«Мембраны биологические»

Мембраны биологические в словарях и энциклопедиях

Значение слова «Мембраны биологические»

Источники

    Большая Советская энциклопедия

    см. Биологические мембраны.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Медицинская энциклопедия

    (лат. membrana оболочка, перепонка)

    функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев, складок, замкнутых областей.

    Биологические мембраны имеются во всех клетках. Их значение определяется важностью функций, которые они выполняют в процессе нормальной жизнедеятельности, а также многообразием заболеваний и патологических состояний, возникающих при различных нарушениях мембранных функций и проявляющихся практически на всех уровнях организации — от клетки и субклеточных систем до тканей, органов и организма в целом.

    Мембранные структуры клетки представлены поверхностной (клеточной, или плазматической) и внутриклеточными (субклеточными) мембранами. Название внутриклеточных (субклеточных) мембран обычно зависит от названия ограничиваемых или образуемых ими структур. Так, различают митохондриальные, ядерные, лизосомные мембраны, мембраны пластинчатого комплекса аппарата Гольджи, эндоплазматического ретикулума, саркоплазматического ретикулума и др. (см. Клетка). Толщина биологических мембран — 7—10 нм, но их общая площадь очень велика, например, в печени крысы она составляет несколько сот квадратных метров.

    Химический состав и строение биологических мембран. Состав М.б. зависит от их типа и функций, однако основными составляющими являются Липиды и Белки, а также Углеводы (небольшая, но чрезвычайно важная часть) и вода (более 20% общего веса).

    Липиды. В составе М.б. обнаружены липиды трех классов: фосфолипиды, гликолипиды и стероиды. В мембранах животных клеток более 50% всех липидов составляют фосфолипиды — глицерофосфолипиды (фосфатидилхолин, фосфатидилэтаноламин, фосфатидилсерин, фосфатидилинозит) и сфингофосфолипиды (производные церамида, сфингомиелин). Гликолипиды представлены цереброзидами, сульфатидами и ганглиозидами, а стероиды — в основном холестерином (около 30%). В липидных компонентах М.б. содержатся разнообразные жирные кислоты, однако в мембранах животных клеток преобладают пальмитиновая, олеиновая и стеариновая кислоты. Основную структурную роль в биологических мембранах играют фосфолипиды. Они обладают выраженной способностью формировать двухслойные структуры (бислои) при смешивании с водой, что обусловлено химической структурой фосфолипидов, молекулы которых состоят из гидрофильной части — «головки» (остаток фосфорной кислоты и присоединенная к нему полярная группа, например холин) и гидрофобной части — «хвоста» (как правило, две жирно-кислотные цепи). В водной среде фосфолипиды бислоя расположены таким образом, что жирно-кислотные остатки обращены внутрь бислоя и, следовательно, изолированы от окружающей среды, а гидрофильные «головки» —наоборот, наружу. Липидный бислои представляет собой динамичную структуру: образующие его липиды могут вращаться, двигаться в латеральном направлении и даже переходить из слоя в слой (флип-флоп переход). Такое строение липидного бислоя легло в основу современных представлений о структуре М.б. и определяет некоторые важные свойства М.б., например способность служить барьером и не пропускать молекулы веществ, растворенных в воде (рис.). Нарушение структуры бислоя может привести к нарушению барьерной функции мембран.

    Холестерин в составе М.б. играет роль модификатора бислоя, придавая ему определенную жесткость за счет увеличения плотности «упаковки» молекул фосфолипидов.

    Гликолипиды несут разнообразные функции: отвечают за рецепцию некоторых биологически активных веществ, участвуют в дифференцировке ткани, определяют видовую специфичность.

    Белки биологических мембран исключительно разнообразны. Молекулярная масса их в большинстве своем составляет 25 000 — 230 000.

    Белки могут взаимодействовать с липидным бислоем за счет электростатических и (или) межмолекулярных сил. Они сравнительно легко могут быть удалены из мембраны. К такому типу белков относят цитохром с (молекулярная масса около 13 000), обнаруживаемый на наружной поверхности внутренней мембраны митохондрий.

    Эти белки называются периферическими, или наружными. Для других белков, получивших название интегральных, или внутренних, характерно то, что одна или несколько полипептидных цепей оказываются погруженными в бислои или пересекают его, иногда не один раз (например, гликофорин, транспортные АТФ-азы, бактериородопсин). Часть белка, контактирующая с гидрофобной частью липидного бислоя, имеет спиральное строение и состоит из неполярных аминокислот, в силу чего между этими компонентами белков и липидов происходит гидрофобное взаимодействие. Полярные группы гидрофильных аминокислот непосредственно взаимодействуют с примембранными слоями, как с одной, так и с другой стороны бислоя. Молекулы белков, как и молекулы липидов, находятся в динамическом состоянии, для них также характерна вращательная, латеральная и вертикальная подвижность. Она является отражением не только их собственной структуры, но и функциональной активности. что в значительной степени определяется вязкостью липидного бислоя, которая, в свою очередь, зависит от состава липидов, относительного содержания и вида ненасыщенных жирно-кислотных цепей. Этим объясняется узкий температурный диапазон функциональной активности мембраносвязанных белков.

    Белки мембран выполняют три основные функции: каталитическую (ферменты), рецепторную и структурную. Однако такое разграничение достаточно условно, и в ряде случаев один и тот же белок может выполнять и репепторную и ферментную функции (например, инсулин).

    Число мембранных ферментов (Ферменты) в клетке достаточно велико, однако их распределение в различных типах М.б. неодинаково. Некоторые ферменты (маркерные) присутствуют только в мембранах определенного типа (например, Na, К-АТФ-аза, 5-нуклеотидаза, аденилатциклаза — в плазматической мембране; цитохром Р-450, НАДФН-дегидрогеназа, цитохром в5 — в мембранах эндоплазматического ретикулума; моноаминоксидаза — в наружной мембране митохондрий, а цитохром С-оксидаза, сукцинат-дегидрогеназа — во внутренней; кислая фосфатаза — в мембране лизосом).

    Рецепторные белки, специфически связывая низкомолекулярные вещества (многие гормоны, медиаторы), обратимо меняют свою форму. Эти изменения запускают внутри клетки ответные химические реакции. Таким способом клетка принимает различные сигналы, поступающие из внешней среды.

    К структурным белкам относят белки цитоскелета, прилегающие к цитоплазматической стороне клеточной мембраны. В комплексе с микротрубочками и микрофиламентами цитоскелета они обеспечивают противодействие клетки изменению ее объема и создают эластичность. В эту же группу включают ряд мембранных белков, функции которых не установлены.

    Углеводы в биологических мембранах находятся в соединении с белками (гликопротеины) и липидами (гликолипиды). Углеводные цепи белков представляют собой олиго- или полисахаридные структуры, в состав которых входят глюкоза, галактоза, нейраминовая кислота, фукоза и манноза. Углеводные компоненты М.б. открываются в основном во внеклеточную среду, образуя на поверхности клеточных мембран множество ветвистых образований, являющихся фрагментами гликолипидов или гликопротеидов. Их функции связаны с контролем за межклеточным взаимодействием, поддержанием иммунного статуса клетки, обеспечением стабильности белковых молекул в М.б. Многие рецепторные белки содержат углеводные компоненты. Примером могут служить антигенные детерминанты групп крови, представленные гликолипидами и гликопротеинами.

    Функции биологических мембран. Барьерная функция. Для клеток и субклеточных частиц М.б. служат механическим барьером, отделяющим их от внешнего пространства. Функционирование клетки часто сопряжено с наличием значительных механических градиентов на ее поверхности преимущественно вследствие осмотического и гидростатического давления. Основную нагрузку в этом случае несет клеточная стенка, главными структурными элементами которой у высших растений являются целлюлоза, пектин и экстепин, а у бактерий — муреин (сложный полисахарид-пептид). В клетках животных необходимость в жесткой оболочке отсутствует. Некоторую жесткость этим клеткам придают особые белковые структуры цитоплазмы, примыкающие к внутренней поверхности плазматической мембраны.

    Перенос веществ через М.б. сопряжен с такими важнейшими биологическими явлениями, как внутриклеточный гомеостаз ионов, биоэлектрические потенциалы, возбуждение и проведение нервного импульса, запасание и трансформация энергии и т.п. (см. Биоэнергетика). Различают пассивный и активный транспорт (перенос) нейтральных молекул, воды и ионов через М.б. Пассивный транспорт не связан с затратами энергии, он осуществляется путем диффузии по концентрационным, электрическим или гидростатическим градиентам. Активный транспорт осуществляется против градиентов, связан с затратой энергии (преимущественно энергии гидролиза АТФ) и сопряжен с работой специализированных мембранных систем (мембранных насосов). Различают несколько видов транспорта. Если вещество транспортируется через мембрану независимо от наличия и переноса других соединений, то такой вид транспорта называют юнипортом. Если перенос одного вещества сопряжен с транспортом другого, то говорят о котранспорте, причем однонаправленный перенос называется симпортом, а противоположно направленный — антипортом. В особую группу выделяют перенос веществ путем экзо- и пиноцитоза.

    Пассивный перенос может осуществляться путем простой диффузии через липидный бислои мембраны, а также через специализированные образования — каналы. Путем диффузии через мембрану проникают в клетку незаряженные молекулы, хорошо растворимые в липидах, в т.ч. многие яды и лекарственные средства, а также кислород и углекислый газ. Каналы представляют собой липопротеиновые структуры, пронизывающие мембраны. Они служат для переноса определенных ионов и могут находиться в открытом или закрытом состоянии. Проводимость канала зависит от мембранного потенциала, что играет важную роль в механизме генерации и проведения нервного импульса.

    В ряде случаев перенос вещества совпадает с направлением градиента, но существенно превосходит по скорости простую диффузию. Этот процесс называют облегченной диффузией; он происходит с участием белков-переносчиков. Процесс облегченной диффузии не нуждается в энергии. Этим способом транспортируются сахара, аминокислоты, азотистые основания. Такой процесс происходит, например, при всасывании сахаров из просвета кишечника клетками эпителия.

    Перенос молекул и ионов против электрохимического градиента (активный транспорт) связан со значительными затратами энергии. Часто градиенты достигают больших величин. например, концентрационный градиент водородных ионов на плазматической мембране клеток слизистой оболочки желудка составляет 106, градиент концентрации ионов кальция на мембране саркоплазматического ретикулума — 104, при этом потоки ионов против градиента значительны. В результате затраты энергии на транспортные процессы достигают, например, у человека, более 1/3 всей энергии метаболизма. В плазматических мембранах клеток различных органов обнаружены системы активного транспорта ионов натрия и калия — натриевый насос. Эта система перекачивает натрий из клетки и калий в клетку (антипорт) против их электрохимических градиентов. Перенос ионов осуществляется основным компонентом натриевого насоса — Na+, К+-зависимой АТФ-азой за счет гидролиза АТФ. На каждую гидролизующуюся молекулу АТФ транспортируется три иона натрия и два иона калия. Существуют два типа Са2+-АТФ-аз. Одна из них обеспечивает выброс ионов кальция из клетки в межклеточную среду, другая — аккумуляцию кальция из клеточного содержимого во внутриклеточное депо. Обе системы способны создавать значительный градиент иона кальция. К+, Н+-АТФ-аза обнаружена в слизистой оболочке желудка и кишечника. Она способна транспортировать Н+ через мембрану везикул слизистой оболочки при гидролизе АТФ. В микросомах слизистой оболочки желудка лягушки найдена аниончувствительная АТФ-аза, способная при гидролизе АТФ осуществлять антипорт бикарбоната и хлорида.

    Изложенные механизмы транспорта различных веществ через клеточные мембраны имеют место и в случае их транспорта через эпителий ряда органов (кишечника, почек, легких), который осуществляется через слой клеток (монослой в кишечнике и нефронах), а не через единичную клеточную мембрану. Такой транспорт называют трансцеллюлярным, или трансэпителиальным. Характерной особенностью клеток, например эпителиоцитов кишечника и канальцев нефронов, является то, что апикальная и базальная их мембраны различаются по проницаемости, величине мембранного потенциала и транспортной функции.

    Способность генерировать биоэлектрические потенциалы и проводить возбуждение. Возникновение биоэлектрических потенциалов связано с особенностями строения биологических мембран и с деятельностью их транспортных систем, создающих неравномерное распределение ионов по обе стороны мембраны (см. Биоэлектрические потенциалы, Возбуждение).

    Процессы трансформации и запасания энергии протекают в специализированных М.б. и занимают центральное место в энергетическом обеспечении живых систем. Два основных процесса энергообразования — фотосинтез и тканевое дыхание — локализованы в мембранах внутриклеточных органелл высших организмов, а у бактерий — в клеточной (плазматической) мембране (см. Дыхание тканевое). Фотосинтезирующие мембраны преобразуют энергию света в энергию химических соединений, запасая ее в форме сахаров — основного химического источника энергии для гетеротрофных организмов. При дыхании энергия органических субстратов освобождается в процессе переноса электронов по цепи окислительно-восстановительных переносчиков и утилизируется в процессе фосфорилирования АДФ неорганическим фосфатом с образованием АТФ. Мембраны, осуществляющие фосфорилирование, сопряженное с дыханием, называют сопрягающими (внутренние мембраны митохондрий, клеточные мембраны некоторых аэробных бактерий, мембраны хроматофоров фотосинтезирующих бактерий).

    Метаболические функции мембран определяются двумя факторами: во-первых, связью большого числа ферментов и ферментативных систем с мембранами, во-вторых, способностью мембран физически разделять клетку на отдельные отсеки, отграничивая друг от друга метаболические процессы, протекающие в них. Метаболические системы не остаются при этом полностью изолированными. В мембранах, разделяющих клетку, имеются специальные системы, обеспечивающие избирательное поступление субстратов, выделение продуктов, а также движение соединений, обладающих регуляторным действием.

    Клеточная рецепция и межклеточные взаимодействия. Под этой формулировкой объединен весьма обширный и разнообразный набор важных функций клеточных мембран, определяющих взаимодействие клетки с окружающей средой и формирование многоклеточного организма как единого целого. Молекулярно-мембранные аспекты клеточной рецепции и межклеточных взаимодействий касаются прежде всего иммунных реакций, гормонального контроля роста и метаболизма, закономерностей эмбрионального развития.

    Нарушения структуры и функции биологических мембран. Разнообразие типов М.б., их полифункциональность и высокая чувствительность к внешним условиям порождают необыкновенное разнообразие структурно-функциональных нарушений мембран, возникающих при многих неблагоприятных воздействиях и сопряженных с огромным числом конкретных заболеваний организма как целого. Все это разнообразие нарушений достаточно условно можно подразделить на транспортные, функционально-метаболические и структурные. В общем виде охарактеризовать последовательность возникновения этих нарушений не представляется возможным, и в каждом конкретном случае требуется детальный анализ для выяснения первичного звена в цепи развития структурно-функциональных нарушений мембран. Нарушение транспортных функций мембран, в частности увеличение проницаемости мембран, — общеизвестный универсальный признак повреждения клетки. Нарушением транспортных функций (например, у человека) обусловлено более 20 так называемых транспортных болезней, среди которых почечная глюкозурия, цистинурия, нарушение всасывания глюкозы, галактозы и витамина В12, наследственный сфероцитоз и др. Среди функционально-метаболических нарушений М.б. центральными являются изменения процессов биосинтеза, а также многообразные отклонения в энергообеспечении живых систем. В наиболее общем виде следствием этих процессов является нарушение состава и физико-химических свойств мембран, выпадение отдельных звеньев метаболизма и его извращение, а также снижение уровня жизненно важных энергозависимых процессов (активного транспорта ионов, процессов сопряженного транспорта, функционирования сократительных систем и т.д.). Повреждения ультраструктурной организации М.б. выражаются в чрезмерном везикулообразовании, увеличении поверхности плазматических мембран за счет образования пузырей и отростков, слиянии разнородных клеточных мембран, образовании микропор и локальных структурных дефектов.

    Библиогр.: Биологические мембраны, под ред. Д.С. Парсонса, пер. с англ., М., 1978; Болдырев А.А. Введение в биохимию мембран, М., 1986, библиогр.; Конев С.В. и Мажуль В.М. Межклеточные контакты. Минск, 1977; Кульберг А.Я. Рецепторы клеточных мембран, М., 1987, библиогр.; Маленков А.Г. и Чуич Г.А. Межклеточные контакты и реакции ткани, М., 1979; Сим Э. Биохимия мембран, пер. с англ., М., 1985, библиогр.; Финеан Дж., Колмэн Р. и Митчелл Р. Мембраны и их функции в клетке, пер. с англ., М., 1977, библиогр.

    Схема строения биологической мембраны: 1 — углеводные фрагменты гликопротеидов; 2 — липидный бислой; 3 — интегральный белок; 4 — «головки» фосфолипидов; 5 — периферический белок; 6 — холестерин; 7 — жирнокислотные «хвосты» фосфолипидов

    Схема строения биологической мембраны: 1 — углеводные фрагменты гликопротеидов; 2 — липидный бислой; 3 — интегральный белок; 4 — «головки» фосфолипидов; 5 — периферический белок; 6 — холестерин; 7 — жирнокислотные «хвосты» фосфолипидов.

  3. Источник: Медицинская энциклопедия



  4. Химическая энциклопедия

    (от лат. membrana-кожица, перепонка), сложные высокоорганизованные надмоле-кулярные структуры, ограничивающие клетки (клеточные, или плазматич., мембраны) и внутриклеточные органоиды -митохондрии, хлоропласты, лизосомы и др. Представляют собой пленки толщиной 5-10 нм, состоящие гл. обр. из белков и липидов. Отношение липиды: белки (по массе) колеблется от 4:1 (мембрана миелина) до 1:3 (внутр. мембрана митохондрий). М. б. содержат также углеводы (до 10% от сухого в-ва по массе), к-рые, как правило, входят в состав гликопротеинов и гликолипидов. В нек-рых специали-зир. М. б. в заметных кол-вах могут присутствовать также хиноны (напр., убихиноны), каротиноиды, ретиноиды (рети-нол, ретиналь и др.), токоферолы, долихолы (содержат 16-20 пренильных остатков, из к-рых концевой, несущий группу ОН, полностью насыщен) и порфирины. Ок. 20% всей массы мембраны составляет прочно связанная вода. С мембранами связываются также катионы, преим. Са 2+ и Mg2+, входящие в хелатные комплексы.

    Важнейшая ф-ция М. б.-регуляция обмена в-в между клеткой и средой, а также между разл. отсеками (компарт-ментами) внутри самой клетки.

    Липиды мембран. Осн. липидные компоненты М. б.-фос-фолипиды, гликолипиды и стерины. Каждая группа этих липидов представлена большим числом разнообразных соединений. Так, в мембране эритроцитов человека содержится не менее 20 разл. представителей осн. фосфолипида этой мембраны - фосфатидилхолина; в целом же в мембране эритроцитов идентифицировано ок. 200 разл. липидов.

    В клетках млекопитающих плазматич. мембраны обогащены холестерином и гликосфииголипидами, тогда как мембраны органоидов содержат эти липиды в малых ко-лвах. Наиб. распространенные липиды, имеющие цвиттер-ионную структуру, в большинстве мембран клеток млекопитающих-фосфатидилхолин и сфингомиелин (в митохондри-альных мембранах - фосфатидилэтаноламин). Дифосфати-дилглицерин в значит. кол-вах присутствует только в мембранах митохондрий (в осн. в их внутр. мембране). В плазматич. мембранах содержание фосфатидилсерина обычно больше, чем фосфатидилинозита (фосфоинозитида), для внутриклеточных мембран характерно обратное соотношение. В мембранах миелина широко представлены цереб-розиды. Др. плазматич. мембраны содержат, как правило, более сложные гликолипиды, такие, напр., как ганг-лиозиды. Фосфатидилэтаноламин в мембранах миелина и тромбоцитов находится преим. в плазмалогеновой форме.

    Мембраны клеток высших растений и дрожжей по ли-пидному составу во многом сходны с соответствующими мембранами клеток млекопитающих. Однако в них совсем нет сфингомиелина, а фосфатидилсерин присутствует лишь в следовых кол-вах. Главные стерины мембран растит. клеток - ситостерин и стигмастерин, мембран грибов и дрожжей - эргостерин и зимостерин. Мембраны хлороплас-тов фотосинтезирующих растений и синезеленых водорослей близки по своему липидному составу и содержат моно-и дигалактозилдиацилглицерины, 6-сульфохиновозилдиа-цилглицерин и фосфатидилглицерин.

    Мембраны бактерий, как правило, имеют более простой липидный состав, чем мембраны растит. и животных клеток. Все бактерии, за исключением микоплазм, не содержат стеринов. Фосфолипиды мембран грамположит. бактерий представлены гл. обр. фосфатидилглицерином и его ами-ноациальными производными, а также дифосфатидилгли-церином. В небольшом кол-ве в этих мембранах нередко встречается фосфатидилинозит. У грамотрицат. микроорганизмов в составе мембранных фосфолипидов преобладает Фосфатидилэтаноламин. Фосфатидилхолин в бактериальных мембранах либо совсем не содержится, либо присутствует в малых кол-вах. Содержание фосфатидилсерина в этих мембранах обычно также незначительно. Широко представлены в бактериальных мембранах разл. гликозил-диацилглицерины.

    Осн. компоненты мембран оболочечных вирусов (вирус гриппа, лейковирусы, вирус стоматита), как и плазматич. мембран клеток животных,-фосфатидилхолин, сфингомие-лин, Фосфатидилэтаноламин и холестерин.

    Липидный состав клеточных мембран изменчив. В меньшей степени это проявляется в животных клетках, находящихся в условиях стабильной внутр. среды. Однако и в этом случае можно модифицировать состав липидов в нек-рых мембранах, меняя пищ. рацион. Липидный состав мембран растений заметно изменяется в зависимости от освещенности, т-ры и рН. Еще более изменчив состав бактериальных мембран. Он варьирует не только в зависимости от штамма, но и в пределах одного и того же штамма, а также от условий культивирования и фазы роста. У вирусов, имеющих липопротеиновую оболочку, липидный состав мембран также не постоянен и определяется составом липидов клетки-хозяина.

    Липиды-осн. строит. материал, из к-рого формируются клеточные мембраны. Сложность, многообразие и изменчивость липидного состава мембран позволяет предположить, что они участвуют также в регуляции важнейших мембранных процессов.

    Мембранные белки. Мол. масса мембранных белков обычно варьирует в пределах от 10 тыс. до 240 тыс. Они значительно различаются между собой по прочности связывания с мембраной. Белки, наз. периферич. или поверхностными, сравнительно слабо связаны с мембраной и отделяются от нее в мягких условиях, напр. в р-рах, имеющих высокую ионную силу или содержащих комплексоны. Намного прочнее связаны с мембраной т. наз. интегральные, или внутримембранные, белки (см. рис.). Чтобы их выделить, требуется, как правило, предварительно разрушить мембрану с помощью ПАВ или орг. р-рителей.

    Периферич. белки по своим св-вам мало отличаются от обычных водорастворимых белков. Характерная особенность интегральных белков - плохая р-римость в воде и склонность к образованию ассоциатов. Их удается перевести в р-р при добавлении ПАВ, иногда с помощью орг. р-рителей (напр., 2-хлорэтанола, бутанола, ДМФА).

    Особенность интегральных белков - наличие в их поли-пептидной цепи довольно протяженных участков с преобладающим содержанием неполярных аминокислот. Как правило, эти участки имеют конформацию a-спирали, на наружной стороне к-рой расположены боковые углеводородные фрагменты аминокислотных остатков, в результате чего вся спираль, в целом, приобретает гидрофобный характер. Доля a-спиральных участков в мембранных белках довольно велика (составляет 30-50%), остальная часть полипептид-ной цепи находится преим. в форме неупорядоченного клубка. Участков с b-структурой, как правило, мало.

    3005-18.jpg

    Схема мозаичной модели клеточной мембраны: 1 -по лярная головка молекулы липида; 2 - углеводородная цепь молекулы липида; 3 - интегральный белок.

    Гидрофобные a-спиральные участки интегральных белков обычно содержат от 17 до 26 аминокислотных остатков, что вполне достаточно, чтобы полипептидная цепь однократно пересекла М. б. В белках, к-рые пронизывают М. б. насквозь, такие гидрофобные тяжи соединяют между собой полярные области белковой молекулы, находящиеся на противоположных сторонах мембраны. У белков, расположенных только на одной стороне М. б. и погруженных в нее лишь частично, a-спирали служат своеобразным гидрофобным "якорем", прочно удерживающим белок в мембране. В нек-рых случаях "заякоривание" белков в М. б. происходит при помощи ковалентно связанных с ними липидов.

    Типичные примеры белков, к-рые удерживаются в М. б. благодаря гидрофобному a-спиральному участку полипеп-тидной цепи,-цитохром b5 -редуктаза и цитохром b5. К белкам, полипептидная цепь к-рых однократно пересекает М. б., относятся, напр., антигены тканевой совместимости и мембраносвязанные иммуноглобулины, к белкам, пересекающим М. б. более одного раза,-бактериородопсин. Нередко мембранные белки представляют собой сложные комплексы, состоящие из неск. субъединиц (напр., цитохром с-ок-сидаза состоит из 12 субъединиц).

    Мембранные белки наряду с липидами играют важную структурную роль, кроме этого они ответственны за выполнение подавляющего большинства специализир. ф-ций отдельных мембран. Они служат катализаторами протекающих в мембранах и на их пов-сти р-ций (см., напр., Дыхание), участвуют в рецепции гормональных и антигенных сигналов и т. п. (см., напр., Аденилатциклаза), выполняют транспортные ф-ции, обеспечивают пиноцитоз (захват клеточной пов-стью и поглощение клеткой жидкости), хемотаксис (перемещение клетки, обусловленное градиентом концентраций к.-л. в-ва в среде) и т. п. Мн. из периферич. белков-компоненты цитоскелета (совокупность филаментов и микротрубочек цитоплазмы) и связанных с ним сократит. элементов, к-рые обусловливают форму клетки и ее движение.

    Ферментативная активность присуща мн. мембраносвя-занным белкам, причем мембраны разл. клеток и отдельных органоидов имеют свой характерный набор ферментов. Как правило, ферментные белки располагаются в М. б. в определенном порядке, к-рый делает возможным последовательное протекание р-ций метаболии, цикла.

    Молекулярная организация мембран. Структурная основа М. б.-липидный бислой. В продольной плоскости М. б. представляет собой сложную мозаику из разнообразных липидов и белков, причем их распределение по пов-сти М. б. неоднородно. В нек-рых М. б. имеются обширные участки липидно-го бислоя, практически свободные от белков (напр., в эритроцитах белки занимают только 35% площади пов-сти всей М. б., в микросомах-23%). При высоком содержании белка в М. б. липиды не образуют сплошной бислой, а располагаются в виде отдельных вкраплений между белковыми молекулами. Сам липидный бислой в мембране может иметь доменную структуру в результате, напр., сосуществования несмешиваемых липидных фаз, находящихся в двух разл. физ. состояниях - гелевом и жидкокристаллическом. Часть липидов в М. б. может находиться также в составе т. наз. небислойных фаз (мицеллярная фаза, гексагон. фаза и др.). Ассоциации липидов в М. б. способствует также их взаимод. с многозарядными катионами (Са 2 +, Mg2+ и др.), периферич. белками, нек-рыми мембраноактивными в-вами (напр., гормонами).

    Специфич. взаимод. между отдельными белками приводят к тому, что в М. б. образуются белковые ассоциаты, или ансамбли, к-рые по составу и св-вам отличаются от окружающих участков мембраны и часто окружены липидами определенного типа. Иногда липопротеиновые участки М. б., содержащие характерный набор белков и липидов, удается выделить при фрагментации мембран. Образование ассоциатов белков может происходить также в результате их специфич. связывания на пов-сти М. б. с нек-рыми водорастворимыми белками (напр., с антителами, лектинами) или при фазовом переходе липидов в мембране (обычно белки скапливаются там, где липиды продолжают оставаться в жидкокристаллич. состоянии).

    Неоднородность М. б. связана также со структурными и функцион. различиями наружной и внутр. сторон мембраны, обусловленными неодинаковым распределением отдельных компонентов (белков, липидов, углеводов и др.). Характерный пример асимметрич. распределения липидов - плаз-матич. мембрана эритроцитов. Холинсодержащие фосфоли-пиды (фосфатидилхолин и сфингомиелин) преобладают у них на наружной стороне мембраны, а фосфатидилэтанол-амин, фосфатидилсерин и фосфатидилинозит связаны пре-им. с ее внутр. пов-стью, обращенной в сторону цитоплазмы. Сходное распределение фосфолипидов обнаружено в плазматич. мембранах др. животных клеток.

    Если асимметрия в расположении липидов в большинстве случаев в М. б. носит относит. характер (т. е. на наружной и внутр. стороне мембраны находятся обычно одни и те же липиды, хотя и в разной концентрации), то асимметрия в расположении белков является абсолютной - все молекулы данного белка определенным образом расположены в мембране. Так, цитохром 5 всегда локализован только на цитоплазматич. стороне мембраны эндоплазматич. ретику-лума. В случае проникающего через мембрану эритроцитов белка гликофорина (ответствен за мн. ф-ции, в т. ч. препятствует слипанию эритроцитов) N-конец полипептидной цепи, содержащий ковалентно связанные углеводы, находится на наружной пов-сти, а С-конец-на цитоплазматич. стороне мембраны. Строго определенную ориентацию в М. б. имеют все молекулы бактериородопсина, у к-рого полипептидная цепь неск. раз пересекает липидный бислой, а также сложные белковые комплексы, состоящие из неск. субъединиц (напр., цитохромоксидаза, аденилатциклаза).

    Отдельные компоненты М. б. могут менять свое взаимное расположение, перемещаться в ней на значит. расстояния, а также покидать мембрану или внедряться в нее в ходе разл. метаболич. процессов. Такая динамичность позволяет М. б. быстро адаптироваться к изменению условий окружающей среды и оперативно откликаться на разнообразные внеш. сигналы и стимулирующие воздействия.

    Динамич. св-ва М. б. обусловлены текучестью липидного бислоя, гидрофобная область к-рого в жидкокристаллич. состоянии имеет микровязкость, сравнимую с вязкостью легкой фракции машинного масла. Поэтому молекулы липидов, находящиеся в бислое, обладают довольно высокой подвижностью и могут совершать разнообразные движения-поступательные, вращательные и колебательные.

    В случае липидов большой вклад в подвижность дают внутримол. движения углеводородных цепей. Они происходят путем гош-транс- поворотов (см. Конформационный анализ )смежных звеньев углеводородной цепи вокруг связи СЧС. Благодаря высокой конформац. подвижности цепей в них постоянно возникают изгибы и изломы, что приводит к нарушению регулярного расположения липидных молекул в бислое и к появлению в нем дефектов упаковки, называемых "кинки" и "джогги".

