Большая Советская энциклопедия

    энергия, затрачиваемая на удаление электрона из твёрдого тела или жидкости в вакуум. Переход электрона из вакуума в конденсированную среду сопровождается выделением энергии, равной Р. в. Следовательно, Р. в. является мерой связи электрона с конденсированной средой; чем меньше Р. в., тем легче происходит эмиссия электронов. Поэтому, например, плотность тока термоэлектронной эмиссии (См. Термоэлектронная эмиссия) или автоэлектронной эмиссии (см. Туннельная эмиссия) экспоненциально зависит от Р. в.

    Р. в. наиболее полно изучена для проводников, особенно для металлов (См. Металлы). Она зависит от кристаллографической структуры поверхности. Чем плотнее «упакована» грань кристалла, тем выше Р. в. φ. Например, для чистого вольфрама φ = 4,3 эв для граней {116} и 5,35 эв для граней {110}. Для металлов возрастание (усреднённых по граням) φ приблизительно соответствует возрастанию потенциала ионизации. Наименьшие Р. в. (2 эв) свойственны щелочным металлам (Cs, Rb, К), а наибольшие (5,5 эв)— металлам группы Pt.

    Р. в. чувствительна к дефектам структуры поверхности. Наличие на плотноупакованной грани собственных неупорядоченно расположенных атомов уменьшает φ. Ещё более резко φ зависит от поверхностных примесей: электроотрицательные примеси (кислород, галогены, металлы с φ, большей, чем φ подложки) обычно повышают φ, а электроположительные — понижают. Для большинства электроположительных примесей (Cs на W, Tn на W, Ba на W) наблюдается снижение Р. в., которая достигает при некоторой оптимальной концентрации примесей noпт минимального значения, более низкого, чем φ основного металла; при n— 2noпт Р. в. становится близкой к φ металла покрытия и далее не изменяется (см.рис.). Величине noпт соответствует упорядоченный, согласованный со структурой подложки слой атомов примеси, как правило, с заполнением всех вакантных мест; а величине 2noпт — плотный моноатомный слой (согласование со структурой подложки нарушено). Т. о., Р. в. по крайней мере для материалов с металлической электропроводностью определяется свойствами их поверхности.

    Электронная теория металлов рассматривает Р. в. как работу, необходимую для удаления электрона с Ферми уровня в вакуум. Современная теория не позволяет пока точно вычислить φ для заданных структур и поверхностей. Основные сведения о значениях φ даёт эксперимент. Для определения φ используют эмиссионные или контактные явления (см. Контактная разность потенциалов).

    Знание Р. в. существенно при конструировании электровакуумных приборов (См. Электровакуумные приборы), где используется эмиссия электронов или ионов, а также в таких, например, устройствах, как термоэлектронные преобразователи (См. Термоэлектронный преобразователь) энергии.

    Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Зандберг Э. Я., Ионов Н. И., Поверхностная ионизация, М., 1969.

    В. Н. Шредник.

    Зависимость работы выхода φ от поверхностной концентрации n электроположительных примесных атомов.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    РАБОТА ВЫХОДА - работа, которую необходимо затратить для удаления электрона из конденсированного вещества в вакуум. Измеряется разностью между минимальной энергией электрона в вакууме и Ферми-энергией электронов внутри тела. Зависит от состояния поверхности проводника.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Большой англо-русский и русско-английский словарь

    photoelectric work function, work function

  5. Источник: Большой англо-русский и русско-английский словарь



  6. Англо-русский словарь технических терминов

    (при фотоэлектронной эмиссии) photoelectric work function,(в квантовой электронике) work function

  7. Источник: Англо-русский словарь технических терминов



  8. Физическая энциклопедия

    РАБОТА ВЫХОДА

    энергия Ф, к-рую необходимо затратить для удаления эл-на из твёрдого или жидкого в-ва в вакуум (в состояние с равной нулю кинетич, энергией). Р. в. Ф=еj, где j — потенциал Р. в., е — абс. величина электрич. заряда электрона. Р. в. равна разности между мин. энергией эл-на в вакууме и Ферми энергией эл-нов внутри тела. Если электростатич. потенциалы в вакууме jвак, в толще в-ва jоб, а?F — энергия Ферми, отсчитываемая от энергии неподвижного эл-на в точке вакуума, где потенциал равен jвак, то Р. в. (в случае однородной поверхности)

    Ф=e(jоб-jвак)-?F.

    В приповерхностной области любого тела образуется двойной электрич. слой. Он возникает даже на идеально чистой поверхности кристалла в результате того, что «центр тяжести» плотности эл-нов в поверхностной крист. ячейке не совпадает с плоскостью, в к-рой расположены ионы. При этом

    jвак-jоб=4pPS.

    где PS — дипольный момент двойного слоя, приходящийся на ед. площади поверхности (РS>0, если дипольный момент направлен наружу). Р. в.— характеристика поверхности тела: грани одного и того же кристалла, образованные разными кристаллографич. плоскостями или покрытые разными в-вами, имеют разные РS и разную Р. в. Вблизи этих поверхностей jвак также не совпадают и между поверхностями возникают контактная разность потенциалов и электростатич. поле.

    В металлах при низких темп-рах уровень Ферми совпадает с самым высоким заполненным энергетич. уровнем эл-нов и Р. в. имеет смысл наименьшей энергии, требуемой для удаления эл-на в вакуум. В полупроводниках такой смысл Р. в. придавать нельзя. В металлах двойной электрич. слой сосредоточен на самой поверхности и толщина его — порядка межатомного расстояния. В ПП заряд одного знака находится на поверхности (эл-ны или дырки в поверхностных состояниях), а заряд противоположного ' знака распределён в слое, толщина к-рого зависит от концентраций примесей и темп-ры и может достигать многих тыс. межатомных расстояний.

    РАБОТА ВЫХОДА (в эВ) НЕКОТОРЫХ ПОЛИКРИСТАЛЛИЧЕСКИХ МЕТАЛЛОВ

    РАБОТА ВЫХОДА

    Р. в. может быть сильно изменена адсорбцией разл. атомов или молекул на поверхности (адсорбированные ч-цы изменяют РS). Атомы металлов с малой энергией ионизации (напр., Cs) при адсорбции приобретают дипольный момент, направленный в сторону вакуума, и снижают Р. в. Покрытие Cs уменьшает Р. в. для нек-рых металлов и ПП до 1 эВ (4—6 эВ в отсутствие Cs, см. табл.).

    В ПП с гомополярными межатомными связями (Ge, Si и т. п.) Р. в. практически не изменяется даже при сильном изменении?F в объёме кристалла (при изменении темп-ры или введении примеси): изменение?F вызывает такое изменение заполнения поверхностных состояний эл-нами и, следовательно, такое изменение jоб — jвак, к-рое компенсирует изменение?F. Плотность состояний на чистых поверхностях ионных ПП в области запрещённой зоны невелика и допускает изменение Р. в. с изменением положения уровня Ферми в объёме ПП (напр., введением примесей).

    Абс. величину Р. в. измеряют по кол-ву теплоты, к-рое нужно подводить к телу при отборе из него термоэмиссионного тока (см. ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ), чтобы темп-ра тела оставалась неизменной; по температурной зависимости и полной величине термоэмиссионного тока, а в металлах и вырожденных ПП — также по красной границе фотоэлектронной эмиссии. Контактная разность потенциалов Uк двух тел равна разности их Р. в.; измеряя Uк между исследуемой поверхностью и эталонной, находят и Р. в. первой.

  9. Источник: Физическая энциклопедия



  10. Научно-технический энциклопедический словарь

    РАБОТА ВЫХОДА, энергия, затрачиваемая на удаление электрона из вещества. Учитывается при ФОТОЭЛЕКТРИЧЕСКОМ ЭФФЕКТЕ и в ТЕРМОЭЛЕКТРОНИКЕ.

  11. Источник: Научно-технический энциклопедический словарь



  12. Энциклопедический словарь

    рабо́та вы́хода

    работа, которую необходимо затратить для удаления электрона из конденсированного вещества в вакуум. Измеряется разностью между минимальной энергией электрона в вакууме и ферми-энергией электронов внутри тела. Зависит от состояния поверхности проводника.

    * * *

    РАБОТА ВЫХОДА

    РАБО́ТА ВЫ́ХОДА, работа, которую необходимо затратить для удаления электрона из конденсированного вещества в вакуум. Измеряется разностью между минимальной энергией электрона в вакууме и Ферми-энергией(см. ФЕРМИ-ЭНЕРГИЯ) электронов внутри тела. Зависит от состояния поверхности проводника.

  13. Источник: Энциклопедический словарь



  14. Большой энциклопедический политехнический словарь

    электрона - наименьшая энергия, к-рую нужно затратить для удаления электрона из твёрдого или жидкого тела в вакуум. Р. в.- осн. хар-ка поверхности проводника или ПП, определяющая закономерности электронной эмиссии с этой поверхности. Различие в Р. в. для двух проводников или ПП определяет контактную разность потенциалов между ними. Р. в. для твёрдого тела зависит от его материала, строения поверхности и наличия на ней слоя чужеродных атомов, а также напряжённости внеш. электрич. поля (см. Шотки эффект).

  15. Источник: Большой энциклопедический политехнический словарь



  16. Русско-английский политехнический словарь

    (при фотоэлектронной эмиссии) photoelectric work function,(в квантовой электронике) work function

    * * *

    work function

  17. Источник: Русско-английский политехнический словарь



  18. Естествознание. Энциклопедический словарь

    работа, к-рую необходимо затратить для удаления электрона из конденсированного в-ва в вакуум. Измеряется разностью между миним. энергией электрона в вакууме и фермы-энергией электронов внутри тела. Зависит от состояния поверхности проводника.

  19. Источник: Естествознание. Энциклопедический словарь



  20. Большой Энциклопедический словарь

    РАБОТА ВЫХОДА
    РАБОТА ВЫХОДА - работа, которую необходимо затратить для удаления электрона из конденсированного вещества в вакуум. Измеряется разностью между минимальной энергией электрона в вакууме и Ферми-энергией электронов внутри тела. Зависит от состояния поверхности проводника.

    Большой Энциклопедический словарь. 2000.

  21. Источник: