Большая Советская энциклопедия

    (старое название — μ-мезоны)

    нестабильные Элементарные частицы со Спином 1/2, временем жизни 2,2․10-6 сек и массой, приблизительно в 207 раз превышающей массу электрона. Существуют положительно заряженные (μ+) и отрицательно заряженные (μ-) М., являющиеся частицей и античастицей (См. Античастицы) по отношению друг к другу. М. относятся к классу лептонов (См. Лептоны), т. е. участвуют в электромагнитных и слабых взаимодействиях (См. Слабые взаимодействия) и не участвуют в сильных взаимодействиях (См. Сильные взаимодействия).

    Открытие мюонов и их источники. М. были впервые обнаружены в космических лучах (См. Космические лучи) в 1936 американскими физиками К. Андерсоном и С. Неддермейером. Сначала М. пытались отождествить с частицей, которая, согласно гипотезе японского физика Х. Юкавы (См. Юкава), является переносчиком ядерных сил. Однако такая частица должна была интенсивно взаимодействовать с атомными ядрами, тогда как опытные данные показывали, что М. слабо взаимодействует с веществом. Этот «парадокс» был разрешён в 1947 после открытия пи-мезона (См. Пи-мезоны) (π), обладающего свойствами частицы, предсказанной Юкавой, и распадающегося на М. и Нейтрино.

    Основным источником М. в космических лучах и на ускорителях заряженных частиц (См. Ускорители заряженных частиц) высоких энергий является распад π-мезонов (пионов), а также К-мезонов (См. К-мезоны) (каонов), интенсивно рождающихся при столкновениях сильно взаимодействующих частиц (адронов), например протонов (р) с ядрами:

    π+(K+) → μ+ + νμ, (1, а)

    (здесь νμ, v̅μ — мюонные нейтрино и антинейтрино). Др. источники М. — рождение пар μ+μ- фотонами (γ) высоких энергий, электромагнитные распады мезонов типа ρ → μ+ + μ-, так называемые лептонные распады гиперонов (См. Гипероны), например Λ° → р + μ + νμ и т. д. — играют, как правило, значительно меньшую роль.

    В космических лучах на уровне моря М. образуют основную компоненту (Мюоны80%) всех частиц космического излучения. На современных ускорителях заряженных частиц высокой энергии получают пучки М. с интенсивностью 105—106 частиц в сек.

    Спин νμ, возникающего при распадах (1, а), ориентирован против направления своего импульса, а спин v̅μ от распадов (1, б) — по направлению импульса. Отсюда на основании законов сохранения импульса и момента количества движения следует, что спин μ+, рождающегося при распаде покоящихся π+ или К+, направлен против его импульса, а спин μ- — в направлении импульса (см. рис.).

    Поэтому М. в зависимости от кинематических условий их образования и энергетического спектра пионов и каонов оказываются частично (или полностью) поляризованными в направлении импульса (μ-) или против него (μ+).

    Взаимодействие мюонов. Слабые взаимодействия М. вызывают их распад по схеме:

    (где е+, е-, νe, e — позитрон, электрон, электронные нейтрино и антинейтрино соответственно); эти распады и определяют «время жизни» М. в вакууме. В веществе μ- «живёт» меньше: останавливаясь в веществе, он притягивается положительно заряженным ядром и образует так называемый мюонный атом, или μ-Мезоатом, — систему, состоящую из атомного ядра, μ- и электронной оболочки. В мезоатомах благодаря слабому взаимодействию может происходить процесс захвата μ- ядром:

    μ- + ZA → Z-1B + νμ

    (где Z — заряд ядра). Этот процесс аналогичен К- захвату (См. К-захват) электронов ядром и сводится к элементарному взаимодействию

    μ- + p → n + νμ

    (где n — нейтрон). Вероятность захвата μ- ядром растет для лёгких элементов пропорционально Z4 и при Z — 10 сравнивается с вероятностью распада μ-. В тяжёлых элементах «время жизни» останавливающихся μ- определяется в основном вероятностью их захвата ядрами и в 20—30 раз меньше их «времени жизни» в вакууме.

    Из-за несохранения пространственной чётности (См. Чётность) в слабом взаимодействии при распаде (2, а) позитроны вылетают преимущественно в направлении спина μ+, а электроны в распаде (2, б) — преимущественно в направлении, противоположном спину μ- (см. рис. к ст. Слабые взаимодействия). Поэтому, изучая асимметрию вылетов электронов или позитронов в этих распадах, можно определить направления спинов μ- и μ+.

    Современные опытные данные показывают, что во всех известных взаимодействиях М. участвует в точности так же, как электрон (позитрон), отличаясь от него только своей массой. Это явление называется μ — е-универсальностью. Вместе с тем М. и электрон отличаются друг от друга некоторым внутренним квантовым числом (См. Квантовые числа), и такое же различие имеет место для соответствующих им нейтрино νμ и νe (см. Лептонный заряд). Доказательством этого служит то, что нейтрино, возникающее вместе с М. (например, при распаде π+ → μ+ + νμ), не вызывает при столкновении с нуклонами рождения электрона, а также то, что не наблюдаются безнейтринные распады

    Одним из возможных объяснений различия М. и электрона является предположение, что μ- и νμ отличаются от е- и νe лептонным зарядом (числом) l: у е- и νe l = +1, a y μ- и νμ I = -1; для их античастиц l имеют противоположные знаки (последние распады будут запрещены тогда законом сохранения лептонного числа). Существование μ — е-универсальности ставит перед теорией элементарных частиц важную и до сих пор не решённую проблему: поскольку, согласно современной теории, масса частиц имеет полевое происхождение, т. е. определяется взаимодействиями, в которых участвует частица, то непонятно, почему электрон и М., обладающие совершенно одинаковыми взаимодействиями, столь различны по своей массе. Высказывались гипотезы о наличии у М. «аномальных» взаимодействий (т. е. отсутствующих у электрона), но экспериментально такие взаимодействия не обнаружены. С др. стороны, возможно, что различие в массах М. и электрона связано с внутренним строением лептонов; однако даже сам подход к этой проблеме пока неясен. Существование М., т. о., представляет одну из интереснейших загадок природы, и не исключено, что её решение будет связано с открытиями фундаментальной важности.

    С проблемой μ — е-универсальности связан также вопрос о возможном существовании др. лептонов с массой большей, чем у М. Если бы взаимодействия «тяжёлых» лептонов оказались такими же, как у μ и е, то некоторые их свойства (в частности, время жизни и способы распада) можно было бы предсказать теоретически. Если такие лептоны существуют и масса их больше 0,5 Гэв, то из-за своих свойств они могли оказаться незамеченными в большинстве проводившихся опытов. Поэтому для поиска «тяжёлых» лептонов необходимы специальные эксперименты, по-видимому, с нейтрино (или фотонами) высоких энергий.

    Проникающая способность мюонов. Не обладая сильными взаимодействиями, М. высокой энергии тормозятся в веществе только за счёт электромагнитных взаимодействий с электронами и ядрами вещества. До энергий порядка 1011—1012эв М. теряют энергию в основном на ионизацию (См. Ионизация) атомов среды, а при более высоких энергиях становятся существенными потери энергии за счёт рождения электрон-позитронных пар, испускания γ-квантов тормозного излучения (См. Тормозное излучение) и расщепления атомных ядер. Т. к. масса М. много больше массы электрона, то потери энергии быстрых М. на тормозное излучение и рождение пар значительно меньше, чем потери энергии быстрых электронов на тормозное излучение (или γ-квантов на рождение пар е+е-). Эти факторы обусловливают высокую проникающую способность М. как по сравнению с адронами, так и по сравнению с электронами и γ-квантами. В результате М. космических лучей не только легко проникают через атмосферу Земли, но и углубляются (в зависимости от их энергии) на довольно значительные расстояния в грунт. В подземных экспериментах М. космических лучей с энергией 1012—1013 эв регистрируются на глубине нескольких км.

    Мюоны, останавливающиеся в веществе. Медленные М., теряя энергию на ионизацию атомов, могут останавливаться в веществе. При этом μ+ в большинстве веществ присоединяет к себе атомный электрон, образуя систему, аналогичную атому водорода, — так называемый Мюоний. Мюоний может вступать в химические реакции, аналогичные реакциям атома водорода. Из-за взаимодействия с магнитными моментами электронов вещества μ+ (спин которого первоначально был направлен в сторону, противоположную направлению его влёта в вещество) частично теряет свою поляризацию. Об этом можно судить по изменению асимметрии вылета позитронов от распада (2, а). Изучая процесс деполяризации μ+ в веществе в присутствии внешних магнитных полей, удаётся установить, в какие химические реакции вступает мюоний, и определить скорость протекания этих реакций. В последние годы возникло новое направление исследований свойств вещества и химических реакций с помощью положительных М. — так называемая химия мюонов.

    Отрицательные М., останавливающиеся в веществе, как уже отмечалось, могут образовывать мюонные мезоатомы. Боровский радиус мюонного мезоатома равен

    где mμ и е — масса и заряд М., Z — заряд ядра, ħ — постоянная Планка. Эта величина в (mμ/me) Z раз меньше боровского радиуса атома водорода (me — масса электрона). Поэтому мюонные «орбиты», отвечающие нижним энергетическим уровням мезоатома, расположены значительно ближе к ядру, чем электронные. При Z — 30—40 размеры мюонных «орбит» сравниваются с размерами ядер и распределение электрического заряда в ядре сильно сказывается на энергии низшего состояния мезоатома. Расстояние между уровнями энергии мезоатомов при этом в mμ/me— 207 раз больше, чем для соответствующего (с ядром заряда Z) водородоподобного атома, и могут составлять десятки и сотни кэв, а для тяжёлых элементов даже несколько Мэв.

    Первоначально мюонные мезоатомы возникают в возбуждённых состояниях, а затем, испуская последовательно γ-кванты или передавая энергию атомным электронам, переходят в основное состояние. Измеряя энергию γ-квантов, испускаемых при переходах между уровнями мезоатомов, можно получить сведения о размерах ядер, распределении электрического заряда в ядре и др. характеристиках ядра.

    Весьма своеобразно поведение в веществе мезоатомов водорода и его изотопов (дейтерия, трития). Единичный положительный заряд ядра в этих мезоатомах полностью «экранируется» зарядом отрицательного М. Поэтому такая система, обладая размерами порядка 2․10-11 см, ведёт себя в веществе, подобно медленному нейтрону: «свободно» проникает через электронные оболочки атомов и способна подходить на близкие расстояния к др. ядрам. Это обусловливает возможность протекания ряда специфических явлений; в частности, мезоатомы водорода или дейтерия могут присоединить к себе ещё одно ядро и образовать мезонные молекулы ррμ, dpμ или ddμ, аналогичные молекулярным ионам водорода H2+, HD+ или D2+ (d — ядро дейтерия, дейтрон). Ядра в таких молекулах, находясь на малых расстояниях друг от друга, способны вступать в ядерные реакции синтеза d + р → 3He + γ или d + d → 3He + n, d + d → Т + р. протекающие с выделением энергии (Т — ядро трития). После акта реакции μ часто оказывается освобождённым от связи с ядром, а затем, последовательно образуя мюонные мезоатом и мезомолекулу, может вызвать новую реакцию синтеза и т. д., т. е. действует как катализатор ядерных реакций. Однако для практического получения энергии ядерного синтеза катализ ядерных реакций с помощью μ не может быть использован, так как число ядерных реакций, вызываемых М. за время его жизни, оказывается небольшим.

    Лит.: Вайсенберг А. О., Мю-мезон, М., 1964 (Современные проблемы физики); Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Зельдович Я. Б., Герштейн С. С., Ядерные реакции в холодном водороде, «Успехи физических наук», 1960, т. 71, в. 4, с. 581.

    С. С. Герштейн.

    Образование мюонов μ,+, μ- при распадах покоящихся π+- и π--мезонов. Импульсы pvμ, рμ+ (соответственно pνμ pμ-) частиц распада νμ и μ++μ и μ-) равны по величине и направлены в противоположные стороны. Жирные стрелки указывают направление спинов (поляризацию) частиц svμ, sμ+, (svμ+, sμ-).

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    МЮОНЫ (?) - нестабильные положительно (?+) и отрицательно (?-) заряженные элементарные частицы со спином 1/2 и массой ок. 207 электронных масс и временем жизни ? 10-6 с; относятся к лептонам.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    МЮОНЫ

    (устар. m-мезоны), нестабильные заряж. элем, ч-цы со спином 1/2, временем жизни 2,2
    • 10-6 с и массой, прибл. в 207 раз превышающей массу эл-на (в энергетич. ед. ок. 105,7 МэВ); относятся к классу лептонов. Отрицательно заряж. (m-) и положительно заряж. (m+ ) М. явл. ч-цей и античастицей по отношению друг к другу.

    Открытие.

    М. были впервые обнаружены в косм. лучах (1936—37) амер. физиками К. Андерсоном и С. Неддермейером. Вначале М. пытались отождествить с ч-цей, к-рая, согласно гипотезе япон. физика X. Юкавы, явл. переносчиком яд. сил. Однако такая ч-ца должна была бы интенсивно взаимодействовать с ядрами, тогда как опытные данные показывали, что М. слабо взаимодействует с в-вом. Этот «парадокс» был разрешён в 1947 после открытия пи-мезона, обладающего св-вами ч-цы, предсказанной Юкавой, и распадающегося на М. и нейтрино:

    pi±®m±+vm(v=m).

    И с т о ч н и к и.

    Осн. источником М. в косм. лучах и на ускорителях высоких энергий явл. распад pi-мезонов (пионов) и К-мезонов (каонов), интенсивно рождающихся при столкновениях адронов — протонов с ядрами и др. Другим (слабым) источником М. может быть, напр., процесс рождения пар m+m- фотонами высоких энергий, распады гиперонов, «очарованных» частиц и др. На уровне моря М. образуют осн. компоненту (=80%) всех ч-ц косм. излучения. На совр. ускорителях высокой энергии получают пучки М. с интенсивностью до 108—109 ч-ц в 1 с.

    Спин мюонного нейтрино vm, возникающего вместе с m+ при распадах pi+ и К+, ориентирован против направления импульса vm, а спин мюонного антинейтрино v=m. от распадов pi- и К- — в направлении импульса v=m. Отсюда на основании законов сохранения импульса и момента кол-ва движения следует, что спин m+, образующегося от распада покоящихся pi+ или К+, направлен против его импульса, а спин m- — в направлении импульса. Поэтому М. в зависимости от кинематич. условий их образования и спектра пионов и каонов оказываются частично или полностью поляризованными в направлении своего импульса (m-) или против него (m+).

    В з а и м о д е й с т в и е.

    Слабое взаимодействие М. вызывает их распад по схеме: m± ®e±+ve(v=e)+v=m(v=m); эти распады и определяют время жизни М. в вакууме. В в-ве m- «живёт» меньше: останавливаясь, он притягивается положительно заряж. ядром и образует м ю о н н ы й а т о м (m-мезоатом). В мезоатомах благодаря слабому вз-ствию может происходить процесс захвата m- ядром А: m-+ZA®Z-1A+vm (Z — заряд ядра). Этот процесс аналогичен электронному захвату и сводится к элем. вз-ствию m-+p®n+vm.. Вероятность захвата m- ядром растёт для лёгких элементов пропорц. Z4 и при Z==10 сравнивается с вероятностью распада m-. В тяжёлых элементах «время жизни» останавливающихся m- определяется в осн. вероятностью их захвата ядрами и в 20—30 раз меньше времени жизни в вакууме.

    Из-за несохранения чётности в слабом вз-ствии при распаде m+®е++ve+v=m наиболее энергичные позитроны вылетают преим. в направлении спина m+, а эл-ны в распаде m-®e-+v=e+vm, — преим. в направлении, противоположном спину m- (рис.). Т. о., изучая асимметрию вылетов эл-нов (позитронов) в этих распадах, можно определить направление спина m-(m+).

    Опыт показывает, что во всех известных вз-ствиях М. участвует в точности так же, как эл-н, отличаясь от него только массой. Это явление наз. m—е-у н и в е р с а л ь н о с т ь ю. Вместе с тем М. и эл-н отличаются друг от друга нек-рым внутр. квант. числом — лептонным зарядом и такое же различие имеется для соответствующих им нейтрино. Доказательством этого служит тот факт, что нейтрино, возникающее вместе с М,, не вызывает при столкновении с нуклонами рождение эл-на, а также то, что не наблюдаются распады m±®е±+g и m± ®2е±+е±.

    МЮОНЫ

    Распады покоящихся p+ - и p--мезонов. Жирные стрелки указывают направление спинов s (поляризацию) ч-ц распада; p — импульсы соответствующих ч-ц.

    Существование m—е-универсальности ставит перед теорией элем. ч-ц важную и до сих пор не решённую проблему: поскольку принято считать, что масса ч-ц имеет полевое происхождение (т. е. определяется вз-ствиями, в к-рых участвует ч-ца), то непонятно, почему эл-н и М., обладающие совершенно одинаковыми вз-ствиями, столь различны по своей массе. С проблемой m—е-универсальности связан также вопрос о возможном существовании др. лептонов с массой, большей, чем у М. В 1975—76 в опытах на встречных е+е--пучках был открыт один из таких заряж. лептонов — t-лептон (t+, t-) с массой ок. 1,8 ГэВ (см. ТЯЖЁЛЫЙ ЛЕПТОН).

    П р о н и к а ю щ а я с п о с о б н о с т ь м ю о н о в. М. высокой энергии тормозятся в в-ве за счёт эл.-магн. вз-ствия с эл-нами и ядрами в-ва. До энергии =1011—1012 эВ М. теряют энергию в осн. на ионизацию атомов среды, а при более высоких энергиях становятся существенными потери энергии за счёт рождения электрон-позитронных пар, испускания g-квантов тормозного излучения и расщепления ат. ядер. Т. к. масса М. много больше массы эл-на, то потери энергии быстрых М. на процессы тормозного излучения и рождения пар значительно меньше, чем потери энергии быстрых эл-нов (на тормозное излучение) или g-квантов (на рождение пар е+е-). Эти факторы обусловливают высокую проникающую способность М. как по сравнению с адронами, так и по сравнению с эл-нами и g-квантами. В результате М. косм. лучей не только легко проникают через атмосферу Земли, но и углубляются (в зависимости от их энергии) на значит. расстояния в грунт. В подземных экспериментах М. космических лучей с энергией 1012— 1013 эВ регистрируются на глубине нескольких км.

    П о в е д е н и е м ю о н о в, о с т а н а в л и в а ю щ и х с я в в е щ е с т в е. Медленные М., теряя энергию на ионизацию атомов, могут останавливаться в в-ве. При этом m+ в большинстве в-в присоединяет к себе ат. эл-н, образуя систему, аналогичную атому водорода,— т. н. мюоний, к-рый может вступать в такие же хим. реакции, как и атом водорода. Отрицат. М., останавливающиеся в в-ве, образуют m-мезоатомы, боровский радиус к-рых в (mm/me)Z раз меньше, чем у атома водорода, где mm — масса М., me— масса эл-на. Мезоатомы возникают в возбуждённых состояниях, а затем, испуская последовательно g-кванты или передавая энергию ат. эл-нам, переходят в осн. состояние. Измеряя энергию g-квантов, можно получить сведения о размерах ядер, распределении электрич. заряда в ядре и др. хар-ках ядра. В мезоатомах с тяжёлыми ядрами наблюдаются безрадиац. переходы мюонов в осн. состояние, сопровождающиеся возбуждением (в т. ч. делением) ядер. Своеобразно поведение в в-ве мезоатомов водорода и его изотопов — дейтерия, трития (см. МЮОННЫЙ КАТАЛИЗ). См. также (см. МЕЗОАТОМ, МЕЗОННАЯ ХИМИЯ).

  5. Источник: Физическая энциклопедия



  6. Энциклопедический словарь

    мюо́ны

    (μ), нестабильные положительно (μ+) и отрицательно (μ) заряженные элементарные частицы со спином 1/2, массой около 207 электронных масс и временем жизни мюо́ны10–6 с; относятся к лептонам.

    * * *

    МЮОНЫ

    МЮО́НЫ (m), нестабильные положительно (m+) и отрицательно (m-) заряженные элементарные частицы со спином 1/2 и массой ок. 207 электронных масс и временем жизни МЮОНЫ 10-6 с; относятся к лептонам.

  7. Источник: Энциклопедический словарь



  8. Большой энциклопедический политехнический словарь

    нестабильные элементарные частицы с единичным положит. или отрицат. элементарным электрическим зарядом и массой, превосходящей массу электрона в 206,7 раза. Ср. время жизни М. 2,2 мкс (2,2 * 10-6 с). М. по многим своим св-вам близки к электронам, в частности спин М. равен 1/2. В зависимости от знака электрич. заряда М. обозначают n- и n-; они являются античастицами по отношению друг к другу. В отличие от мезонов М. не обладают способностью к сильному взаимодействию. Поэтому М. относят не к адронам, а к лептонам.

  9. Источник: Большой энциклопедический политехнический словарь



  10. Большая политехническая энциклопедия

    МЮОНЫ — нестабильные элементарные частицы из класса лепт оное (см.) с полуцелым спином (см.) (относятся к фермионам (см.)) и массой, равной 207 электронных масс покоя. М. несут отрицательный элементарный электрический заряд (античастица — положительный); обозначаются μ- и μ+. Среднее время жизни мюонов 2,2 10-6 с; вследствие слабого взаимодействия распадаются на электрон (см.) (позитрон (см.)), электронное и мюонное нейтрино (см.) (антинейтрино).

  11. Источник: Большая политехническая энциклопедия



  12. Естествознание. Энциклопедический словарь

    (n), нестабильные положительно (n+) и отрицательно (n-) заряж. элементарные частицы со спином 1/2, массой ок. 207 электронных масс и временем жизни ~ 10-6с; относятся к лептонам.

  13. Источник: Естествознание. Энциклопедический словарь



  14. Естествознание. Энциклопедический словарь

    (n), нестабильные положительно (n+) и отрицательно (n-) заряж. элементарные частицы со спином 1/2, массой ок. 207 электронных масс и временем жизни ~ 10-6с; относятся к лептонам.

  15. Источник: Естествознание. Энциклопедический словарь



  16. Большой Энциклопедический словарь

  17. Источник: