Большая Советская энциклопедия

    закон фаз, соотношение термодинамики (См. Термодинамика), согласно которому для любой равновесной системы сумма числа фаз φ и вариантности (См. Вариантность)v равна числу Компонентовk, увеличенному на число параметров n, определяющих равновесное состояние системы: φ + v = k + n. При этом параметры состояния – температура Т, давление р, напряжённости электрического и магнитного полей и др. – должны быть одинаковыми во всех фазах. Если состояние системы может изменяться лишь под действием Т и р, причём размеры фаз таковы, что можно пренебречь величиной их поверхностной энергии, то Ф. п. принимает вид:

    v = k + 2-φ.

    Для конденсированных систем (например, сплавов (См. Сплавы) металлов), где р либо постоянно, либо изменяется так незначительно, что не влияет на состояние равновесия, Ф. п. принимает вид: v = k + 1 – φ; при переменном р и постоянном Т его вид тот же. Если состав сосуществующих фаз одинаков, как в максимумах и минимумах диаграмм состав – давление пара (см. Коновалова законы), а также диаграмм состав – температура кристаллизации (см. Розебома правила), система ведёт себя как однокомпонентная, т. е. для неё v = 3 – φ (при переменных ри Т) или v =2 – φ (при постоянном рили Т). Наконец, когда в системе образуется химическое соединение, то k равно разности между числом химически индивидуальных веществ и числом независимых реакций.

    Примеры. 1) Одно вещество (например, сера) может находиться: а) в одной фазе, в частности газообразной (v = 1 – 1 + 2 = 2), система дивариантна, т. е. Т и р можно менять в определённых пределах независимо друг от друга; б) в двух фазах, например в виде кипящей жидкости, находящейся в равновесии с паром (v =1 – 2 + 2 = 1), система моновариантна, возможно изменение только Т или р,так как оба параметра связаны функциональной зависимостью (см. Клапейрона – Клаузиуса уравнение (См. Клапейрона - Клаузиуса уравнение)), в) в трёх фазах, в частности в виде ромбической серы в равновесии с жидкой и газообразной (v = 1 – 3 + 2 =0), система нонвариантна; фазы сосуществуют при единственных значениях р и Т, см. Тройная точка. 2) Система, состоящая из воды и соли, тривариантна при наличии одной фазы (например, для раствора можно менять в известных пределах Т, р и концентрацию раствора с) и нонвариантна при наличии четырёх фаз (водного раствора, соли, льда и пара, эти фазы могут сосуществовать при единственном сочетании значений Т, ри с).

    Ф. п. вывел Дж. Гиббс (опубликовано в 1876). Его широко использовали в конце 19 – начале 20 вв. Я. Вант-Гофф, Х. Розебом и их ученики, Н. С. Курнаков и его школа. Ф. п. имеет особенно большое значение при исследовании гетерогенных систем (См. Гетерогенная система), в частности в металловедении (См. Металловедение), металлургии (См. Металлургия), петрографии (См. Петрография), химической технологии (См. Химическая технология) (см. также Диаграмма состояния, Диаграмма химическая, Физико-химический анализ).

    Лит.: Гиббедж. В., О существующих фазах материи, в его кн.: Термодинамические работы, пер. с англ., М. – Л., 1950, с. 143–48; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. – Л., 1947; Древинг В. П., Калашников Я. А., Правило фаз с изложением основ термодинамики, [2 изд., М.], 1964; Сторонкин А. В., Термодинамика гетерогенных систем, ч. 1–3, [Л.], 1967–69; Карапетьянц М. Х., Химическая термодинамика, 3 изд., М., 1975.

    М. Х. Карапетьянц.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Физическая энциклопедия

    ФАЗ ПРАВИЛО

    (см. ГИББСА ПРАВИЛО ФАЗ).

  3. Источник: Физическая энциклопедия



  4. Энциклопедия Кольера

    закон, выведенный в 1876 Дж. Гиббсом из термодинамических принципов и описывающий условия равновесия в гетерогенной системе. Прежде чем формулировать его, определим такие понятия, как фаза, число компонентов и вариантность. Фаза - это однородная часть системы с определенными физическими свойствами, которая отделена от других частей четкой границей раздела. Например, лед, вода и пар - три фазы, в которых может находиться водная система. Число компонентов определяется минимальным числом независимых химических веществ, которые задают состав каждой из фаз. Для водной системы имеется только один такой компонент - вода. Вариантность (число степеней свободы) - это число параметров состояния, таких, как температура, давление или концентрация, которые необходимо задать, чтобы полностью определить равновесное состояние системы. Если система находится вне поля сил (гравитационных, электрических, магнитных, сил поверхностного натяжения), а равновесие между фазами определяется только температурой, давлением и составом, то вариантность F связана с числом компонентов С и фаз Р, находящихся в равновесии, следующим соотношением (правило фаз Гиббса): F = C - P + 2 Для однокомпонентной системы C = 1, и в соответствии с правилом фаз F = 3 - P, или F + P = 3, т.е. сумма вариантности и числа фаз, находящихся в равновесии, должна равняться 3. Если имеется только одна фаза (например, вода), то система является дивариантной. Это значит, что два параметра (например, температура и давление) могут меняться (конечно, в определенных пределах) без появления новой фазы. Если в равновесии находятся две фазы (например, вода и насыщенный пар), то температура и давление связаны друг с другом функциональной зависимостью, т.е. произвольно можно выбирать лишь одну из них: если подвергнуть систему большему давлению, чем равновесное, то пар превратится в воду. Такую систему называют моновариантной. И наконец, трехфазная система нонвариантна (инвариантна). Это означает, что три фазы однокомпонентной системы (например, лед, вода и пар) могут находиться в равновесии лишь при определенных температуре и давлении.

    См. также

    ФИЗИЧЕСКАЯ ХИМИЯ;

    ВОДА, ЛЕД И ПАР.

    ЛИТЕРАТУРА

    Гиббс Дж. Термодинамические работы. М. - Л., 1950 Древинг В.П., Калашников Я.А. Правило фаз с изложением основ термодинамики. М., 1964 Глазов В.Л., Павлова Л.М. Химическая термодинамика и фазовые равновесия. М., 1988

  5. Источник: Энциклопедия Кольера



  6. Химическая энциклопедия

    закон, связывающий число фаз, находящихся в термодинамически равновесной системе, с числом компонентов системы, числом ее степеней свободы и числом внеш. параметров, определяющих состояние системы. При этом под фазой подразумевают однородную по хим. составу и термодинамич. св-вам часть системы, отделенную от др. частей (фаз) пов-стями раздела. На этих пов-стях скачкообразно меняются св-ва системы (состав, плотность, параметры кристаллич. решетки и т. п.). Под числом фаз f понимают кол-во разл. фаз. Напр., вода в равновесии со льдом образует двухфазную систему; твердая соль в равновесии с ее насыщ. водным р-ром и паром - трехфазную систему. Газообразные в-ва, как правило, образуют всегда одну фазу (при высоких давлениях газовые смеси могут расслаиваться с появлением двух фаз). Число фаз в системе, жидких и особенно кристаллических, вообще говоря, не ограничено, т. к. жидкости и кристаллич. тела далеко не всегда могут смешиваться в любых отношениях.

    Иногда понятие фазы определяют, исходя из идентичности не только термодинамических, но всех физ. св-в. Напр., в-ва, образующие оптически активные право- и левовращающие кристаллы типа кварца, NaClO3 (имеется в виду поворот плоскости поляризации света), рассматривают как две разл. фазы, отличающиеся знаком вращения, кристаллографич. параметрами. Однако по своим термодинамич. св-вам такие в-ва идентичны и традиционно их считают одной фазой.

    Другой дискуссионный вопрос - это в-ва с фазовыми превращениями второго рода, к к-рым относятся переходы типа порядок - беспорядок, магн. превращения в точках Кюри и Нееля, др. превращения (см. Полиморфизм, Фазовые переходы).В точках переходов второго рода первые производные термодинамич. потенциалов (энтальпия, уд. объем и т. п.) не претерпевают разрыва непрерывности, но производные высших порядков (теплоемкость, сжимаемость) имеют аномалии (разрывы непрерывности). Для данного в-ва такие точки являются границей локальной устойчивости определенных форм, к-рые могут находиться в равновесии только в точках перехода (см. Фазовое равновесие). В рамках классич. термодинамики состояния в-ва, связанные переходом второго рода, считаются одной фазой.

    Числом компонентов k системы наз. наименьшее число исходных в-в, достаточное для образования всех фаз данной системы. Число компонентов равно числу исходных в-в, если в системе исходные в-ва не вступают друг с другом в хим. р-ции. Если же между исходными в-вами имеют место р-ции, в-ва м. б. связаны определенными соотношениями (ур-ниями хим. равновесия, начальными условиями); в этом случае число компонентов равно разности между числом исходных в-в и числом независимых р-ций между ними. Выбор компонентов произволен, но число компонентов k - важная характеристика, определяющая св-ва системы. Напр., в системе из шести солей (NaCl, Na2SO4, NaNO3, KCl, K2SO4, KNO3) и воды (7-е в-во) имеют место две независимые р-ции обмена: NaCl+KNO35010-39.jpg KCl+ NaNO3; Na2SO4 + + 2KCl5010-40.jpgK2SO4 + 2NaCl. Третья возможная р-ция обмена: Na2SO4 + 2KNO35010-41.jpgK2SO4 + 2NaNO3 не является независимой, т. к. является результатом сложения двух первых р-ций. Следовательно, число компонентов этой системы к =7 Ч2 = 5. Этот результат не изменится и в том случае, если учесть образующиеся в этой системе кристаллогидраты или др. в-ва, т. к. с каждым образующимся в-вом добавляется и связанная с ним р-ция (см. также Многокомпонентные системы).

    Под числом степеней свободы, или вариантностью, v системы понимается число параметров состояния, таких, как давление, т-ра, концентрации в-в, к-рые можно изменять в нек-ром интервале независимо друг от друга без изменения числа фаз f. Напр., при двухфазном равновесии воды и насыщенного пара (f = 2), выбрав определенную т-ру, нельзя произвольно выбирать давление, т. к. каждой т-ре отвечает определенное давление насыщ. пара (и наоборот, выбрав определенное давление, нельзя произвольно менять т-ру), т. е. вариантность v = 1.

    Внеш. параметры, определяющие состояние системы и имеющие одно и то же значение для всех фаз системы, наз. факторами равновесия. Обычно учитывается влияние на систему только двух внеш. параметров - т-ры и давления. В этом случае Ф. п. наз. правилом фаз Гиббса и записывается в виде:

    v = k - f +2

    Для конденсированных систем, т. е. состоящих из кристаллич. и жидких фаз (напр., металлич. сплавов), влиянием давления, если оно не слишком сильно отличается от атмосферного, можно пренебречь, тогда Ф. п. запишется в виде: v = k - f +1

    В нек-рых случаях состояние системы может определяться большим числом факторов равновесия п, поэтому в общем виде Ф. п. имеет вид:

    v = k Чf + n

    К числу таких факторов относится, в частности, степень дисперсности (поверхностная энергия), т. к. давление пара над мелкими каплями больше, чем над крупными, также растворимость мелких кристаллов выше, чем крупных. К числу внеш. факторов, к-рые могут оказывать влияние на состояние системы, относятся напряженности полей (элект-рич., магнитного, гравитационного, упругие напряжения в слитке). Во всех этих случаях n > 2, соотв. число степеней свободы системы больше, чем определенное по обычной форме Ф. п.

    Если равновесное состояние системы определяется двумя параметрами (в наиб, частом случае т-рой и давлением) и n Ч2, то f5010-42.jpgk + 2, т. е. макс. число фаз, равновесно сосуществующих в системе, не должно превышать числа компонентов более, чем на 2. Следовательно, в однокомпонентной системе макс, число равновесно сосуществующих фаз равно 3, в двойной (двухкомпонентной) системе - 4 (напр., в системе соль - вода могут сосуществовать кристаллы соли и льда, насыщ. р-р и пар), в тройной системе 5 и т. д. Если nм. б. больше 2, возможны случаи сосуществования большего числа фаз при строго фиксированных значениях всех параметров. Очевидно, при макс, числе фаз вариантность системы v = 0, т. е. система не имеет степеней свободы (система и он вариантна, или инвариантна). Такое равновесное состояние возможно только при определенных значениях всех параметров (т-ры, давления, концентрации в-в). Примером является тройная точка однокомпонентной системы, в к-рой в равновесии находятся, напр., кристаллы, расплав и пар. Ей отвечают строго определенные т-ра и давление, изменение любого из этих параметров приводит к исчезновению одной из фаз (см. Критические явления).

    Если f = 1, то v = 1, система одновариантна(мо-новариантна). В этом случае только один параметр (напр., т-ра) м. б. изменен произвольно без изменения числа фаз, тогда как значения других параметров (давления, концентрации в-в) полностью определяются т-рой. При k =f и v = 2 система дивариантна. В ней можно независимо менять (в определенных пределах) два параметра без изменения числа фаз. Большие значения степеней свободы наблюдаются в системах с числом компонентов 2 и более.

    Ф. п. применительно к геохимии было выведено В. M. Гольдшмидтом (1911) в след, формулировке: при произвольных давлении и т-ре (т. е. принимая природную систему дивариантной) макс, число сосуществующих минералов равно числу компонентов, f5010-43.jpgk ("минералогич. правило фаз"). Более точная формулировка принадлежит Д. С. Коржинско-му (1942): наиб, число совместно образующихся минералов равно числу компонентов за вычетом числа вполне подвижных компонентов (в-ва с высокой диффузионной способностью, концентрация к-рых в р-ре практически постоянна) и числа компонентов-примесей, к-рые вследствие малой концентрации при кристаллизации не переходят в твердую фазу.

    Следствием Ф. п. является правило соприкасающихся пространств состояния, к-рое связано с размерностью Rдиаграммы состояния (для плоской диаграммы R=2, для пространственной - R =3 и т. д.) и размерностью R' геом. элемента, по к-рому граничат между собой области существования, или пространства состояния (для точки R' = О, для линии R' = 1, для пов-сти R'= 2, для гиперповерхностей R' = 3). Л. С. Палатником и А. И. Ландау было выведено (1961) правило, связывающее 5010-44.jpg- кол-во меняющихся (исчезающих и появляющихся) фаз в соприкасающихся пространствах состояния с размерностями R' и R: R=R-5010-45.jpg При этом нонвариантныеравновесия, напр, трехфазные горизонтали на диаграммах состояния двойных систем, нужно рассматривать как вырожденные пространства состояния. Следовательно, если два разных поля (в случае плоской диаграммы) соприкасаются по линии, то они различаются между собой на одну фазу; если поля соприкасаются в точке, то различаются на две фазы. Два однофазных пространства (5010-46.jpg=2) могут соприкасаться только в точке (напр., в максимуме на кривой ликвидуса фазы переменного состава).

    Ф. п. используют в неорг. и орг. химии, хим. технологии, галургии, металлургии, металловедении, петрографии и т. п., при исследовании диаграмм состояния гетерогенных систем. Оно позволяет рассчитывать возможное число фаз и степеней свободы в равновесных системах при любом числе компонентов (исходных в-в). Особенно широко используется Ф. п. в физико-химическом анализе.

    Ф. п. было выведено Дж. У. Гиббсом в 1876. Практич. его использование в химии для изучения и классификации гетерогенных равновесий было начато в работах Б. Розебома (1889).

    Лит.: Палатник Л. С., Ландау А. И., Фазовые равновесия в многокомпонентных системах, Хар., 1961; Древинг В. П., Калашников Я. А., Правило фаз с изложением основ термодинамики, 2 изд., M., 1964; Findlay A., The phase rule and its application, N. Y., 1951; см. также лит. к ст. Диаграмма состояния, Фазовое равновесие, Физико-химический анализ.

    П. И. Федоров.

  7. Источник: Химическая энциклопедия



  8. Энциклопедический словарь

    фаз пра́вило

    см. Гиббса правило фаз.

  9. Источник: Энциклопедический словарь



  10. Большой энциклопедический политехнический словарь

    закон термодинамики и физ. химии. Согласно Ф. п. для термодинамической системы, находящейся в состоянии равновесия термодинамического, соотношение между числом фаз п, числом компонентов k и числом термодинамич.степеней свободы т имеет вид: m = k п + 2. Из Ф. п. следует, напр., что для однокомпонентной системы т = 3 - п, т. е. такая система не может содержать больше трёх равновесно сосуществующих фаз (см. Тройная точка).

  11. Источник: Большой энциклопедический политехнический словарь



  12. Естествознание. Энциклопедический словарь

    см. Гиббса правило фаз.

  13. Источник: Естествознание. Энциклопедический словарь