Большая Советская энциклопедия

    самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Солнце кажется несравненно больше З. только благодаря близости его к Земле: от Солнца до Земли свет идёт 81/3 мин, а от ближайшей звезды (Центавра — 4 года3мес.Из-за больших расстояний от Земли З. и в телескоп видны как точки, а не как диски (в отличие от планет). Число З., видимых невооружённым глазом на обоих полушариях небесной сферы в безлунную ночь, составляет около 5 тыс. В мощные телескопы видны миллиарды З.

    Общие сведения о звёздах. Краткая история изучения звёзд. Изучение З. было вызвано потребностями материальной жизни общества (необходимость ориентировки при путешествиях, создание календаря, определение точного времени). Уже в глубокой древности Звёздное небо было разделено на созвездия. Долгое время З. считались неподвижными точками, по отношению к которым наблюдались движения планет и комет. Со времён Аристотеля (4 в. до н. э.) в течение многих столетий господствовали взгляды, согласно которым звёздное небо считалось вечной и неизменной хрустальной сферой, за пределами которой находилось жилище богов. В конце 16 в. итальянский астроном Джордано Бруно учил, что З. — это далёкие тела, подобные нашему Солнцу. В 1596 (немецкий астроном И. Фабрициус) была открыта первая переменная З., а в 1650 (италийский учёный Дж. Риччоли) — первая двойная З. В 1718 английский астроном Э. Галлей обнаружил собственные движения трёх З. В середине и во 2-й половине 18 в. русский учёный М. В. Ломоносов, немецкий учёный И. Кант, английские астрономы Т. Райт и В. Гершель и др. высказывали правильные идеи о той звёздной системе, в которую входит Солнце. В 1835—39 русский астроном В. Я. Струве, немецкий астроном Ф. Бессель и английский астроном Т. Гендерсон впервые определили расстояния до трёх близких З. В 60-х гг. 19 в. для изучения З. применили спектроскоп, а в 80-х гг. стали пользоваться и фотографией. Русский астроном А. А. Белопольский в 1900 экспериментально доказал для световых явлений справедливость принципа Доплера, на основании которого по смещению линий в спектре небесных светил можно определить их скорость движения вдоль луча зрения. Накопление наблюдений и развитие физики расширили представления о З.

    В начале 20 в., особенно после 1920, произошёл переворот в научных представлениях о З. Их начали рассматривать как физические тела; стали изучаться структура З., условия равновесия их вещества, источники энергии. Этот переворот был связан с успехами атомной физики, которые привели к количественной теории звёздных спектров, и с достижениями ядерной физики, давшими возможность провести аналогичные расчёты источников энергии и внутреннего строения З. (наиболее важные результаты были получены немецкими учёными Р. Эмденом, К. Шварцшильдом, Х. Бете, английскими учёными А. Эддингтоном, Э. Милном, Дж. Джинсом, американскими учёными Г. Ресселом, Р. Кристи, советским учёным С. А. Жевакиным). В середине 20 в. исследования З. приобрели ещё большую глубину в связи с расширением наблюдательных возможностей и применением электронных вычислительных машин (американские учёные М. Шварцшильд, А. Сандидж, английский учёный Ф. Хойл, японский учёный С. Хаяси и др.). Большие успехи были достигнуты также в изучении процессов переноса энергии в фотосферах З. (советские учёные Э. Р. Мустель, В. В. Соболев, американский учёный С. Чандрасекар) и в исследованиях структуры и динамики звёздных систем (голландский учёный Я. Оорт, советские учёные П. П. Паренаго, Б. В. Кукаркин и др.).

    Параметры звёзд. Основные характеристики З. — масса, радиус (не считая внешних прозрачных слоев), светимость (полное количество излучаемой энергии); эти величины часто выражаются в долях массы, радиуса и светимости Солнца. Кроме основных параметров, употребляются их производные: эффективная температура; спектральный класс, характеризующий степень ионизации и возбуждения атомов в атмосфере З.; абсолютная Звёздная величина (т. е. звёздная величина, которую имела бы З. на стандартном расстоянии 10 парсек);Показатель цвета (разность звёздных величин, определённых в двух разных спектральных областях).

    Звёздный мир чрезвычайно многообразен. Некоторые З. в миллионы раз больше (по объёму) и ярче Солнца (Звёзды-гиганты); в то же время имеется множество З., которые по размерам и количеству излучаемой ими энергии значительно уступают Солнцу (Звёзды-карлики) (см. рис. 1). Разнообразны и светимости З.; так, светимость З. S Золотой Рыбы в 400 тыс. раз больше светимости Солнца. З. бывают разреженные и чрезвычайно плотные. Средняя плотность ряда гигантских З. в сотни тысяч раз меньше плотности воды, а средняя плотность т. н. белых карликов (См. Белые карлики), наоборот, в сотни тысяч раз больше плотности воды. Массы З. различаются меньше.

