Большая Советская энциклопедия

    способ построения научной теории, при котором в её основу кладутся некоторые исходные положения (суждения) — аксиомы (См. Аксиома), или Постулаты, из которых все остальные утверждения этой науки (теоремы (См. Теорема)) должны выводиться чисто логическим путём, посредством доказательств (См. Доказательство). Назначение А. м. состоит в ограничении произвола при принятии научных суждений в качестве истин данной теории. Построение науки на основе А. м. обычно называется дедуктивным. Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений (См. Определение), выражающих (или разъясняющих) их через ранее введённые понятия. В той или иной мере дедуктивные доказательства, характерные для А. м., применяются во многих науках. Но, несмотря на попытки систематического применения А. м. к изложению философии (Б. Спиноза), социологии (Дж. Вико), политической экономии (К. Родбертус-Ягецов), биологии (Дж. Вуджер) и др. наук, главной областью его приложения до сих пор остаются математика и символическая логика, а также некоторые разделы физики (механика, термодинамика, электродинамика и др.).

    А. м прошёл в своём историческом развитии 3 стадии. Первая связана с построением геометрии в Древней Греции. Основное сочинение этого периода — «Начала» Евклида (хотя, по-видимому, и до него Пифагор, которому приписывается открытие А. м., а затем Платон и его ученики немало сделали для развития геометрии на основе А. м.). В то время считалось, что в качестве аксиом должны выбираться суждения, истинность которых «самоочевидна», так что истинность теорем считалась гарантированной безупречностью самой логики. Но Евклиду не удалось ограничиться чисто логическими средствами при построении геометрии на основе аксиом. Он охотно прибегал к интуиции в вопросах, касающихся непрерывности, взаимного расположения и равенства геометрических объектов. Впрочем, во времена Евклида такие обращения к интуиции могли и не восприниматься как выход за пределы логики — прежде всего потому, что сама логика не была ещё аксиоматизирована (хотя частичная формализация логики, осуществленная Аристотелем (См. Аристотель) и его последователями, и была некоторым приближением к аксиоматизации). Не было и достаточной отчётливости во введении первоначальных понятий и при определении новых понятий.

    Начало второй стадии в истории А. м. связывают обычно с открытием Н. И. Лобачевским (См. Лобачевский), Я.Больяй и К. Ф. Гауссом возможности построить непротиворечивым образом геометрию, исходя из систем аксиом, отличной от евклидовой. Это открытие разрушило убеждение в абсолютной («очевидной» или «априорной») истинности аксиом и основанных на них научных теорий. Теперь аксиомы стали пониматься просто как исходные положения данной теории, вопрос же об их истинности в том или ином смысле (и выбор в качестве аксиом) выходит за рамки аксиоматической теории как таковой и относится к её взаимоотношению с фактами, лежащими вне её. Появилось много (и притом различных) геометрических, арифметических и алгебраических теорий, которые строились средствами А. м. (работы Р. Дедекинда, Г. Грасмана и др.). Эта стадия развития А. м. завершилась созданием аксиоматических систем арифметики (Дж. Пеано, 1891), геометрии (Д. Гильберт, 1899), исчисления высказываний и предикатов (А. Н. Уайтхед и Б. Рассел, Англия, 1910) и аксиоматической теории множеств (См. Аксиоматическая теория множеств) (Э. Цермело, 1908).

    Гильбертовская аксиоматизация геометрии позволила Ф. Клейну и А. Пуанкаре доказать непротиворечивость геометрии Лобачевского относительно евклидовой геометрии посредством указания интерпретации (См. Интерпретация) понятий и предложений неевклидовой геометрии в терминах геометрии Евклида, или, как говорят, построения модели (См. Модель) первой средствами второй. Метод моделей (интерпретаций) стал с тех пор важнейшим методом установления относительной непротиворечивости аксиоматических теорий. В то же время со всей отчётливостью выявилось, что, кроме «естественной» интерпретации (т. е. той, ради уточнения и развития которой данная теория строилась), у аксиоматической теории могут быть и др. интерпретации, причём её можно с равным основанием считать «говорящей» о каждой из них.

    Последовательное развитие этой идеи и стремление точно описать логические средства вывода теорем из аксиом привели Гильберта к концепции формального А. м., характерной для третьей, современной его стадии. Основная идея Гильберта — полная формализация языка науки, при которой её суждения рассматриваются просто как последовательности знаков (формулы), не имеющие как таковые никакого смысла (который они приобретают лишь при некоторой конкретной интерпретации). Это относится и к аксиомам — как общелогическим, так и специфическим для данной теории. Для вывода теорем из аксиом (и вообще одних формул из других) формулируются специальные правила вывода (например, т. н. правило modus ponens — «правило зачёркивания», позволяющее получить В из А и «А влечёт В»). Доказательство в такой теории (исчислении (См. Исчисление), или формальной системе (См. Формальная система))— это просто последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул последовательности по какому-либо правилу вывода (См. Правило вывода).В отличие от таких формальных доказательств, свойства самой формальной системы в целом обсуждаются — а иногда их удаётся и доказать — содержательными средствами т. н. метатеории (См. Метатеория), т. е. теории, рассматривающей данную («предметную») теорию как предмет изучения. На языке метатеории (метаязыка) формулируются и правила вывода предметной теории. По замыслу Гильберта, в рамках созданной им теории доказательств, т.е. допуская в метатеории только т. н. финитные способы рассуждения (не использующие ссылки ни на какие объекты, не имеющие конечного построения), можно было бы доказать непротиворечивость и полноту всей классической математики (т. е. доказуемость каждой формулы, истинной при некоторой определённой интерпретации). Несмотря на ряд значительных результатов в этом направлении, гильбертовская программа в целом (её обычно называют формализмом) невыполнима, т. к., согласно важнейшему результату К. Гёделя (См. Гёдель)(1931), всякая достаточно богатая непротиворечивая формальная система непременно неполна (т. н. теорема о неполноте). Теорема Гёделя свидетельствует об ограниченности А. м. (хотя определённые расширения допускаемых метатеоретических средств и позволили немецкому математику Г. Генцену, П. С. Новикову и др. математикам получить доказательство непротиворечивости формализованной арифметики).

    А. м. подвержен также критике, исходящей из различных семантических (см. Логическая семантика) критериев. Так, интуиционисты (Л. Э. Я. Брауэр, Г. Вейльи др.) не признают обоснованности в применении к бесконечным множествам принципа исключенного третьего (см. Исключённого третьего принцип) между тем этот принцип не только берётся в качестве логической аксиомы в большинстве формальных теорий, но и используется по существу (хотя и неявно) в основных предпосылках гильбертовской программы, согласно которой непротиворечивость теории — достаточное условие её «истинности». Как и интуиционизм, конструктивное направление (См. Конструктивная математика) в математике (в СССР — А. А. Марков и Н. А. Шанин) считает назначением математики изучение не произвольных моделей непротиворечивых формальных систем, а лишь совокупностей объектов, допускающих в определённом смысле эффективное построение.

    Ещё более существенные возражения против А. м. выдвигает ультраинтуиционистская критика, ставящая под сомнение единственность натурального ряда чисел и, тем самым, однозначную определённость понятия теоремы формальной системы. Согласно этой критике, А. м. основан на «принципе локальности для доказательств», предполагающем, что если аксиомы истинны и правила вывода сохраняют истинность, то истинными непременно должны быть и теоремы. Т. о., интуитивное обоснование общеупотребительного принципа математической индукции, согласно ультраинтуиционистской критике, содержит неустранимый порочный круг. Ультраинтуиционизм, не ограничиваясь критикой, предлагает и положительную программу преодоления указанных трудностей.

    Лит.: Начала Евклида, пер. с греч., [т. 1 — 3], М. — Л., 1948 — 50; Клини С. К., Введение в метаматематику, пер. с англ., М., 1957 (библ.); Новиков П. С., Элементы математической логики, М., 1959: Есенин-Вольпин А. С., Об аксиоматическом методе, «Вопросы философии», 1959, № 7; Садовский В. Н., Аксиоматич. метод построения науч. знания, в кн.: Филос. вопросы совр. формальной логики, М., 1962; Hilbert D., Bernays P., Grundlagen der Mathematik, Bd 1 — 2, В., 1934 — 39.

    Ю. А. Гастев, А. С. Есенин-Вольпин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    АКСИОМАТИЧЕСКИЙ МЕТОД - способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Современная энциклопедия

    АКСИОМАТИЧЕСКИЙ МЕТОД, способ построения научной теории, при котором в основу теории кладутся некоторые исходные положения, называемые аксиомами, а все остальные положения теории (вспомогательные - леммы и ключевые теоремы) получаются как логические следствия аксиом. Первым примером применения аксиоматического метода явились "Начала" Евклида (около 300 до нашей эры).

  5. Источник: Современная энциклопедия. 2000.



  6. Большой англо-русский и русско-английский словарь

    axiomatic method

  7. Источник: Большой англо-русский и русско-английский словарь



  8. Научно-технический энциклопедический словарь

    АКСИОМАТИЧЕСКИЙ МЕТОД, метод математических рассуждений, основанный на логическом выводе из некоторых утверждений (аксиом). Этот метод является одной из основ математической науки: его использовали еще в древней Греции, а формализацию его осуществил в начале XX в. Давид ГИЛЬБЕРТ. В аксиоматической системе некоторые неопределяемые единицы (термины) берутся в качестве исходных и описываются набором аксиом. Из них путем логических рассуждений выводятся другие соотношения (теоремы), часто совершенно неожиданные. см. также ГЕДЕЛЬ.

  9. Источник: Научно-технический энциклопедический словарь



  10. Философская энциклопедия

    АКСИОМАТИЧЕСКИЙ МЕТОД

    способ построения науч. теории, при котором в её основу кладутся некоторые исходные положения (суждения) — аксиомы, или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логич. путём, посредством доказательств. Построение науки на основе А. м. обычно наз. дедуктивным (см. Дедукция). Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих их через ранее введённые понятия. В той или иной мере дедуктивные доказательства, характерные для А. м., применяются во мн. науках, однако гл. область его приложения — математика, логика, а также некоторые разделы физики.

    Идея А. м. впервые была высказана в связи с построением геометрии в Др. Греции (Пифагор, Платон, Аристотель, Евклид). Для совр. стадии развития А. м. характерна выдвинутая Гильбертом концепция формального А. м., которая ставит задачу точного описания логич. средств вывода теорем из аксиом. Осн. идея Гильберта — полная формализация языка науки, при которой её суждения рассматриваются как последовательности знаков (формулы), приобретающие смысл лишь при некоторой конкретной интерпретации. Для вывода теорем из аксиом (и вообще одних формул из других) формулируются спец. правила вывода. Доказательство в такой теории (исчислении, или формальной системе) — это некоторая последовательность формул, каждая из которых либо есть аксиома, либо получается из предыдущих формул последовательности по к.-л. правилу вывода. В отличие от таких формальных доказательств, свойства самой формальной системы в целом изучаются содержат. средствами метатеории. Осн. требования, предъявляемые к аксиоматич. формальным системам,— непротиворечивость, полнота, независимость аксиом. Гильбертовская программа, предполагавшая возможность доказать непротиворечивость и полноту всей классич. математики, в целом оказалась невыполнимой. В1931 Гёделъ доказал невозможность полной аксиоматизации достаточно развитых науч. теорий (напр., арифметики натуральных чисел), что свидетельствовало об ограниченности А. м. Осн. принципы А. м. были подвергнуты критике сторонниками интуиционизма и конструктивного направления.

    см. такжеФормализм в математике и логике, Теория.

    К л и н и С. К., Введение в метаматематику, пер. с англ., М.,1957 (лит.); Садовский В. Н., А. м. построения науч. знания, в кн.: Филос. вопросы совр. формальной логики, М.,1962; Столл Р., Множества. Логика. Аксиоматич. теории, пер. с англ., М.,1968; Н о в и к о в П. С., Элементы математич. логики, M., 19732.

  11. Источник: Философская энциклопедия



  12. Новейший философский словарь

    АКСИОМАТИЧЕСКИЙ МЕТОД (греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные (»принципы») и требующие доказательства (»доказываемые»). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат «Начала» Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие «аксиома». Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К, Геде-лем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как «полуаксиоматический») и методом математической гипотезы. Гипотетико-де-дуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики «во всех мирах»; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

  13. Источник: Новейший философский словарь



  14. Энциклопедический словарь

    аксиомати́ческий ме́тод

    способ построения научной теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путём логической дедукции получать утверждения (теоремы) данной теории.

    * * *

    АКСИОМАТИЧЕСКИЙ МЕТОД

    АКСИОМАТИ́ЧЕСКИЙ МЕ́ТОД, способ построения научной теории в виде системы аксиом (постулатов(см. ПОСТУЛАТ)) и правил вывода (аксиоматики), позволяющих путем логической дедукции(см. ДЕДУКЦИЯ) получать утверждения (теоремы) данной теории.

  15. Источник: Энциклопедический словарь



  16. Начала современного естествознания

    метод построения научной теории как системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путем логической дедукции получать утверждения (теоремы) данной теории.

  17. Источник: Начала современного естествознания



  18. Математическая энциклопедия

    - способ построения научной теории, при к-ром в основу теории кладутся нек-рые исходные положения, наз. аксиомами теории, а все остальные предложения теории получаются как логич. следствия аксиом.

    В математике А. м. зародился в работах древнегреческих геометров. Блестящим, остававшимся единственным вплоть до 19 в. образцом применения А. м. была геометрич. система, известная под назв. "Начал" Евклида (ок. 300 до н. э.). Хотя в то время не вставал еще вопрос об описании логич. средств, применяемых для извлечения содержательных следствий из аксиом, в системе Евклида уже достаточно четко проведена идея получения всего основного содержания геометрич. теории чисто дедуктивным путем из нек-рого, относительно небольшого, числа утверждений - аксиом, истинность к-рых представлялась наглядно очевидной.

    Открытие в нач. 19 в. неевклидовой геометрии Н. И. Лобачевским и Я. Больяй (J. Bolyai) явилось толчком к дальнейшему развитию А. м. Они установили, что, заменив привычный и, казалось бы, единственно "объективно истинный" V постулат Евклида о параллельных его отрицанием, можно развивать чисто логич. путем геометрич. теорию, столь же стройную и богатую содержанием, как и геометрия Евклида. Этот факт заставил математиков 19 в. обратить специальное внимание на дедуктивный способ построения математич. теорий, что повлекло за собой возникновение новой проблематики, связанной с самим понятием А. м., и формальной (аксиоматической) математич. теории. По мере того как накапливался опыт аксиоматич. изложения математич. теорий - здесь надо отметить прежде всего завершение логически безупречного (в отличие от "Начал" Евклида) построения элементарной геометрии [М. Паш (М. Pasch), Дж. Пеано (G. Реаnо), Д. Гильберт (D. Hilbert)] и первые попытки аксиоматизации арифметики (Дж. Пеано),- уточнялось понятие формальной аксиоматич. системы (см. ниже); возникала специ-фич. проблематика, на основе к-рой выросла так наз. доказательств теория как основной раздел современной математич. логики.

    Понимание необходимости обоснования математики и конкретные задачи в этой области зародились в более или менее отчетливой форме уже в 19 в. При этом, с одной стороны, уточнение основных понятий и сведение более сложных понятий к простейшим на точной и логически все более строгой основе проводились гл. обр. в области анализа [ О. Коши (A. Cauchy), теоретико-функциональные концепции Б. Больцано (В. Bolzano) и К. Вейерштрасса (К. Weierstrass), континуум Г. Кантора (G. Cantor) и Р. Дедекинда (R. Dedekind)]; с другой стороны, открытие неевклидовых геометрий стимулировало развитие А. м., возникновение новых идей и постановку проблем более общего метаматематич. характера, прежде всего проблем, связанных с понятием произвольной аксиоматич. теории, таких, как проблемы непротиворечивости, полноты и независимости той или иной системы аксиом. Первые результаты в этой области принес метод интерпретаций, к-рый грубо может быть описан следующим образом. Пусть каждому исходному понятию и отношению данной аксиоматич. теории Т поставлен в соответствие нек-рый конкретный математич. объект. Совокупность таких объектов наз. полем интерпретации. Всякому утверждению теории Т естественным образом ставится теперь в соответствие нек-рое высказывание об элементах поля интерпретации, к-рое может быть истинным или ложным. Тогда говорят, что утверждение теории Т, соответственно, истинно или ложно в данной интерпретации. Поле интерпретации и его свойства сами обычно являются объектом рассмотрения к.-л., вообще говоря другой, математич. теории T1, к-рая, в частности, тоже может быть аксиоматической. Метод интерпретаций следующим образом позволяет устанавливать факт относительной непротиворечивости, т. е. доказывать суждения типа: "если теория Т 1 непротиворечива, то непротиворечива и теория Т". Пусть теория Т проинтерпретирована в теории Т 1 таким образом, что все аксиомы теории Т интерпретируются истинными суждениями теории Т 1. Тогда всякая теорема теории Т, т. е. всякое утверждение А, логически выведенное из аксиом в Т, интерпретируется в Т 1 нек-рым утверждением , выводимым в Т 1 из интерпретаций аксиом А i , и, следовательно, истинным. Последнее утверждение опирается на еще одно неявно делаемое нами допущение известного подобия логич. средств теорий Т и T1, но практически это условие обычно выполняется. (На заре применения метода интерпретаций об этом допущении специально даже не задумывались: оно представлялось само собой разумеющимся; на самом деле в случае первых опытов доказательства теорем об относительной непротиворечивости логич. средства теорий Т и T1 просто совпадали - это была классич. логика предикатов.) Пусть теперь теория Т противоречива, т. е. нек-рое утверждение Аэтой теории выводимо в ней вместе со своим отрицанием. Тогда из вышесказанного следует, что утверждения и будут одновременно истинными утверждениями теории Т 1 т. е., что теория T1 противоречива. Этим методом была, напр., доказана [Ф. Клейн (F. Klein), А. Пуанкаре (Н. Poincare)] непротиворечивость неевклидовой геометрии Лобачевского в предположении, что непротиворечива геометрия Евклида; а вопрос о непротиворечивости гильбертовой аксиоматизации евклидовой геометрии был сведен (Д. Гильберт) к проблеме непротиворечивости арифметики. Метод интерпретаций позволяет также решать вопрос о независимости систем аксиом: для доказательства того, что аксиома Атеории Т не зависит от остальных аксиом этой теории, т. е. не выводима из них, и, следовательно, существенно необходима для получения всего объема данной теории, достаточно построить такую интерпретацию теории Т, в к-рой аксиома Абыла бы ложна, а все остальные аксиомы этой теории истинны. Иной формой этого способа доказательства независимости Аявляется установление непротиворечивости теории, к-рая получается, если в данной теории Таксиому Азаменить ее отрицанием. Упомянутое выше сведение проблемы непротиворечивости геометрии Лобачевского к проблеме непротиворечивости евклидовой геометрии, а этой последней - к вопросу о непротиворечивости арифметики имеет своим следствием утверждение, что постулат Евклида не выводим из остальных аксиом геометрии, если только непротиворечива арифметика натуральных чисел. Слабая сторона метода интерпретаций состоит в том, что в вопросах непротиворечивости и независимости систем аксиом он дает возможность получать результаты, носящие неизбежно лишь относительный характер. Но важным достижением этого метода стал тот факт, что с его помощью была выявлена на достаточно точной основе особая роль арифметики как такой математич. теории, к вопросу о непротиворечивости к-рой сводится аналогичный вопрос для целого ряда других теорий.

    Дальнейшее развитие - а в известном смысле это была вершина - А. м. получил в работах Д. Гильберта и его школы в виде так наз. метода формализма в основаниях математики. В рамках этого направления была выработана следующая стадия уточнения понятия ак-сиоматич. теории, а именно понятие формальной системы. В результате этого уточнения оказалось возможным представлять сами математич. теории как точные математич. объекты и строить общую теорию, или метатеорию, таких теорий. При этом соблазнительной представлялась перспектива (и Д. Гильберт был в свое время ею увлечен) решить на этом пути все главные вопросы обоснования математики. Основным понятием этого направления является понятие формальной системы. Всякая формальная система строится как точно очерченный класс выражений - формул, в к-ром нек-рым точным образом выделяется подкласс формул, наз. теоремами данной формальной системы. При этом формулы формальной системы непосредственно не несут в себе никакого содержательного смысла, и их можно строить из произвольных, вообще говоря, значков или элементарных символов, руководствуясь только соображениями технического удобства. На самом деле способ построения формул и понятие теоремы той или иной формальной системы выбираются с таким расчетом, чтобы весь этот формальный аппарат можно было применять для выражения, возможно более адекватного и полного, той или иной конкретной математической (и не математической) теории, точнее, как ее фактич. содержания, так и ее дедуктивной структуры. Общая схема построения (задания) произвольной формальной системы Sтакова.

    I. Язык системы S:

    а) алфавит- перечень элементарных символов системы;

    б) правила образования (синтаксис) - правила, по к-рым из элементарных символов строятся формулы системы S;при этом последовательность элементарных символов считается формулой тогда и только тогда, когда она может быть построена с помощью правил образования.

    II. Аксиомы системы S. Выделяется нек-рое множество формул (обычно конечное или перечислимое), к-рые наз. аксиомами системы S.

    III. Правила вывода системы S. Фиксируется (обычно конечная) совокупность предикатов на множестве всех формул системы S. Пусть - к.-л. из этих предикатов если для данных формул утверждение истинно, то говорят, что формула непосредственно следует из формул по правилу

    Заданием I, II, III исчерпывается задание формальной системы Sкак точного математич. объекта, поскольку понятие теоремы или выводимой формулы системы Sобразуется для всех формальных систем следующим единообразным способом (при этом степень точности определяется уровнем точности задания алфавита, правил образования и правил вывода, т. е. предикатов (.Выводом системы Sназ. всякая конечная последовательность формул системы S, в к-рой каждая формула либо является аксиомой системы S, либо непосредственно следует из к.-л. предшествующих ей в этой последовательности формул по одному из правил вывода системы S. Формула системы Sназ. теоремой этой системы, если существует вывод системы S, заканчивающийся этой формулой.

    Всякую конкретную математич. теорию Т можно перевести на язык подходящей формальной системы Sтаким образом, что каждое осмысленное (ложное или истинное) предложение теории Т выражается нек-рой формулой системы S.

    Естественно было надеяться, что этот метод формализации позволит строить все положительное содержание математич. теорий на такой точной и, казалось бы, надежной основе, как понятие выводимой формулы (теоремы формальной системы), а такие принципиальные вопросы, как проблема непротиворечивости математич. теорий, решать в форме доказательств соответствующих утверждений о формализующих эти теории формальных системах. Поскольку формальные системы описанного выше типа сами оказываются точными, или, как говорили в школе Гильберта, финитными, математич. объектами, можно было ожидать, что удастся получить финитные доказательства утверждений о непротиворечивости, т. е. доказательства, к-рые в определенном смысле были бы эффективными, не зависящими от тех мощных средств, вроде абстракции актуальной бесконечности, к-рые в классических математич. теориях как раз и являются причиной трудностей в их обосновании. Таким образом, требование финитности средств, применяемых для получения результатов о формальных системах, в частности теорем о их непротиворечивости, было вполне закономерной особенностью формалистич. программы Гильберта. Однако результаты К. Гёделя (К. Godel) начала 30-х гг. 20 в. привели к краху основных надежд, связывавшихся с этой программой. Гёдель показал:

    1) Всякая естественная, непротиворечивая формализация Sарифметики или любой другой математич. теории, содержащей арифметику (напр., теории множеств), неполна и неисполнима в том смысле, что: а) в Sимеются (содержательно истинные) неразрешимые формулы, т. е. такие формулы А, что ни А, ни отрицание Ане выводимы в S (неполнота формализованной арифметики), б) каким бы конечным множеством дополнительных аксиом (напр., неразрешимыми в Sформулами) ни расширить систему S, в новой, усиленной таким образом, формальной системе неизбежно появятся свои неразрешимые формулы (непополнимость; см. [5], а также Гёделя теорема о неполноте).

    2) Если формализованная арифметика в действительности непротиворечива, то хотя утверждение о ее непротиворечивости выразимо на ее собственном языке, однако доказательство этого утверждения, проведенное средствами, формализуемыми в ней самой, невозможно.

    Это означает, что уже для арифметики принципиально невозможно исчерпать весь объем ее содержательно истинных суждений классом выводимых формул какой бы то ни было формальной системы, и что нет никакой надежды получить когда-либо финитное доказательство непротиворечивости арифметики, т. к., по-видимому, всякое разумное уточнение понятия финитного доказательства оказывается формализуемым в формальной арифметике.

