«Кислоты и основания»

Кислоты и основания в словарях и энциклопедиях

Значение слова «Кислоты и основания»

Источники

    Большая Советская энциклопедия

    классы химических соединений. Обычно кислотами называют вещества, содержащие водород (HCl, HNO3, H2SO4, CH3COOH и т.д.) и диссоциирующие в воде с образованием ионов Н+ (точнее, ионов гидроксония H3O+). Присутствие этих ионов обусловливает характерный острый вкус водных растворов кислот, а также их способность изменять окраску индикаторов химических (См. Индикаторы химические). По числу отщепляющихся протонов различают кислоты одноосновные (например, азотная HNO3, соляная HCl, уксусная CH3COOH), двухосновные (серная H2SO4, угольная H2CO3), трехосновные (ортофосфорная H3PO4). Чем больше ионов гидроксония присутствует в водном растворе кислоты, т. е. чем выше степень диссоциации последней, тем кислота сильнее. Кислоты, полностью диссоциированные в разбавленных растворах, называют сильными. К слабым относятся кислоты с константой ионизации (характеризующей степень диссоциации кислоты в растворе, например, при 25 °С) ниже 10-5 (уксусная 1,8․10-5, синильная 7,9․10-10). Диссоциация многоосновных кислот происходит в несколько ступеней, каждая из которых имеет свою константу ионизации. Например, константа ионизации H3PO4 на

    Н+ и H2PO-4 7․10-3, H2PO4- на Н+ и HPO42- 8․10-8, HPO42- на Н+ и PO43- 4,8․10-13. Об органических кислотах см. также Карбоновые кислоты. Основаниями обычно называют вещества, содержащие гидроксильную группу OH [КОН, NaOH, Ca (OH)2 и др.] и способные диссоциировать в водном растворе с образованием гидроксильных ионов OH-. Большинство оснований нерастворимо в воде. Растворимые в воде основания называют щелочами (См. Щёлочи).Присутствием ионов OH- и объясняется характерный щелочной вкус растворов щелочей, а также их способность изменять окраску индикаторов. Основания с 1, 2, 3 гидроксильными группами называются соответственно одно-, двух-, трёхкислотными. Не полностью диссоциирующие при растворении в воде основания называются, как и кислоты, слабыми. К сильным основаниям относятся гидроокиси калия KOH, натрия NaOH, бария Ba (OH)3. О принципах установления названий К. и о. см. Номенклатура неорганических соединений.

    Понятия К. и о. возникли ещё на заре развития химии. В 1778 французский химик А. Л. Лавуазье попытался объяснить особенности свойств кислот содержанием кислорода. Несостоятельность такого мнения стала очевидной, когда оказалось, что многие кислородсодержащие вещества (окислы металлов, щелочи, соли и др.) не проявляют кислотных свойств, а ряд типичных кислот (соляная, синильная, плавиковая и др.), как показали английский учёный Г. Дэви (1810) и французский учёный Ж. Л. Гей-Люссак (1814), не содержат кислорода. Шведский химик И. Я. Берцелиус (1812—19) видел причину кислотных и основных свойств в электрической природе окислов: электроотрицательные окислы неметаллов (и некоторых металлов — хрома, марганца) он считал кислотами, а электроположительные окислы металлов — основаниями. В 1814 Г. Дэви предложил признать носителем кислотных свойств водород, входящий в состав всех известных тогда соединений, обладающих кислотными свойствами, а немецкий химик Ю. Либих (1833) внёс существенное уточнение, что кислотные свойства вещества обусловлены не всеми содержащимися в нём атомами водорода, а лишь теми из них, которые могут замещаться металлом с образованием солей (См. Соли). После появления (1884—87) теории электролитической диссоциации (См. Электролитическая диссоциация) шведского учёного С. Аррениуса кислотами стали называть соединения, при диссоциации которых в водном растворе образуются ионы водорода Н+, а основаниями — соединения, диссоциирующие с отщеплением иона гидроксила OH-. По мере развития теории растворов (См. Растворы) стало ясно, что важную роль в процессе электролитической диссоциации веществ играет взаимодействие как самих веществ, так и продуктов их диссоциации с растворителем. Было выяснено также, что ион Н+ не может находиться в растворе в свободном виде: вследствие очень высокой плотности заряда он прочно соединяется с молекулами растворителя (сольватируется) и реально существует в виде сольватного иона, в водных растворах — иона гидроксония, который и является носителем кислотных свойств.

    Определение понятий К. и о. на основе теории электролитической диссоциации часто вполне достаточно для практических целей. Однако, как было установлено уже давно, многие соединения, проявляющие типичные свойства К. и о., не содержат ни водорода ни групп ОН. Кроме того, одно и то же вещество нередко в одних реакциях ведёт себя как кислота, а в других — как основание (см. Амфотерность). Способность вещества реагировать как кислота или основание является, таким образом, не абсолютным свойством этого вещества, а выражается в конкретных химических реакциях, относимых к классу кислотно-основных. В таких реакциях одно из взаимодействующих веществ играет роль кислоты по отношению к другому веществу, играющему роль основания. Итак, способность вещества реагировать в качестве кислоты или основания является его функциональной характеристикой. Было предпринято множество попыток разработать единую теорию, которая позволила бы, с учётом указанных обстоятельств, однозначно относить данное вещество к классу кислот или оснований. Однако до сих пор единого критерия для этого не найдено. Наиболее распространены две концепции — датского физико-химика И. Н. Брёнстеда и американского физико-химика Г. Н. Льюиса (1923). Брёнстед относит к классу кислот водородсодержащие вещества, отдающие при реакциях положительные ионы водорода — протоны (т. н. протонные, или брёнстедовские, кислоты), а к классу оснований — вещества, присоединяющие протоны. Функции К. и о., по Брёнстеду, могут выполнять как нейтральные молекулы, так и ионы. Химическая реакция, при которой происходит передача протона от кислоты к основанию: АН+В- ⇔ А-+ВН (где АН — кислота, а В- — основание), называется кислотно-основной, или протолитической. Поскольку протолитические реакции обратимы, причем в обратной реакции, так же как и в прямой, происходит передача протона, продукты прямой реакции также выполняют друг по отношению к другу функцию К. и о. (так называемые сопряженные К. и о.), то есть ВН — кислота, а А- — основание. Например, в реакции: H2SO4 + H2O ⇔ HSO-4 + H3O+ кислотами являются H2SO4, и H3O+, а HSO-4 и H2O — основания. Концепция Брёнстеда дает четкий критерий для отнесения химических реакций к типу кислотно-основных, позволяет выражать в количественной форме основные характеристики протолитических равновесий и расположить водородсодержащие вещества в ряд по возрастанию их способности отдавать протон, то есть по их кислотности. Эти достоинства теории протолитических равновесий обусловили ее предсказательную силу и обеспечили широкое использование брёнстедовских представлений в химической практике. В то же время концепции Брёнстеда свойственна ограниченность, выражающаяся в том, что, связывая кислотные свойства вещества с наличием в его составе водорода, она все же оставляет в стороне большое число веществ кислотного характера, не содержащих водорода. К таким веществам, получившим в химии название апротонных, или льюисовских, кислот, относятся электронно-ненасыщенные соединения, например галогениды бора, алюминия и олова, окислы некоторых металлов и т.д. Согласно концепции Льюиса, восполняющей в какой-то степени вышеуказанный пробел, кислотой называют вещество, присоединяющее при химической реакции пару электронов, а основанием — вещество, отдающее пару электронов. Результатом является восполнение электронной ненасыщенности молекулы кислоты за счет электронов основания, а также возникновения нового соединения (соли) с устойчивой электронной оболочкой (в частности, октетом) и донорно-акцепторной связью, например:

    где BF3 — кислота, а NH3 — основание. Важная особенность кислотно-основных реакций, по Льюису, состоит в обобществлении электронной пары основания. Этим они отличаются от окислительно-восстановительных реакций, в ходе которых молекулы окислителя полностью отбирают по одному или несколько электронов у молекул восстановителя; никаких обобществленных орбит при этом не возникает. В отличие от Брёнстеда, Льюис связывает кислотно-основные свойства не с наличием определенных химических элементов (в частности, водорода), а исключительно со строением внешних электронных оболочек атомов. В то же время между обеими концепциями имеется внутренняя связь, основанная на том, что для иона Н+, так же как и для льюисовских кислот, характерно сильное сродство к электронной паре. Кроме двух рассмотренных концепций К и о., известны некоторые другие, которые не получили, однако, столь широкого распространения.

    Как брёнстедоские, так и льюисовские теории К. и о. широко применяются на практике. Изменение кислотности или основности среды часто используют с целью увеличения скорости реакций и изменения механизма взаимодействия. В этом состоит сущность кислотно-основного Катализа, широко используемого в химической промышленности; при этом важно, что брёнстедовские и льюисовские кислоты оказывают во многих случаях сходное каталитическое действие. Широкое применение получили кислотно-основные процессы в химической промышленности (Нейтрализация, Гидролиз, Травление металлов и т.д.). Многие кислоты (серная, азотная, соляная, ортофосфорная и др.) и щёлочи (едкое кали, едкий натр и др.) являются основными продуктами химического производства и используются в качестве исходных веществ в важнейших отраслях химической промышленности.

    Многообразные — структурные и динамические — функции К. и о. выполняют в живых организмах, принимая участие во многих биохимических процессах. Как правило, эти процессы очень чувствительны к кислотности или основности среды (см. Водородный показатель, Кислотно-щелочное равновесие). Направленное воздействие К. и о. используется в медицине. Так, разбавленные растворы соляной кислоты употребляются для усиления секреции желудка, борной — для дезинфицирующих и вяжущих полосканий и т.д. В то же время при попадании в организм концентрированных К. и о. возможны сильные ожоги внутренних органов, падение сердечной деятельности и т.д., приводящие в ряде случаев к гибели организма.

    Лит.: Людер В., Цуффанти С., Электронная теория кислот и оснований, пер. с англ., М.,1950; Усанович М. И., Что такое кислоты и основания, А.-А., 1953; Полинг Л., Общая химия, пер. с англ., М.. 1964; Краткая химическая энциклопедия, т. 2, М., 1963.

    Я. М. Варшавский.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Химическая энциклопедия

    . Термины "кислоты" и "основания" вполне сформировались в 17 в. Их содержание неоднократно пересматривалось и дополнялось. Этот процесс происходил и происходит в острых столкновениях представителей разных взглядов на природу К. и о. Развитие взглядов на К. и о. А. Лавуазье (1778) объяснял св-ва к-т наличием в них кислорода ("кислородная теория" к-т). Однако скоро выяснилось, что очень мн. кислородсодержащие в-ва (оксиды металлов, соли и др.) не обладают кислотными св-вами, а ряд типичных к-т, напр. соляная, не содержат кислорода (Г. Дэви и Ж. Гей-Люссак 1810, 1814). И. Берцелиус (1802-19) устранил первое из этих противоречий, приписав оксидам знак электрич. заряда. Электроотрицат. (по Берцелиусу) оксиды неметаллов образуют к-ты, электроположит. оксиды металлов - основания. В 1814 Дэви высказал мнение, что атом водорода - необходимая составная часть к-т. Ю. Либих (1833) уточнил эту "водородную теорию" к-т, показав, что кислотные св-ва обусловлены не любым атомом водорода, а лишь тем, к-рый способен замещаться металлом. После появления теории электролитич. диссоциации С. Аррениуса (1887) сформировалась ионная теория К. и о. Согласно этой теории, к-та - водородсодержащее соед., при электролитич. диссоциации к-рого в воде образуются ионы водорода и анионы, а основание-соед., диссоциирующее с отщеплением ионов гидроксила и катионов. В дальнейшем появились разл. варианты обобщения ионной теории К. и о. применительно к неводным р-рителям. Эти варианты не противоречат, а дополняют друг друга, большинство их используется и разрабатывается в настоящее время. Э. Франклином в 1924 создана сольвентная теория. По этой теории, К. и о.-в-ва, при растворении к-рых увеличивается концентрация соотв. катионов и анионов, образующихся при диссоциации р-рителя. В этом случае кислотно-основное взаимод. выражается схемой: кислота +основание: соль + растворитель Сольвентная теория способствовала исследованию К. и о. в неводных р-рах. Учитывая комплексообразование, А. Вернер (1907) предложил теорию ангидро- и аквакислот и оснований. Согласно этой теории, в водном р-ре безводные к-ты, т. наз. ангидро-кислоты (А) и ангидрооснования (В), превращаются в аква-кислоты [АОН]- Н + и акваоснования [ВН]+ ОН -, к-рые диссоциируют:

    [AOH]-H+:[АОН]-+

    [ВН]+ ОН -:[ВН]++ОН -

    Хотя схемы, передающие механизм взаимод. с водой во мн. случаях неверны, взгляды Вернера дали нек-рый импульс для изучения роли воды в кислотно-основном взаимод. Из работ в этом направлении выделяются работы А. Ганча (1917-27), создавшего т. наз. хим. теорию к-т. В этой теории к-ты определены как соед. водорода, в к-рых последний м. б. замещен на металл или неметаллoподобный радикал. Важнейший признак к-т - способность давать соли. Ионизация к-т в р-ре происходит в результате их взаимод. с р-рителем. Теория содержит принципиально новое положение: в р-рах кислотные св-ва проявляются не самой к-той, а сольватир. катионами водорода. В хим. теории к-т четко сформулировано понятие об амфотерности - способности нек-рых соед. проявлять как кислотные, так и основные св-ва в зависимости от условий и природы реагентов, участвующих в кислотно-основном взаимодействии. В 1923 были предложены две, доминирующие по сей день, теории К. и о.: протонная теория И. Брёнстеда и Т. Лоури и электронная теория Г. Льюиса. По Брёнстеду, к-та - донор протона, а основание - акцептор его. По Льюису, к-та - в-во, к-рое может использовать неподеленную.пару электронов атома др. молекулы для образования устойчивой электронной группировки одного из своих атомов, основание - в-во, обладающее неподеленной парой электронов, к-рая м. б. использована для образования устойчивой электронной группировки др. атома. Часто такой группировкой является октет электронов. Теория, предложенная М. И. Усановичем (1939-53), объединяет электронную и протонную теории. По этой теории, к-та-в-во, способное отдавать катионы или присоединять анионы; основание - в-во, способное отщеплять анионы или присоединять катионы, напр.:

    Fe(CN)3 (к-та) + 3KCN (основание):К 3[Fe(CN)6] СН 3I(к-та)+N(CH3)3 (основание):(CH3)4NI

    Для всех обсуждаемых теорий характерно, что в них определения К. и о. зависят от определения понятия кислотно-основного процесса, в к-ром реагирующие между собой К. и о. являются таковыми лишь по отношению друг к другу. Единой теории кислотно-основного взаимод. и, следовательно, понятий К. и о. пока нет. В настоящее время наиб. широко используются две теории К. и о.: электронная и протонная. Электронная теория К. и о. Льюиса. Отличит. признаком К. и о. в теории Льюиса является то, что они взаимод. друг с другом с образованием донорно-акцепторной (координац.) связи: А+ВDА:В, где А - к-та, В - основание, А: В - кислотно-основный комплекс (продукт нейтрализации). В результате приобретенной пары электронов атомом, ответственным за кислотные св-ва рассматриваемого соед., часто возникает завершенная электронная конфигурация, напр.:

    381_400-40.jpg

    В случае взаимод. нейтральных молекул продукт р-ции [напр., BF3.NH3, SbCl5.O(C2H5)2] часто называют аддуктом. К. и о. в совр. электронной теории классифицируют по типу орбиталей, принимающих участие в образовании межмол. донорно-акцепторных связей в кислотно-основном комплексе. При таком подходе все к-ты (акцепторы) разделяют на s-, v- и p-типы, все основания (доноры) - на п-,s- и p-типы. В образовании связи между к-той и основанием принимает участие наиб. высокая в энергетич. отношении граничная мол. орбиталь основания и наиб. низкая орбиталь к-ты. По типу орбиталей, ответственных за их образование, донорно-акцепторные комплексы разделяют на 9 типов: nv (напр., R3N.MeXn), ns(R3N.I2), sv(RX.МеХ n), ss(RX.I2), sp(RX.ArH), pv(ArH.MeXn), ps(АrН.I2) и pp(АrН. ТЦХД), где первыми в скобках указаны доноры, вторыми - акцепторы; R - алкил, Me - металл и Х - галоген; ТЦХД - тетрацианохинодиметан. Любое основание может вступать во взаимод. с любой к-той. Одно и то же соед. в зависимости от партнера может выступить как основание или как к-та. О специфичности кислотно-основного взаимодействия см. "Жестких" и "мягких" кислот и оснований принцип. Р-ции между К. и о. Льюиса иллюстрируют след, примеры:

    381_400-41.jpg

    Понятие основания в теориях Льюиса и Брёнстеда совпадают, однако понятие к-ты в первой теории охватывает кроме протона также электроноакцепторные в-ва, в обратимых р-циях к-рых с основаниями не участвует водород, напр. BF3, SO3, Ag+. К к-там Льюиса относится протон, как частица, легко присоединяющая пару электронов. Протонные к-ты рассматриваются в теории Льюиса как продукты нейтрализации протона основаниями (напр., соляная к-та - продукт нейтрализации Н + основанием Сl- ). Растворение к-т Льюиса в ионизирующих р-рителях приводит к росту концентрации катионов р-рителя (напр., SO32 ОDН 3 О ++HSO-4). Основания же увеличивают концентрацию анионов р-рителя [напр., (CH3)3N+H2ODОН -+(CH3)3NH+]. Поэтому нетрудно оттитровать К. и о. в ионизирующихся р-рителях, фиксируя точку эквивалентности индикатором или электрохимически. К-ты Льюиса можно также оттитровать в инертных р-рителях, напр. удается оттитровать р-р SnCl4 в бензоле р-ром (CH3)3N в этом же р-рителе, используя тимоловый голубой в качестве индикатора. К. и о. Льюиса невозможно расположить в универсальный ряд по силе, т. к. их последовательность зависит от в-ва, взятого за стандарт для сравнения. Однако фиксируя стандарт сравнения (оснований к-ты Льюиса располагают в ряды на основе величин изменения энтальпии DH при р-ции нейтрализации, хотя использование для этих целей соответствующих величин изменения свободной энергии DG более строго. Стандартное в-во для определения донорной способности оснований Льюиса - SbCl5. Значение DH0298 р-ции SbСl5 с к.-л. электронодонорным в-вом наз. донорным числом (DN) данного в-ва. Протонная теория К. и о. Брёнстеда. Хотя название рассматриваемой теории подчеркивает исключит. роль протона, подразумеваются все возможные ядра атома водорода: протон, дейтрон и тритон. По этой теории, к-та и основание составляют сопряженную пару и связаны ур-нием: кислота D основание + протон В р-рах протон не может существовать в своб. виде, он соединяется с молекулами р-рителя. В воде, напр., сольватир. протон существует в виде ионов Н 5 О 2 - симметричных комплексов с сильной водородной связью [Н 2 О...Н...ОН 2]+ В расчетах обычно принимают, что протон находится в воде в виде ионов гидроксония Н 3 О +, и р-ции сопряженных К. и о., к-рые м. б. молекулами или ионами, записывают ур-нием:

    АН+ВDBH+-, (1)

    где АН, ВН + - к-ты; В, А - - основания. Первонач. вариант теории Брёнстеда рассматривал только полный переход протона от к-ты к основанию. Однако к нач. 60-х гг. было показано, что р-ция между К. и о. не сводится лишь к полному переходу протона и имеет более сложный характер. Сначала при р-ции между атомом водорода к-ты АН и электронодонорным атомом основания В возникает водородная связь и образуется комплекс АН... В. Во мн. случаях протолитич. р-ция ограничивается этой стадией; такой процесс наз. незавершенным кислотно-основным взаимодействием. В благоприятных условиях, напр. при высокой диэлектрич. проницаемости р-рителя e, происходит передача протона от к-ты к основанию, в результате чего основание протонируется (завершенное кислотно-основное взаимод.). Образовавшиеся ионы могут находиться в р-ре в виде ионных пар или в своб. виде. Весь кислотно - основной процесс м. б. выражен схемой:

    381_400-42.jpg

    где стадии а и б-соотв. незавершенное и завершенное кислотно-основное взаимод., стадия в диссоциация ионной пары на своб. ионы. Согласно этой схеме, А. И. Шатенштейном в 1960 предложены след, определения, соответствующие совр. состоянию протонной теории К. и о.: основание - электронодонорный реагент, обладающий сродством к протону, к-та - электроноакцепторный реагент, в равновесных р-циях к-рого с основанием участвует водород. К-та соединяется с основанием в результате образования между ними водородной связи или отдает ему протон. Во мн. случаях схема кислотно-основного процесса упрощается, напр., в водной среде (e Н 2 О=78,5), как правило, она сводится к ур-нию (1). Ур-ние р-ции к-ты АН с водой имеет вид:

    АН+Н 2ODА+Н 3 О + (3)

    В этом ур-нии не учтено, что протон существует в виде иона Н 5 О +2 и для р-ции необходимы две молекулы Н 2 О. Константа равновесия р-ции (3) выражается соотношением:

    381_400-43.jpg

    где а А-, а H3O+, а AH и а Н2O - термодинамич. активности соответствующих частиц. Кислотность разных к-т можно измерить лишь относительно к.-л. произвольно выбранной пары сопряженных К. и о. Обычно в качестве последней используют пару Н 3 О +, Н 2 О. Поскольку в разб. р-рах кол-во р-рителя величина практически постоянная, константу соответствующего равновесия К=aH+. а Н2O/aH3O+ (aH+ - активность ионов Н +) приравнивают к единице, что приводит к отношению а H+ Н3O+H2O. В рамках сделанного допущения константа кислотности к-ты К a имеет вид:

    381_400-44.jpg

    Аналогично протону ион ОН - в р-рах сольватирован; в воде он существует в виде ионов H3O2- - симметричных комплексов с сильной водородной связью [НО...Н...ОН]-. В нижеприведенных ф-лах сольватация ОН - не учитывается и р-ция основания В с водой описывается ур-нием:

    381_400-45.jpg

    Константа равновесия этой р-ции:

    381_400-46.jpg

    Основание В характеризуют константой основности:

    381_400-47.jpg

    или константой кислотности его сопряженной к-ты:

    381_400-48.jpg

    В амфотерных р-рителях SН происходит автопротолиз, т. е. р-ция, где одна молекула р-рителя ведет себя как к-та относительно другой такой же молекулы, выполняющей роль основания:

    381_400-49.jpg

    Поскольку по ур-нию (10) реагирует небольшая доля р-рителя SН, то в качестве постоянной рассматривают константу автопротолиза (ионное произведение) р-рителя SH:

    KS=aS-aSH+2, (11)

    к-рая связана с К а и Kb соотношением:

    К Sa. К b (12)

    Согласно этому ур-нию, к-та тем сильнее, чем слабее сопряженное основание, и наоборот. Вместо величин К а и К b по аналогии с водородным показателем рН чаще используют соответствующие значения рК=-lgK. Из ур-ния (12) для водных р-ров следует, что рК H2O=рК а+рК b, или рК а=14-рК b,. К-ты можно разделить на очень сильные (р/Ka<0), сильные (0<рК а<4,5), средней силы (4,5<рК а<9), слабые (9 <рК а<14), очень слабые (рК а>14); см. табл. В выражениях (4), (5), (7) - (9) не учитывается существование протона в виде Н 5O+2 и гидроксила в виде H3O-2. Однако это не сказывается на величинах констант, т. к. активность чистого р-рителя принимается равной 1. В протонной теории К. и о. понятия к-ты и основания относятся лишь к ф-ции, к-рую выполняет рассматриваемое соед. в протолитич. р-ции. Одно и то же соед. может в одних условиях реагировать как к-та, а в других-как основание. Напр., в водном р-ре СН 3 СООН ведет себя как к-та, а в среде 100%-ной H2SO4 как основание. Большое влияние на кислотно-основное взаимод. оказывает р-ритель, в среде к-рого происходит рассматриваемый процесс. Добавленная к р-рителю М к-та АН дает ассоциат с р-рителем, в к-ром происходит перераспределение электронной плотности с образованием связи близкой к ионной; затем осуществляется диссоциация:

    381_400-50.jpg

    381_400-51.jpg

    Подразумевается, что сольватированы как ионная пара, так и своб. ионы. Сольватация реагентов и продуктов р-ции значительно влияет на относит. силу к-т. Существуют методы исследования равновесий между протоном и основаниями в газовой фазе, напр. масс-спектрометрия высокого давления и ион-циклотронный резонанс, где отсутствуют эффекты сольватации. На основании результатов указанных исследований составлена шкала сродства к протону-энергетич. эффекта протонизации одного моля оснований в газовой фазе. В свете электронной теории К. и о. в-ва, рассматриваемые как к-ты, протонной теорией не выделяются среди прочих. Однако с учетом научной традиции и специфич. св-в протона понятие к-ты обычно используют применительно к реагентам, отщепляющим ион водорода, см., напр., Карбоновые кислоты, СH -Кислоты. Кислоты неорганические. Когда пишут о кислотно-основном взаимод. в-в, не содержащих протонов, то такие в-ва наз. апротонными к-тами, льюисовскими к-тами, кислотоподобными в-вами, антиоснованиями или просто акцепторами. Понятия К. и о. оказывают разностороннее влияние на формирование и совершенствование мн. теоретич. концепций во всех осн. хим. дисциплинах. Это свидетельствует о чрезвычайно широкой распространенности в природе процессов, связанных с кислотно-основными взаимодействиями. Из всех теорий К. и о. протонной теории удалось создать наиб. разработанный количеств. подход к рассматриваемым явлениям. На основании этой теории разработаны такие разделы хим. наук, как рН-метрия в неводных средах, гомог. кислотно-основной катализ, теория функций кислотности и др. Лит.: Шатенштейн А. И., Теории кислот и оснований, М.-Л., 1949; его же, Изотопный обмен и замещение водорода в органических соединениях, в свете теоряи кислот и основании, М., I960; Либрович Н. Б., Майоров В. Д.. Савельев В. А.. Докл. АН СССР, 1975, т. 225, М 6, с. 1358-1361; Белл Р Д., Протон в химии, пер. с англ., М., 1977; Мискиджьан С П Гарновскнй А. Д., Введение в современную теорию кислот и оснований. К., 1979; Кабачник М. И., "Успехи химии". 1979, т. 48, в. 9, с 1523 47, The international encyclopedia of physical chemistry and chemical physics. Topic IS. v. 4-Acid-base equilibna Oxf.-L-N.Y, 1945; Jensen W В., The Lewis arid-base concepts. An overview. N.Y4 1980. Ю. Л. Халдна.

  3. Источник: Химическая энциклопедия