Большая Советская энциклопедия

    совокупность методов и аппаратуры для получения, поддержания и контроля вакуума.

    История развития физики и химии, а также ряда отраслей промышленности неразрывно связана с развитием В. т. Герон из Александрии (вероятно, 1 в.) описывает приспособления (рис. 1 и 2), которые можно считать прототипами пневматических механизмов, использованных позднее для создания разрежения. Первые опыты с вакуумом относятся к 40-м гг. 16 в. В 1654 немецкий учёный О. фон Герике поставил опыт с Магдебургскими полушариями, наглядно показав существование атмосферного давления. Насос, которым он пользовался, был первым насосом для получения вакуума (рис. 3).

    Изготовление ламп накаливания (1879) вызвало дальнейшее развитие В. т. Значительный вклад в В. т. внёс немецкий учёный В. Геде. В 1905 он впервые применил вращательный ртутный насос, в 1913 создал первый молекулярный насос (рис. 4), в 1915 опубликовал отчёт о диффузионном насосе (рис. 5). В 1916 американский учёный Ленгмюр создал конденсационный парортутный насос (рис. 6).

    Быстрое развитие В. т. связано с развитием электроники, ядерной энергетики, ускорительной техники. Современные достижения в области вакуумной дистилляции (См. Дистилляция), широкое распространение вакуумно-металлургических и вакуумно-химических процессов, работы в области управляемых термоядерных реакций, техника получения тонких плёнок, особо чистых материалов для космических летательных аппаратов и испытания этих аппаратов в условиях, близких к космическим, стали возможны только благодаря высокому уровню развития современной В. т. В июне 1958 в Бельгии состоялся первый Международный конгресс по В. т., решением которого было создание Международного общества по вакуумной физике и вакуумной технике.

    Вакуумная система, или вакуумная установка, представляет собой ёмкость, соединённую с вакуумными насосами (См. Вакуумный насос), и включает в себя Вакуумметры,вакуумную арматуру (См. Вакуумная арматура), течеискатели и др. устройства. Выбор типа вакуумного насоса для поддержания вакуума при обеспечении заданного процесса определяется рабочим диапазоном давлений насоса и его предельным давлением; быстротой откачки насоса в заданном диапазоне (рис. 7). Порядок получения высокого вакуума следующий: механическими форвакуумными насосами от атмосферного давления до 10-1н/м2(10-3 мм рт. ст.); диффузионными насосами до 10-5 н/м2(10-7мм рт. ст.); ионно-сорбционными насосами до 10-9н/м2 (10-11мм рт. ст.). Достижение давлений порядка 10-6—10-7 н/м2(10-8—10-9мм рт. ст.) и меньше невозможно без предварительного удаления газа со стенок откачиваемого объёма.

    При последовательном соединении насосов количество газа Q = p1s1 = p2S2=.... piSi, где pi — впускное давление; si— быстрота откачки. При этом насосы выбирают таким образом, чтобы впускное давление в каждом последующем было заведомо меньше и не достигало допустимого выпускного давления предыдущего. Полнота использования насосов в вакуумной системе определяется быстротой откачки насоса sn и сопротивлением канала, соединяющего насос с откачиваемым элементом вакуумной системы. Эффективная быстрота откачки

    где

    — пропускная способность вакуумпровода, величина, обратная сопротивлению (измеряется в единицах быстроты откачки, л/сек). Следовательно, всегда sэф <>н; sэф Q = piSi, пропускной способностью вакуумпровода uи разностью давлений на его концах: Q = u(p2— p1). Значение uв общем случае определяется природой газа, его состоянием, геометрией вакуумпровода и режимом течения газа.

    В установках, в которых требуемая быстрота откачки столь значительна, что не может быть обеспечена насосами, установленными вне откачиваемого объёма, используют поглощающие свойства распылённого металла, например титана, аналогично тому, как это имеет место в ионно-сорбционных насосах. Внутри откачиваемого объёма устанавливают один или несколько испарителей, с помощью которых на внутренних стенках камеры осаждается титан. Для удаления газа, не поглощаемого титаном, к откачиваемому объёму присоединяют диффузионный насос.

    Одной из задач В. т. является измерение малых давлений до 10-12 н/м2(10-14мм рт. ст.) и ниже и достижение герметичности вакуумной системы, в особенности в местах соединения отдельных её элементов. Измерение столь малых давлений требует специальной аппаратуры (см. Вакуумметрия). Обнаружение течей осуществляется специальными течеискателями.

    В. т. широко применяют как в промышленности, так и в лабораторной практике. Например, массовое производство различных электровакуумных приборов неразрывно связано с совершенствованием получения высокого вакуума и возможностью его поддержания. Изготовление этих приборов требует удаления газов (обезгаживания) и использования геттеров (См. Геттеры) для сохранения вакуума. Вакуумную обработку таких приборов производят на многопозиционных карусельных откачных автоматах. Приборы проходят позиции: установку, откачку, прогрев и обезгаживание с целью удаления с внутренних поверхностей адсорбированных газов, распыление геттерирующих веществ, отпайку и съём. Очистку и разделение высокомолекулярных кремнийорганических соединений, продуктов полимеризации, масляных фракций нефти, сложных эфиров, спирта, концентратов витаминов и др. продуктов производят в вакууме 10-1 н/м2(10-3мм рт. ст.). В вакууме ведут обезгаживание и пропитывают изоляционные материалы, заливают конденсаторы и трансформаторы, пропитывают кабели, сушат вещества (например, пластмассы), которые при атмосферном давлении не высушиваются. В вакууме также сушат при комнатной и повышенной температурах и в замороженном состоянии методом сублимации термочувствительных веществ (яичный белок, ферменты, женское молоко, антибиотики, культуры бактерий, вакцины и т.д.). Вакуумными насосами удаляют растворители из веществ, не допускающих нагревания (например, взрывчатые вещества), и повышают концентрацию растворов.

    Вакуум нашёл применение при термическом или катодном распылении металла для нанесения покрытий и металлизации различных материалов, например в производстве оптических и бытовых зеркал, ёлочных игрушек, отражателей автомобильных и самолётных фар, украшений из металлов и пластмасс. В вакууме производят обработку тканей при крашении, металлизацию бумаги, керамики, матриц граммофонных пластинок и полупроводниковых материалов, нанесение защитных и декоративных плёнок в рабочем диапазоне давлений 10-2—10-4 н/м2 (10-4—10-6 мм рт. ст.).

    В металлургии в вакууме восстанавливают металлы из руд и их химических соединений, производят плавку, рафинирование и дегазацию металлов (см. Вакуумная плавка, Дегазация стали). Процессы плавки, испарения и перегонки металлов в вакууме лежат в основе получения материалов высокой чистоты. Для этого в металлургии применяют высокопроизводительные многопластинчатые пароэжекторные насосы и бустерные (пароструйные и механические) с рабочим давлением до 10-2н/м2(10-4мм рт. ст.).

    Средства В. т. в современной экспериментальной физике обеспечивают работы электрофизических приборов и установок, в которых осуществляется движение пучков заряженных частиц. Только в сверхвысоком вакууме возможны исследования физических свойств поверхностей твёрдых тел, а также некоторые исследования, требующие получения газов высокой чистоты.

    В установках с откачиваемыми объёмами в сотни м3 осуществляют непрерывную откачку множеством (до нескольких десятков) параллельно работающих высокопроизводительных насосов с быстротой откачки от сотен до десятков м3/сек. Наряду с диффузионными насосами широко применяются ионно-сорбционные, обладающие большой быстротой откачки и остаточным давлением ниже 10-8н/м2(10-10 мм. рт. ст.).

    Решение многих сложных проблем наука и техники требует достижения давлений 10-14 н/м2 (10-16 мм рт. ст.) и ниже, а также измерения таких давлений. Для этого необходимы совершенные измерительные приборы, высокочувствительные методы проверки герметичности и создание достаточных уплотнений в аппаратуре для сверхвысокого вакуума, подготовка и очистка поверхностей откачиваемых объёмов, которая исключает выделение этими поверхностями загрязняющих газов.

    Лит.: Вакуумное оборудование и вакуумная техника, под ред. А. Гутри и Р. Уокерлинг, пер. с англ., М., 1951; Яккель Р., Получение и измерение вакуума, пер. с нем., М., 1952; Ланис В. А., Левина Л. Е., Техника вакуумных испытаний, 2 изд., М. — Л., 1963; Дэшман С., Научные основы вакуумной техники, пер. с англ., М., 1964; Королев Б. И., Основы вакуумной техники, 5 изд., М. — Л., 1964; Пипко А. И., Плисковский В. Я., Пенчко Е. А., Оборудование для откачки вакуумных приборов, М. — Л., 1965.

    И. С. Рабинович.

    Рис. 1 (слева). Шприц Герона. Рис. 2 (справа). Колба Герона для создания разрежения.

    Рис. 3. Насос, примененный Герике в опыте с Магдебургскими полушариями. Гравюра 17 в.

    Рис. 4. Молекулярный насос Геде: 1 — выпускной патрубок; 2 — впускной патрубок; 3 — ротор; 4 — корпус.

    Рис. 5. Первый диффузионный насос: 1 — испаритель; 2 — паропровод; 3, 5 — вход и выход проточной воды; 4 — диффузионная щель; 6 — термометр; 7 — выпускная трубка; 8 — ртутный затвор; 9 — патрубок первой откачки; 10 — впускная трубка.

    Рис. 6. Первый конденсационный парортутный насос Ленгмюра: 1 — колба с ртутью; 2 — изолирующая рубашка; 3 — трубка для отвода паров ртути; 4 — канал для отвода сконденсировавшихся паров; 5 — ловушка; 6 — трубка для подсоединения насоса к откачиваемому объёму.

    Рис. 7. Области действия различных вакуумных насосов (в н/м2): 1 — водокольцевых; 2 — поршневых; 3 — паромасляных бустерных; 4 — механических бустерных; 5 — диффузионных; 6 — ионно-сорбционных.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Современная энциклопедия

    ВАКУУМНАЯ ТЕХНИКА, совокупность устройств, приборов и т.п. для создания, поддержания, измерения и использования вакуума в научных, народнохозяйственных и других целях (например, вакуумметры, насосы).

  3. Источник: Современная энциклопедия. 2000.



  4. Большой англо-русский и русско-английский словарь

    vacuum engineering, vacuum technology

  5. Источник: Большой англо-русский и русско-английский словарь



  6. Англо-русский словарь технических терминов

    vacuum engineering, vacuum technology

  7. Источник: Англо-русский словарь технических терминов



  8. Энциклопедия Кольера

    получение, измерение и применение давлений порядка тысячной нормального атмосферного давления и более низких. Вакуумная техника, методы которой когда-то не выходили за пределы научной лаборатории, в настоящее время применяется во многих отраслях промышленности. Первые области ее промышленного применения - откачка осветительных электроламп и электровакуумных приборов - по-прежнему имеют важное значение, но с появлением транзисторов электронная промышленность нашла новое применение вакуумному оборудованию в производстве высокочистых материалов. Металлургия тоже нашла применение вакуумной технике: вакуумной плавкой металлы очищаются от растворенных газов и летучих примесей; в тех случаях, когда требуется исключить возможность окисления и других загрязнений поверхности, в вакууме проводят отжиг и термообработку. Без вакуумной техники было бы невозможно производство в больших масштабах химически чистых и жаропрочных металлических материалов. Пленки металлов и других веществ, напыляемые в вакууме, находят применение в самых разных отраслях промышленности - от производства детских игрушек до технологии оптических приборов и электронных компонентов. В химической промышленности молекулярная дистилляция при низких температурах, ставшая возможной благодаря понижению давления в перегонном кубе, позволила получать вещества, которые разлагаются, если перегонять их при атмосферном давлении. В медицине, биологии, пищевой промышленности так называемая сублимационная сушка позволяет обезвоживать при низких температурах в вакууме материалы, которые разрушаются при температурах, необходимых для сушки другими способами. Наконец, без вакуумной техники не могла бы существовать атомная промышленность, где она применяется, в частности, для разделения изотопов, обработки материалов и откачки вакуумного оборудования.

    Получение низких давлений, насосы. Вращательные масляные насосы. Для получения вакуума, достигающего одной миллионной атмосферного давления, по-прежнему применяются вращательные масляные насосы. Их конструкции разнообразны, а быстрота откачки составляет от 0,3 до 300 л/с. На рис. 1 схематически изображен (в разрезе) такой насос одной из широко распространенных конструкций. Цилиндрический ротор R эксцентрично вращается в цилиндрическом же корпусе с входным и выходным патрубками (в последнем установлен обратный клапан N). В пазах ротора R сидят две пластинки V и Vў, которые прижимаются пружинами к внутренним стенкам корпуса. Вся система погружена в масло, которое служит смазкой и обеспечивает уплотнение зазоров между внутренними стенками корпуса и деталями ротора. Газ из откачиваемого объема, захваченный в полости A (после того, как верхняя пластинка прошла входное отверстие), при дальнейшем повороте ротора сжимается, пока под его давлением не откроется обратный клапан, и выпускается наружу через масло внешней камеры. Такой процесс повторяется два раза за один оборот ротора.

    Рис. 1. ВРАЩАТЕЛЬНЫЙ МАСЛЯНЫЙ НАСОС в разрезе (упрощенная схема). R - цилиндрический ротор; V и V' - подпружиненные пластинки, разделяющие рабочий объем насоса на две части - входную A и выходную A'; N - пружинный обратный клапан в выпускном патрубке.

    Рис. 1. ВРАЩАТЕЛЬНЫЙ МАСЛЯНЫЙ НАСОС в разрезе (упрощенная схема). R - цилиндрический ротор; V и V' - подпружиненные пластинки, разделяющие рабочий объем насоса на две части - входную A и выходную A'; N - пружинный обратный клапан в выпускном патрубке.

    Насос описанного типа неэффективен при откачке воздуха, содержащего конденсирующиеся пары (обычно это пары воды), так как высокая степень сжатия, необходимая для выхлопа в атмосферу, может приводить к их конденсации в камере насоса. Вместе с маслом конденсат затем снова попадает на вход насоса. Это исключается в "газобалластных" насосах. В таких насосах в сжимаемый объем A через однопутевой клапан вводится контролируемое количество воздуха или другого неконденсирующегося газа. Балластный газ "разбавляет" конденсирующиеся пары, и поэтому при максимальной степени сжатия давление паров не достигает давления насыщения, при котором происходит конденсация. Количество паров, которое может быть откачано, зависит от количества дозы добавляемого балластного газа, но последняя не может быть очень велика, так как с ее увеличением ухудшается предельный вакуум насоса. Вращательные масляные насосы применяются отдельно, когда не требуется очень низких давлений, а также в сочетании с двухроторными насосами Рутса и диффузионными высоковакуумными насосами, которые не могут работать при атмосферном давлении на выходе.

    Двухроторные насосы. Для некоторых процессов в промышленности требуется очень большая быстрота откачки, хотя бы и не при очень низких давлениях. Этим требованиям удовлетворяют двухроторные объемные насосы типа воздуходувки Рутса. Схема такого насоса представлена на рис. 2. Два длинных ротора с поперечным сечением, напоминающим восьмерку, вращаются в противоположных направлениях, не соприкасаясь ни друг с другом, ни со стенками корпуса, так что насос может работать без смазки. Необходимости в масляном уплотнении тоже нет, поскольку очень малы зазоры между точно подогнанными деталями конструкции. Ротор вращается с частотой до 50 об/с, и высокая быстрота откачки поддерживается до давлений порядка одной миллионной атмосферного. Хотя такие насосы способны работать с прямым выхлопом в атмосферу, на их выходе обычно устанавливают вспомогательный вращательный масляный насос, который не только понижает их предельное давление, но и повышает КПД, снижая потребляемую мощность, что позволяет обходиться менее сложной системой охлаждения. Вспомогательный насос, пропускающий ту же массу газа, но при более высоких давлениях, может быть сравнительно небольшим.

    Рис. 2. ДВУХРОТОРНЫЙ ВАКУУМНЫЙ НАСОС. Молекулы газа, входящие в насос сверху, выбрасываются в выпускной патрубок справа под действием двух быстро вращающихся роторов. Роторы, вращающиеся в противоположных направлениях, не соприкасаются ни друг с другом, ни со стенками корпуса.

    Рис. 2. ДВУХРОТОРНЫЙ ВАКУУМНЫЙ НАСОС. Молекулы газа, входящие в насос сверху, выбрасываются в выпускной патрубок справа под действием двух быстро вращающихся роторов. Роторы, вращающиеся в противоположных направлениях, не соприкасаются ни друг с другом, ни со стенками корпуса.

    Диффузионные насосы. В большинстве высоковакуумных откачных систем применяются диффузионые насосы, действующие по тому же принципу, что и старый конденсационный насос Ленгмюра. Упрощенная схема диффузионного насоса представлена на рис. 3. Это вертикальная цилиндрическая труба, открытым верхним концом A соединенная с откачиваемым объемом. На нижнем конце электроплитка нагревает в кипятильнике B рабочую жидкость, которая при этом испаряется. Пары рабочей жидкости проходят по трубке V вверх, где через кольцевое сопло выходят в виде кольцевой струи под углом к стенкам корпуса. На стенках, охлаждаемых снаружи змеевиком с холодной водой, они конденсируются, и образовавшаяся жидкость стекает по стенке обратно в кипятильник. Молекулы газа из откачиваемого объема, случайно, из-за хаотичности своего движения влетающие во входное отверстие A насоса, попадают в струю пара и увлекаются ею вниз, где они удаляются вспомогательным механическим насосом, присоединенным к выходному патрубку диффузионного. Вероятность же случайного прохождения молекул газа через струю пара снизу вверх весьма мала.

    Рис. 3. ДИФФУЗИОННЫЙ НАСОС. Электроплитка поддерживает кипение рабочей жидкости, пары которой поднимаются из кипятильной камеры B по трубке V и выходят через кольцевое сопло, образуемое отражателем A. Сопло создает направленную вниз кольцевую струю, которая увлекает с собой молекулы, попадающие в насос сверху. Пары конденсируются на стенках. Большая доля увлекаемых молекул выводится через выпускной патрубок, благодаря чему и понижается давление в откачиваемом объеме.

    Рис. 3. ДИФФУЗИОННЫЙ НАСОС. Электроплитка поддерживает кипение рабочей жидкости, пары которой поднимаются из кипятильной камеры B по трубке V и выходят через кольцевое сопло, образуемое отражателем A. Сопло создает направленную вниз кольцевую струю, которая увлекает с собой молекулы, попадающие в насос сверху. Пары конденсируются на стенках. Большая доля увлекаемых молекул выводится через выпускной патрубок, благодаря чему и понижается давление в откачиваемом объеме.

    Если давление под струей пара выше некоторого предельно допустимого значения, то струя размывается и ее откачивающее действие ослабевает. Поэтому от вспомогательного насоса требуется, чтобы он не только отводил все откачиваемое количество газа, но и поддерживал достаточно низким указанное давление. Для снижения требований к предельному вакууму вспомогательного насоса диффузионные насосы делают многоступенными. Несколько кольцевых сопел располагают на разной высоте и рассчитывают их так, чтобы предельно допустимое давление после самого нижнего сопла было достаточно высоким без уменьшения количества газа, проходящего через струю первого сопла. Схема четырехступенного насоса такого типа представлена на рис. 4. Конструкции подобных насосов весьма разнообразны в деталях; выпускаются насосы самых разных типоразмеров с быстротой откачки от нескольких литров в секунду до 20 000 л/с.

    Рис. 4. ЧЕТЫРЕХСТУПЕННЫЙ ДИФФУЗИОННЫЙ НАСОС с дополнительными соплами. Четвертая, эжекторная ступень дополнительно повышает степень сжатия. 1 - электроплитка; 2 - дно кипятильной камеры; 3 - термореле; 4 - третья ступень; 5 - вторая ступень; 6 - первая ступень; 7 - входное отверстие; 8 - змеевик водяного охлаждения; 9 - маслоотражатели; 10 - патрубок для механического насоса (выход); 11 - эжекторная ступень; 12 - внутренний отражатель.

    Рис. 4. ЧЕТЫРЕХСТУПЕННЫЙ ДИФФУЗИОННЫЙ НАСОС с дополнительными соплами. Четвертая, эжекторная ступень дополнительно повышает степень сжатия. 1 - электроплитка; 2 - дно кипятильной камеры; 3 - термореле; 4 - третья ступень; 5 - вторая ступень; 6 - первая ступень; 7 - входное отверстие; 8 - змеевик водяного охлаждения; 9 - маслоотражатели; 10 - патрубок для механического насоса (выход); 11 - эжекторная ступень; 12 - внутренний отражатель.

    Первоначально все конденсационные насосы были ртутными, но в 1928 Ч. Берч показал, что в качестве рабочей жидкости можно использовать и высококипящие дистилляты нефти. В ртутных насосах необходима низкотемпературная входная отражательная ловушка, которая не пропускала бы в откачиваемый объем пары ртути. Масла же с более низким давлением пара позволяют обходиться простой отражательной ловушкой, охлаждаемой водой, благодаря чему они и получили широкое распространение. В настоящее время в качестве рабочих жидкостей диффузионных насосов используются в основном сложные эфиры органических кислот и кремнийорганические (силиконовые) жидкости, поскольку они химически стойки и имеют крайне низкое давление паров. Ртутные же насосы применяются лишь в тех случаях, когда пары ртути не рассматриваются как загрязнение.

    Турбомолекулярные насосы. Современный вариант молекулярного насоса Геде (1913) не вносит ни масляных, ни ртутных загрязнений. Это, в сущности, турбина с 30 роторными секциями и таким же числом статорных. Частота вращения ротора - порядка 20 000 об/с, зазоры между ротором и статором меньше 0,1 мм. Турбомолекулярный насос не может работать с выхлопом в атмосферу и нуждается во вспомогательном насосе предварительного разрежения. В лабораториях и на особо чистых производствах получили широкое распространение насосы трех других типов. Все они, в отличие от предыдущих, не сжимают газ и вытесняют его наружу, а улавливают и удерживают молекулы газа. Два из них - титановый геттерный и сорбционно-ионный - требуют для своей работы предварительного разрежения порядка 10-5 атмосферного давления.

    Титановые геттерные насосы. На начальном этапе производства электронных ламп после их откачки для дополнительного понижения давления в уже запаянном баллоне применялись "геттеры" - пленки химически активных веществ, например бария, которые химически связывают молекулы воздуха, вступающие с ними в контакт. Один из трех упомянутых методов откачки основан на непрерывном обновлении геттера. Геттерным материалом служит титан. В насосе одного типа он напыляется испарением титановой проволоки, подводимой к месту контакта с раскаленной поверхностью. Инертные газы, такие, как аргон и гелий, плохо поглощаются свежеобразованной титановой пленкой, если их атомы предварительно не ионизованы. Для ионизации предусматривают электроды, подобные электродам ионизационного манометра (см. ниже). Такие насосы имеют то преимущество, что они не нуждаются в отражательных и охлаждаемых ловушках; требуется лишь вращательный насос предварительного разрежения.

    Ионные насосы. Ионный насос представляет собой камеру, присоединяемую непосредственно к откачиваемому объему. Электроны, испускаемые катодом прямого накала или возникающие в статическом разряде, ионизуют молекулы газа в столкновениях с ними. Ионы переносятся электрическим полем к коллектору и связываются на его поверхности. Существуют два механизма связывания: одни ионы адсорбируются на поверхности коллектора, а другие вступают в химическую реакцию с материалом коллектора, образуя устойчивые соединения. Для химически активных газов эффективны оба механизма, а для инертных - только первый. Коллекторные поверхности большинства ионных насосов покрыты титаном. Под действием ионов, бомбардирующих коллектор, его поверхность распыляется, так что непрерывно открываются свежие слои титана, способные связывать ионы химически активных газов. Быстрота откачки ионных насосов составляет от 1000 до 10 000 л/с. Поскольку в таких насосах нет рабочей жидкости, они вносят гораздо меньше загрязнений, чем самые лучшие диффузионные. К недостаткам же их можно отнести то, что химически активные газы они откачивают гораздо быстрее инертных и отдают обратно небольшую часть откачанного газа.

    Криосорбционные насосы. Насосы такого типа представляют собой, в сущности, ловушки с цеолитами - пористыми сорбентами, поглощающими молекулы газа за счет физической адсорбции при охлаждении; они требуют для своей работы жидкого азота. Однако криосорбционные насосы позволяют откачивать систему от атмосферного давления примерно до одной миллионной его. Такой насос достаточно прогреть, чтобы удалить весь откачанный им газ, и он снова будет готов к работе.

    Измерение низких давлений. Обычные манометры, например жидкостные, очевидно, недостаточно чувствительны для вакуумной техники, где давления нередко соответствуют, скажем, одной миллионной миллиметра водяного столба. Вместо них применяются различные вакуумные манометры (вакуумметры), основанные на разных физических принципах. Однако почти все они не являются "абсолютными" приборами, т.е. требуют градуировки. Чаще всего для градуировки вакуумных манометров применяется простой ртутный манометр, предложенный еще в 1874 Г.Мак-Леодом. В компрессионном манометре Мак-Леода (рис. 5) имеется стеклянный баллон известного объема, который сначала соединяют трубкой A с вакуумной системой, чтобы наполнить его газом, давление которого требуется измерить. Затем, поднимая уровень ртути в трубке, этот известный объем газа отсекают и сжимают в капилляре до значительно меньшего объема, в котором давление газа сильно повышается. Манометр сконструирован так, что окончательное давление можно измерить по разности высот ртути в капиллярных трубках C и D, и эта величина совместно с значениями начального и конечного объемов позволяет вычислить первоначальное давление. Отношение объемов (до и после сжатия) можно сделать достаточно большим для измерения давлений порядка 10-8 атмосферного.

    Рис. 5. МАНОМЕТР МАК-ЛЕОДА. При поднятии сосуда со ртутью малый объем газа, вошедший по трубке A, отсекается и сжимается в расширении слева. Давление сжатого газа измеряется по разности высот столбиков ртути в капиллярах C и D.

    Рис. 5. МАНОМЕТР МАК-ЛЕОДА. При поднятии сосуда со ртутью малый объем газа, вошедший по трубке A, отсекается и сжимается в расширении слева. Давление сжатого газа измеряется по разности высот столбиков ртути в капиллярах C и D.

    Манометр Мак-Леода неудобен для измерений рабочего давления в технологических вакуумных установках. Для этого чаще всего пользуются термопарными вакуумметрами, вакуумметрами Пирани (вакуумметрами сопротивления) и разными вариантами ионизационного манометра. Термопарный вакуумметр измеряет температуру горячего спая термопары (находящегося в вакууме), нагреваемого током постоянной силы. Температура этого спая (а следовательно, и ЭДС термопары) зависит от давления газа, так как от давления зависит его теплопроводность. В вакуумметре Пирани используется проволочка, закрепленная в баллоне, соединяемом с системой, в которой требуется измерить давление. Проволочка нагревается током, и несложная электронная схема измеряет ее сопротивление. Сопротивление зависит от температуры проволочки, а поскольку тепловые потери проволочки зависят от давления газа в баллоне, выходной прибор, показывающий сопротивление, можно проградуировать в единицах давления. Как и в случае термопарного вакуумметра, требуется отдельная градуировка для каждого газа. Ионизационные манометры ионизуют газ, собирают положительно заряженные ионы и измеряют ток ионов; этот ток является мерой полного давления в системе. Три описываемых далее типа ионизационных манометров различаются способом ионизации. В триодном ионизационном манометре имеются три электрода, подобных электродам вакуумной электронной лампы-триода. Катод прямого накала испускает электроны, которые ускоряются в поле другого электрода, поддерживаемого под положительным потенциалом ок. 150 В. На пути к этому электроду электроны сталкиваются с молекулами газа и часть их ионизуют, выбивая их электроны и тем самым превращая в положительные ионы. Положительные ионы собираются третьим электродом, потенциал которого отрицателен; ток этого электрода является мерой скорости поступления ионов. При неизменном токе эмиссии электронов из катода скорость образования ионов пропорциональна давлению газа. Манометры такого типа особой конструкции позволяют измерять давления порядка 10-15 атмосферного. При таком давлении средняя длина свободного пробега молекулы (между двумя столкновениями) имеет порядок 100 000 км. В магнитном электроразрядном вакуумметре "холодный" катод и анод помещены в магнитное поле. Свободные электроны, всегда образующиеся в газе вследствие хаотического движения молекул, притягиваются к аноду малых размеров, но магнитное поле вынуждает их двигаться по спирали вокруг анода. Сталкиваясь с молекулами газа, они ионизуют часть их. К ним присоединяются электроны, освобождающиеся в результате ионизации, и в конце концов они попадают на анод; ток положительных ионов на катод служит мерой давления. В ионизационном манометре третьего типа молекулы газа ионизуются альфа-частицами, испускаемыми радиоактивным изотопом, небольшое количество которого помещается в измерительную головку вакуумметра. Скорость образования альфа-частиц постоянна, а потому число ионизованных молекул любого газа, поступающих на ионный коллектор в единицу времени, пропорционально давлению этого газа. Поскольку разные газы неодинаково поддаются ионизации, ионизационные манометры требуют отдельной градуировки для каждого газа. В условиях промышленного производства эти различия часто не принимаются во внимание.

    Струйные насосы. Принцип действия. Когда жидкость (или газ) протекает по трубе, имеющей сужение, давление в сужении оказывается ниже, чем в остальных частях трубы (если при этом скорость потока в сужении не достигает скорости звука). Впервые это было установлено итальянским физиком Дж. Вентури (1746-1822), по имени которого была названа трубка, основанная на данном явлении. Если откачиваемый объем присоединить к трубе в месте ее сужения, то газ из него будет переходить в область пониженного давления и уноситься струей жидкости.

    См. также

    НАСОСЫ;

    СТРУЙНАЯ ТЕХНИКА.

    Пароструйные эжекторы. Простой лабораторный "водяной" насос откачивает воздух с помощью воды, протекающей по трубке с сужением. В промышленности же получили широкое распространение эжекторы, рабочей средой которых служит водяной пар. Такие пароструйные эжекторы применяются в самых разнообразных процессах, требующих пониженных температур и давлений. Промышленность выпускает пароструйные эжекторы различных типоразмеров с разным числом ступеней, позволяющие откачивать в промышленных масштабах жидкости и газы из технологических аппаратов, поддерживая в них пониженное давление. Основные преимущества таких насосов - простота конструкции, практически исключающая необходимость в ремонте и обслуживании, высокая производительность, хорошие вакуумные характеристики, малое потребление энергии и низкая стоимость. Диапазон рабочего вакуума - от атмосферного давления до 10-4 атмосферного и ниже. Схема пароструйного эжектора простой промышленной конструкции представлена на рис. 6.

    Рис. 6. ПАРОСТРУЙНЫЙ ЭЖЕКТОР для промышленной откачки. Рабочий водяной пар через патрубок S поступает в сопло N, формирующее высокоскоростную струю. Проходя по трубке Вентури V, водяной пар понижает давление в камере C, в которую при этом через впускное отверстие I засасываются пары из откачиваемого аппарата. Водяной пар переносит откачиваемые пары к выпускному отверстию D.

    Рис. 6. ПАРОСТРУЙНЫЙ ЭЖЕКТОР для промышленной откачки. Рабочий водяной пар через патрубок S поступает в сопло N, формирующее высокоскоростную струю. Проходя по трубке Вентури V, водяной пар понижает давление в камере C, в которую при этом через впускное отверстие I засасываются пары из откачиваемого аппарата. Водяной пар переносит откачиваемые пары к выпускному отверстию D.

    Новые методы. Криогенный насос. В криогенном вакуумном насосе используются крайне низкие температуры. Действие насоса основано на том, что интенсивность хаотического движения молекул уменьшается при понижении температуры. Такой насос представляет собой камеру с металлическим сосудом, закрепленным в нижней ее части. Через сосуд циркулирует жидкий гелий, температура которого равна 4,2 К (-268,96° C). Металлические радиационные экраны закрывают сосуд от теплового излучения, но пропускают молекулы газа. Молекула газа, попадающая на поверхность сосуда с гелием, теряет свою кинетическую энергию и остается на этой поверхности. Криогенный насос может работать в любом положении и устанавливается без соединительных трубопроводов, снижающих быстроту откачки. Такой насос незаменим при откачке больших камер, в которых имитируются космические условия. Криогенные насосы могут создавать давления ниже 10-11 мм рт. ст. Давление порядка 10-13 мм рт. ст. можно получить, просто частично погрузив небольшую стеклянную вакуумную систему в жидкий гелий.

    ЛИТЕРАТУРА

    Дэшман С. Научные основы вакуумной техники. М., 1964 Грошковский Я. Техника высокого вакуума. М., 1975 Основы вакуумной техники. М., 1981 Розанов Л.Н. Вакуумная техника. М., 1982

  9. Источник: Энциклопедия Кольера



  10. Большой энциклопедический политехнический словарь

    техника получения, поддержания вакуума и проведения вакуумных измерений. Осн. устройства и приборы, используемые в В. т., вакуумные насосы; вакуумная арматура (напр., клапаны, затворы, ловушки, натекатели); средства измерения давления (напр., вакуумметры), течеискатели. В. т. приобретает всё большее значение в разл. обл. совр. науки и техники: электронике, ядерной энергетике, ускорит. технике, в технологич. процессах хим., фармацевтич. и пищ. пром-сти, в металлургии, технике получения сверхчистых материалов и др.

  11. Источник: Большой энциклопедический политехнический словарь



  12. Русско-английский политехнический словарь

    vacuum engineering, vacuum technology

    * * *

    vacuum engineering

  13. Источник: Русско-английский политехнический словарь



  14. Dictionnaire technique russo-italien

    1)tecnica del vuoto

    2)attrezzature sotto vuoto

  15. Источник: Dictionnaire technique russo-italien