Большая Советская энциклопедия

    состояние системы частиц, при котором относительное движение частиц происходит в ограниченной области пространства (является финитным) в течение длительного времени по сравнению с характерными для данной системы периодами. Природа изобилует С. с.: от звёздных скоплений и макроскопических тел до микрообъектов — молекул, атомов, атомных ядер. Возможно, что многие из т. н. элементарных частиц в действительности являются С. с. других частиц.

    Для образования С. с. необходимо наличие сил притяжения, по крайней мере между некоторыми частицами системы на некоторых расстояниях между ними. Для стабильных С. с. масса системы меньше суммы масс составляющих её частиц; разность Δт между ними определяет энергию связи системы: Есв=Δmc2(где с — скорость света в вакууме).

    В классической механике С. с. описываются финитными решениями уравнений движения системы, когда траектории всех частиц системы сосредоточены в ограниченной области пространства. Примером может служить задача Кеплера о движении частицы (или планеты) в поле тяготения. В классической механике система из двух притягивающихся частиц всегда может образовать С. с. Если область расстояний, на которых частицы притягиваются, отделена энергетическим барьером (потенциальным барьером (См. Потенциальный барьер)) от области, в которой они отталкиваются (см. рис.), то частицы также могут образовывать стабильные С. с., если их движение подчиняется законам классической механики.

    В квантовой механике, в отличие от классической, для образования С. с. частиц необходимо, чтобы потенциальная энергия притяжения и радиус действия сил были достаточно велики (см. Потенциальная яма,Нулевая энергия).Кроме того, в потенциальной яме типа изображенной на рис. из-за возможности вылета частиц из области притяжения путём туннельного эффекта (См. Туннельный эффект) не образуется стабильных С. с., если энергия частицы больше потенциала на бесконечности. Однако если коэффициент туннельного перехода мал (в классическом пределе он равен нулю), то частица в такой потенциальной яме может находиться достаточно длительное время (по сравнению с периодами движения в яме). Поэтому наряду со стабильными С. с. существуют нестабильные (мета-, или квазистабильные) С. с., которые с течением времени распадаются. Например, нестабильными С. с. по отношению к Альфа-распаду или (и) делению являются ядра некоторых тяжёлых элементов.

    В крайне релятивистском случае, когда энергия связи системы сравнима с энергией покоя частиц системы, решение проблемы С. с. требует привлечения квантовой теории поля. Точного решения такой задачи в современной квантовой теории поля не существует; некоторые из развиваемых приближённых методов позволяют одинаковым образом рассматривать как стабильные, так и нестабильные «элементарные» частицы, включая Резонансы. Существуют гипотезы, согласно которым все сильно взаимодействующие частицы (Адроны) являются С. с. более фундаментальных частиц материи — кварков (См. Кварки).

    В. Я. Файнберг.

    Пример зависимости потенциальной энергии U от расстояния r между частицами, иллюстрирующий существование областей стабильных и квазистабильных состояний. Стабильные связанные состояния лежат в области энергий E0 стабильных связанных состояний не существует, однако в области 0<><>Б, где UБ — высота потенциального барьера, при некоторых значениях энергии Е могут существовать квазистабильные связанные состояния, время жизни которых определяется вероятностью туннельного перехода через потенциальный барьер и может быть (особенно для частиц большой массы) весьма велико. Для макроскопических тел (движение которых описывается законами классической механики) стабильные связанные состояния могут иметь любую энергию в области U0<><>Б.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой англо-русский и русско-английский словарь

    bound state

  3. Источник: Большой англо-русский и русско-английский словарь



  4. Англо-русский словарь технических терминов

    bound state

  5. Источник: Англо-русский словарь технических терминов



  6. Физическая энциклопедия

    СВЯЗАННОЕ СОСТОЯНИЕ

    состояние системы ч-ц, при к-ром их относит. движение происходит в ограниченной области пр-ва (явл. финитным) в течение длит. времени по сравнению с характерными для данной системы периодами. Природа изобилует С. с.: от звёздных скоплений и макроскопич. тел до микрообъектов — молекул, атомов, ат. ядер. Многие т. н. элем. ч-цы (адроны), по-видимому, являются С. с. более фундам. ч-ц материи — кварков.

    Для образования С. с. необходимо наличие сил притяжения, по крайней мере между частью ч-ц системы на нек-рых расстояниях между ними. Для стабильных С. с. масса системы меньше суммы масс составляющих её ч-ц; разность Dm между ними определяет энергию связи системы:?св=Dmc2.

    В класс и ческой механике С. с. описываются финитными решениями ур-ний движения системы, когда траектории всех её ч-ц сосредоточены в ограниченной области пр-ва. Пример — задача Кеплера о движении ч-цы (или планеты) в поле тяготения. В классич. механике система из двух притягивающихся ч-ц всегда может образовать С. с. Если область расстояний, на к-рых ч-цы притягиваются, отделена энергетич. потенциальным барьером от области, в к-рой они отталкиваются (рис.), то ч-цы также могут образовывать стабильные С. с.

    СВЯЗАННОЕ СОСТОЯНИЕ

    Пример зависимости потенц. энергии U от расстояния r между ч-цами, иллюстрирующий существование областей стабильных и квазистабильных связанных состояний. Стабильные связанные состояния лежат в области энергий?<0 (меньших значения V при г®?); им соответствуют дискр. уровни энергии. При?>0 стабильных связанных состояний не существует, однако в области 0

    В квантовой механике, в отличие от классической, для образования С. с. ч-ц необходимо, чтобы потенц. энергия притяжения и радиус действия сил были достаточно велики (см. ПОТЕНЦИАЛЬНАЯ ЯМА, НУЛЕВАЯ ЭНЕРГИЯ). Кроме того, в потенц. яме типа изображённой на рис. из-за возможности вылета ч-ц из области притяжения вследствие туннельного эффекта не образуется стабильных С. с., если энергия ч-цы больше потенц. энергии на бесконечности. Однако если вероятность туннельного перехода мала (в классич. пределе она равна нулю), то ч-ца в такой потенц. яме может находиться достаточно длит. время (по сравнению с периодами движения в яме). Поэтому наряду со стабильными С. с. существуют нестабильные (мета- или квазистабильные) С. с., к-рые с течением времени распадаются. Напр., нестабильными С. <с. по отношению к a-распаду или (и) делению явл. ядра нек-рых тяжёлых элементов.

    В крайне релятив. случае, когда энергия связи системы сравнима с энергией покоя её ч-ц, решение проблемы С. с. требует привлечения квант. теории поля (КТП). Точного решения такой задачи в совр. КТП не существует; нек-рые из развиваемых приближённых методов позволяют одинаковым образом рассматривать как стабильные, так и нестабильные адроны, включая резонансы.

  7. Источник: Физическая энциклопедия



  8. Русско-английский политехнический словарь

    bound state

  9. Источник: Русско-английский политехнический словарь



  10. Dictionnaire technique russo-italien

    stato legato; stato di combinazione

  11. Источник: Dictionnaire technique russo-italien



  12. Русско-украинский политехнический словарь

    зв'я́заний стан

  13. Источник: Русско-украинский политехнический словарь



  14. Русско-украинский политехнический словарь

    зв'я́заний стан

  15. Источник: Русско-украинский политехнический словарь