    Все это ставит определенные границы возможностям А. м. в том его виде, к-рый он приобрел в рамках гиль-бертовского формализма. Однако и в этих границах он сыграл и продолжает играть важную роль в основаниях математики. Так, напр., уже после описанных результатов Гёделя им же в 1938-40, а затем П. Коэном (P. Cohen) в 1963 на основе аксиоматич. подхода с применением метода интерпретаций были получены фундаментальные результаты о совместимости и независимости аксиомы выбора и континуум-гипотезы в теории множеств (см. [6], [7]). Что касается такого основного вопроса оснований математики, как проблема непротиворечивости, то после результатов Гёделя стало ясно, что для его решения, по-видимому, не обойтись без других, отличных от финитистских, средств и идей. Здесь оказались возможными разные подходы, не для всех математиков в равной степени приемлемые или убедительные, в частности в виду существования различных точек зрения на допустимость тех или иных логич. средств. Из результатов о непротиворечивости формальных систем следует прежде всего указать на доказательство непротиворечивости формализованной арифметики (см. [8]), к-рое опирается на бесконечную индукцию до нек-рого счетного трансфинита. Другим, более поздним, примером такого рода является попытка обоснования утверждения о непротиворечивости формальной системы анализа с помощью нек-рых идей интуиционизма (см. [9]).

    Лит.:[1] "Начала" Евклида, пер. с греч., кн. 1-15, М.- Л., 1948-50; [2] Каган В. Ф., Основания геометрии, ч. 1, М.- Л., 1949; [3] Гильберт Д., Основания геометрии, пер. с нем., М.- Л., 1948; [4] Реаnо G., "Rivista di matematica", 1891, v. 1, p. 1 - 10; [5] Godel K., "Monatsh. Math. Phys.", 1931, Bd 38, S. 173-98; [6] Гёдель К., "Успехи матем. наук", 1948, т. 3, в. 1, с. 96-149; [7] Коэн П. Д ж., Теория множеств и континуум-гипотеза, пер. с англ., М., 1969; [8] Генцен Г., Непротиворечивость чистой теории чисел, в кн.: Математическая теория логического вывода, М., 1967, с. 77-153; [9] Spector С., в кн.: Recursive function theory, Providence, 1962, p. 1-27. П. С. Новиков.

  19. Источник: Математическая энциклопедия



  20. Dictionnaire technique russo-italien

    metodo assiomatico

  21. Источник: Dictionnaire technique russo-italien



  22. Русско-украинский политехнический словарь

    аксіомати́чний ме́тод

  23. Источник: Русско-украинский политехнический словарь



  24. Русско-украинский политехнический словарь

    аксіомати́чний ме́тод

  25. Источник: Русско-украинский политехнический словарь



  26. Естествознание. Энциклопедический словарь

    способ построения науч. теории в виде системы аксиом (постулатов) и правил вывода (аксиоматики), позволяющих путём логич. дедукции получать утверждения (теоремы) данной теории.

  27. Источник: Естествознание. Энциклопедический словарь



  28. Энциклопедия социологии

    . см. МЕТОД АКСИОМАТИЧЕСКИЙ.

  29. Источник: Энциклопедия социологии



  30. Социология: Энциклопедия

    (греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость А.М. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные ("принципы") и требующие доказательства ("доказываемые"). В своем развитии А.М. прошел три этапа.

    На первом этапе А.М. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат "Начала" Евклида. На втором этапе Д. Гильберт внес формальный критерий применения А.М. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе А.М. становится формализованным. Соответственно, изменилось и понятие "аксиома". Если на первом этапе развития А.М. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в А.М. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. Геделем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А.М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как "полуаксиоматический") и методом математической гипотезы. Гипотетико-дедуктивный метод, в отличие от А.М., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений А.М.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики "во всех мирах"; снять требование равноправности аксиом. С другой стороны, А.М., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

    В.Л. Абушенко

  31. Источник: Социология: Энциклопедия



  32. Словарь лингвистических терминов Т.В. Жеребило

  33. Источник:



  34. Словарь терминов логики

  35. Источник:



  36. Большой Энциклопедический словарь

  37. Источник: