсной структуры прочность может быть приблизительно равна произведению числа контактов между частицами (на 1 см2и средней величины силы сцепления в отдельном контакте, изменяясь в зависимости от типа контактов и дисперсности в очень широких пределах (например, от 10 до 108н/м2.

    Вместе с тем Ф.-х. м. устанавливает определяющую роль физико-химических явлений на границах раздела фаз (смачивание, адгезия, адсорбция, изменение величины межфазного натяжения, образование особых граничных слоев) во всех процессах взаимодействия частиц и структурообразования. На этой основе Ф.-х. м. развивает свои ведущие представления о возможности и эффективности управления структурно-механическими свойствами дисперсных систем и материалов при оптимальном сочетании механических воздействий (например, вибрационных, импульсных) и физико-химических факторов, прежде всего состава среды и малых добавок поверхностно-активных веществ. Последние, концентрируясь на границах раздела (адсорбируясь на поверхности частиц), позволяют при правильном их выборе радикально изменять свойства данной границы в нужном направлении, обеспечивая хорошее сцепление частиц, либо, наоборот, ослабляя и преодолевая силы сцепления. Так, в лиофобных системах (стеклянные частицы в углеводородных средах, гидрофобизованные поверхности в полярных жидкостях и др.) свободная энергия достигает в коагуляционных контактах десятков эрг/см2, а в лиофильных системах (например, гидрофобизованные монослоями поверхностно-активных веществ полярные частицы в углеводородной среде) составляет сотые доли эрг/см2.

    В соответствии с явлениями и процессами, рассматриваемыми Ф.-х. м., можно выделить следующие её основные направления: 1) изучение возникновения и разрушения всевозможных пространственных структур как взаимодействия частиц дисперсной фазы и дисперсионной среды, включая и различные этапы получения материалов (в том числе композиционных) с заданный дисперсной структурой и совокупностью механических и физико-химических характеристик; 2) исследование физико-химического влияния среды и её поверхностно-активных компонентов на механические свойства разнообразных сплошных и пористых твёрдых тел и материалов (Ребиндера эффект), выяснение условий использования эффекта Ребиндера для облегчения обработки материалов и предотвращения его возможного вредного влияния; 3) анализ закономерностей и механизма сцепления поверхностей твёрдых тел (контактных взаимодействий) в условиях граничного трения, износа, смазывающего действия, формирования покрытий и др.

    Для Ф.-х. м. характерно всестороннее изучение структурно-реологических (особенно нелинейных) характеристик дисперсных систем при широком варьировании условий: напряжённого состояния, температуры, состава среды, пересыщений и др.; непосредственное экспериментальное изучение элементарных актов при контактных взаимодействиях; разнообразные механические испытания твёрдых тел и материалов в активных средах; использование математического моделирования (См. Моделирование) и численных методов для описания реологических свойств дисперсных систем и для анализа молекулярного механизма влияния среды.

    На основе общих принципов Ф.-х. м. разработаны методы диспергирования и управления свойствами дисперсных систем и различных материалов, широко используемые: 1) в гетерогенных химико-технологических процессах (например, при производстве бумаги, в текстильной и лакокрасочной промышленности, при получении теста и кондитерских масс, топливных композиций и др.); 2) при приготовлении всевозможных материалов, например керамики, катализаторов и сорбентов, разнообразных полимерных материалов, при затворении цементного раствора, подготовке асфальтобетонов, формовочных земель, составлении композиций в порошковой металлургии, закреплении грунтов. 3) для облегчения процессов помола, бурения твёрдых горных пород, измельчения руды перед обогащением, обработки резанием; и наоборот, для повышения стойкости и долговечности конструкционных и др. материалов в активных средах; 4) для оптимизации контактных взаимодействий, например при обработке металлов давлением, при эксплуатации узлов трения в машинах, механизмах и приборах.

    Лит.: Ребиндер П. А., Физико-химическая механика, М., 1958; Лихтман В. И., Щукин Е. Д., Ребиндер П. А., Физико-химическая механика металлов, М., 1962; Физико-химическая механика дисперсных структур. Сб., М., 1966; Успехи коллоидной химии, М., 1973.

    Е. Д. Щукин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Химическая энциклопедия

    ,

    раздел коллоид-ной химии, изучающий мех. (реологич.) св-ва дисперсных систем и материалов, а также влияние среды на разрушение, деформацию и диспергирование твердых и жидких тел. Ф.-х. м. возникла в 30-40-х гг. 20 в. и оформилась как самостоят. научная дисциплина в 50-х гг. в осн. благодаря работам П. А. Ребиндера. В 1928 им был установлен эффект адсорбционного понижения прочности твердого тела, находящегося в напряженном состоянии вследствие обратимой адсорбции на его пов-сти частиц из окружающей среды (эффект Ребиндера). Впоследствии было обнаружено, что поверхностными процессами, приводящими к эффекту Ребиндера, помимо адсорбции, м. б. смачивание (особенно твердых тел расплавами, близкими по мол. природе), электрич. заряжение пов-сти, хим. р-ции. К проявлениям эффекта Ребиндера относят, помимо многократного снижения прочности, также хрупкое разрушение металлов в контакте с металлич. расплавом, растрескивание стекол, керамики и горных пород в присут. воды, разрушение твердых полимерных материалов под влиянием орг. р-рителей. Другая форма проявления эффекта Ребиндера - пластифицирующее действие среды на твердые материалы, напр. воды на гипс, орг. ПАВ на металлы.

    Совр. Ф.-х. м. развивается на основе представлений об определяющей роли физико-хим. явлений на границе раздела фаз - смачивания, адсорбции, адгезии и др.- во всех процессах, обусловленных взаимод. между частицами дисперсной фазы, в т. ч. структурообразования (см. Структурообразование в дисперсных системах). Коагуляционные структуры, в к-рых взаимод. частиц ограничивается их соприкосновением через прослойку дисперсионной среды, определяют вязкость, пластичность, тиксотропное поведение жидких дисперсных систем, а также зависимость сопротивления сдвигу от скорости течения. Структуры с фазовыми контактами образуются в кристаллич. и аморфных твердых телах и дисперсных материалах при спекании, прессовании, изотермич. перегонке, а также при выделении новой высокодисперсной фазы в пересыщенных р-рах и расплавах, напр. в минер. связующих или полимерных материалах. Мех. характеристики таких тел - прочность, долговечность, износостойкость, упру-го-пластич. св-ва и упруго-хрупкое разрушение - обусловлены силами сцепления в контактах, числом контактов (на 1 см 2 пов-сти раздела фаз), типом контактов, дисперсностью системы и могут изменяться в широких пределах. Так, для глобулярной пористой монодисперсной структуры прочность материала может варьировать от 10 до 108 Н/м 2. Возможно образование иерархич. уровней дисперсной структуры: первичные частицы - их агрегаты - флокулы - структурированный осадок. Сплошные материалы, в частности металлы и сплавы, в рамках представлений Ф.-х. м. рассматриваются как предельный случай полного срастания зерен структуры с фазовыми контактами.

    На основе изучения скорости структурообразования, типа возникающих контактов и их прочности Ф.-х. м. разрабатывает способы эффективного, управления структурно-мех. св-вами материалов при оптим. сочетании состава среды и мех. воздействий. Установлено, что малые добавки ПАВ позволяют при правильном их выборе радикально изменять св-ва данной границы раздела фаз в нужном направлении, обеспечивая хорошее сцепление частиц либо, наоборот, ослабляя и преодолевая силы сцепления. Так, в лиофобных системах (стеклянные частицы в углеводородных средах, гидрофобизованные пов-сти в полярных жидкостях) свободная энергия в коагуляционных контактах достигает величин порядка 10-6 Дж/см 2, а в лиофильных системах (напр., гидрофобизованные слоями ПАВ полярные частицы в углеводородной среде) - порядка 10-9 Дж/см 2.

    Для Ф.-х. м. характерно всестороннее изучение структур-но-реологич. характеристик материалов, в т. ч. в области нелинейного поведения, при широком варьировании условий (напряженного состояния, т-ры, состава среды, пересыщений и т. п.); непосредственное эксперим. изучение элементарных актов при контактных взаимодействиях; разнообразие мех. испытаний твердых тел и материалов в активных средах; использование мат. моделирования и численных методов для изучения реологич. CB-B и анализа влияния среды на мол. уровне.

    В области практич. разработок Ф.-х. м. выделяют след, направления:

    1) Получение материалов с заданной структурой и совокупностью мех. и физико-хим. характеристик; гл. обр. это полимерные материалы, керамика, катализаторы, сорбенты.

    2) Применение методов диспергирования и управления реологич. св-вами среды в гетерогенных химико-технол. процессах, напр. при произ-ве бумаги, в текстильной и лакокрасочной пром-сти, при получении теста и кондитерских масс, при гидротранспорте высококонцентрир. дисперсных жидкостей, затворении цементного р-ра, подготовке асфальтобетонов, формовочных земель, составлении композиций в порошковой металлургии, топливных композиций, закреплении фунтов.

    3) Выяснение условий проявления эффекта Ребиндера для облегчения обработки металла резанием, бурения твердых горных пород (в частности, при проходке туннелей), измельчении руды перед обогащением, тонкого диспергирования цементного клинкера. Адсорбционно-активная среда может наносить и существ. вред, поэтому важно устанавливать вредное влияние среды и предотвращать снижение долговечности деталей машин и материалов в условиях эксплуатации.

    4) Оптимизация контактных взаимод. при сцеплении пов-стей при обработке металлов давлением, в условиях граничного трения и износа узлов в машинах, механизмах и приборах, а также оптимизация смазочного действия, формования покрытий и пр.

    Лит.: Физико-химическая механика дисперсных структур, M., 1966; Успехи коллоидной химии, M., 1973; Ребиндер П. А., Избранные труды, т. 2, M., 1979; Щукин Е. Д., ПерцовА. В., Амелина Е. А., Коллоидная химия, M., 1982; Физико-химическая механика природных дисперсных систем, M., 1985; Успехи коллоидной химии, Таш., 1987; Поверхностные пленки воды в дисперсных структурах, M., 1988; У r ь ев H. Б., Физико-химические основы технологии дисперсных систем и материалов, M,, 1988.

  3. Источник: Химическая энциклопедия



  4. Большой энциклопедический политехнический словарь

    раздел физической химии и коллоидной химии, в к-ром изучается зависимость структурно-механич. св-в дисперсных систем от физ.-хим. явлений на поверхностях раздела фаз, например влияние среды на разрушение твёрдых тел. Ф.-х. м. возникла в сер. 50-х гг. 20 в. в результате гл. обр. работ П. А. Ребиндера.

  5. Источник: Большой энциклопедический политехнический словарь



  6. Русско-английский политехнический словарь

    physical-chemical mechanics

  7. Источник: Русско-английский политехнический словарь