    Внутримол. подвижность разл. участков липидной молекулы, находящейся в бислое, неодинакова. Наим. подвижностью обладает глицериновый остов молекулы, к-рый служит как бы жестким "якорем", ограничивающим движения близлежащих участков углеводородных цепей. По направлению к середине бислоя подвижность цепей возрастает и становится максимальной в области концевых ме-тильных групп. Довольно высокой недвижностью обладает также полярная головка липидной молекулы.

    Помимо движений отдельных участков липидной молекулы относительно друг друга в жидкокристаллич. бислое происходят также движения всей молекулы как единого целого. Они включают: аксиальное вращение молекулы вокруг ее длинной оси, перпендикулярной к плоскости бислоя, маятниковые и поплавочные колебания молекулы относительно ее равновесного положения в бислое, перемещение молекулы вдоль бислоя (латеральная диффузия) и перескок ее с одной стороны бислоя на другой (флип-флоп). Все эти движения совершаются с разными скоростями.

    Аксиальное вращение липидных молекул происходит очень быстро с частотой порядка 107-108 с -1, тогда как латеральная диффузия осуществляется гораздо медленнее. Тем не менее при среднем коэф. латеральной диффузии липидов ок. 10-8 см 2. с -1, измеренном для мн. М. б., липидной молекуле потребуется всего 1 с, чтобы промигрировать от одного конца клетки до другого. Очень медленно протекает в липидном бислое флип-флоп. Обычно полупериод флип-флопа составляет величины порядка неск. часов или даже дней. Однако в нек-рых мембранах скорость флип-флопа м. б. значительно выше (полупериод 1-2 мин), что объясняется участием определенных интегральных белков в переносе липидных молекул через мембрану.

    Иммобилизация липидов может происходить в результате латерального фазового разделения, приводящего к образованию гелевой фазы, или при их взаимод. с белками. Предполагается, что интегральные белки окружены пограничным слоем липидных молекул (т. наз. аннулярные липиды), подвижность к-рых ограничена или, по крайней мере, нарушена в результате контакта с неровной пов-стью белковой глобулы.

    Внутримол. динамика мембранных белков изучена меньше, чем липидов. Известно лишь, что боковые заместители на тех участках полипептидной цепи, к-рые погружены в липидный бислой, в значит. мере иммобилизованы. Мн. мембранные белки способны легко диффундировать вдоль мембраны и обладают довольно высокой вращат. подвижностью. Но даже в случае самых подвижных белков измеряемые коэф. диффузии примерно на порядок ниже, чем для липидных молекул. Времена вращат. релаксации для интегральных белков лежат в диапазоне от 20 до 500 мкс, а коэф. латеральной диффузии (вдоль бислоя) варьирует от 7.10-9 до 10-12 см 2. с -1.

    Быстрая диффузия белков вдоль мембраны наблюдается только в жидкокристаллич. бислое, в гелевой фазе белки не мигрируют. Мобильными являются 20-50% мембранных белков, остальные имеют ограниченную подвижность или совсем неподвижны. Причиной иммобилизации интегральных белков в мембране м. б. их ассоциация с образованием крупных агрегатов или даже двухмерных кристаллич. структур, взаимод. с периферич. белками, связывание с элементами цитоскелета и т. п.

    Исследования М. б. представляют собой важную, активно развивающуюся область совр. биологии. С успехами в области изучения мембран связаны мн. достижения в медицине, напр. установление механизмов возникновения не-к-рых сердечно-сосудистых заболеваний и поиск подходов к их лечению. Идеи и методы, возникшие при исследовании мембран, находят широкое применение в онкологии, технологии создания искусств. органов, в трансплантац. иммунологии, эмбриологии и др. Знание процессов, происходящих в мембранах, играет важную роль в развитии таких направлений, как биоэнергетика и поиск эффективных путей утилизации солнечной энергии, создание биосенсорных устройств, мембранная технология и др.

    Лит.: Ивков В. Г., Берестовский Г. Н., Динамическая структура ли-пидного бислоя, М., 1981; Бергельсон Л. Д., Мембраны, молекулы, клетки, М., 1982; Ивков В. Г., Берестовский Г. Н., Липидный бислой биологических мембран, М., 1982; Кагава Я., Биомембраны, пер. с япон., М., 1985; Сим Э., Биохимия мембран, пер. с англ., М., 1985; Болдырев А. А., Введение в биохимию мембран, М., 1986; Биологические мембраны, под ред. Дж. Б. С. Финдлея и В. X. Эванза, пер. с англ., М., 1990. Л. И. Барсуков.

  5. Источник: Химическая энциклопедия