    У некоторых типов З. блеск периодически изменяется; такие З. называются переменными звёздами (См. Переменные звёзды). Грандиозные изменения, сопровождаемые внезапными увеличениями блеска, происходят в новых звёздах (См. Новые звёзды). При этом за несколько суток небольшая звезда-карлик увеличивается, от неё отделяется газовая оболочка, которая, продолжая расширяться, рассеивается в пространстве. Затем З. вновь сжимается до небольших размеров. Ещё большие изменения происходят во время вспышек сверхновых звёзд (См. Сверхновые звёзды).

    Изучение спектров З. позволяет определить химический состав их атмосфер. З., как и Солнце, состоят из тех же химических элементов, что и все тела на Земле.

    В З. преобладают водород (около 70% по весу) и гелий (около 25%); остальные элементы (среди них наиболее обильны кислород, азот, железо, углерод, неон) встречаются почти точно в том же соотношении, что и на Земле. Для наблюдений пока доступны лишь внешние слои З. Однако сопоставление данных непосредственных наблюдений с выводами, вытекающими из общих законов физики, позволило построить теорию внутреннего строения З. и источников звёздной энергии.

    Солнце по всем признакам является рядовой З. Имеются все основания предполагать, что многие З., как и Солнце, имеют планетные системы. Вследствие дальности расстояния пока ещё не удаётся непосредственно увидеть такие спутники З. даже в самые мощные телескопы. Для их обнаружения необходимы тонкие методы исследования, тщательные наблюдения в течение десятков лет и сложные расчёты. В 1938 шведский астроном Э. Хольмберг заподозрил, а позднее советский астроном А. Н. Дейч и др. установили существование невидимых спутников у звезды 61 Лебедя и других близких к Солнцу З. Наша планетная система, т. о., не является исключительным явлением. На многих планетах, окружающих другие З., также вероятно существование жизни, и Земля не представляет в этом отношении исключения.

    З. часто расположены парами, обращающимися вокруг общего центра масс; такие З. называются двойными звёздами (См. Двойные звёзды). Встречаются также тройные и кратные

    системы З.

    Взаимное расположение З. с течением времени медленно изменяется вследствие их движений в Галактике (См. Галактика). Звёзды образуют в пространстве огромные звёздные системы — Галактики. В состав нашей Галактики (к которой принадлежит Солнце) входит более 100 млрд. З. Изучение строения Галактики показывает, что многие З. группируются в Звёздные скопления, Звёздные ассоциации и др. образования.

    З. изучаются в двух дополняющих друг друга направлениях. Звёздная астрономия, рассматривающая З. как объекты, характеризующиеся теми или иными особенностями, исследует движение З., распределение их в Галактике и в скоплениях, различные статистические закономерности. Предметом изучения астрофизики (См. Астрофизика) являются физические процессы, происходящие в З., их излучение, строение, эволюция.

    Массы звёзд. Массы могут быть определены непосредственно лишь у двойных З. на основе изучения их орбит. У спектрально-двойных З. измерения смещений спектральных линий вследствие эффекта Доплера позволяют определить период обращения компонентов и проекции макс. скорости каждого компонента на луч зрения. Аналогичные измерения можно провести и у некоторых визуально-двойных З. Этих данных достаточно для вычисления отношения масс компонентов. Абсолютные значения масс определяются, если система является в то же время и затменно-двойной, т. е. если её орбита видна с ребра и компоненты З. попеременно закрывают друг друга. Изучение масс двойных З. показывает, что между массами и светимостями З. главной последовательности существует статистическая зависимость (см. «Масса — светимость» диаграмма (См. Масса-светимость диаграмма)). Эта зависимость, распространённая и на одиночные З., позволяет косвенно, определяя светимости З., оценивать и их массы.

    Светимости звёзд и расстояния до них. Основной метод определения расстояний до З. состоит в измерении их видимых смещений на фоне более далёких З., обусловленных обращением Земли вокруг Солнца. По смещению (Параллаксу), величина которого обратно пропорциональна расстоянию, вычисляют и само расстояние. Однако такой способ измерений применим только к ближайшим З.

    Зная расстояние до З. и её видимую звёздную величину m, можно найти абсолютную звёздную величину М по формуле:

    М = m +5-5 lg r,

    где r — расстояние до З., выраженное в Парсеках. Определив средние абсолютные звёздные величины для З. тех или иных спектральных классов и сопоставив с ними видимые звёздные величины отдельных З. этих же классов, можно определить расстояния и до удалённых З., для которых параллактические смещения неощутимы (это т. н. спектральные параллаксы). Абсолютные звёздные величины некоторых типов переменных звёзд (например, цефеид (См. Цефеиды)) можно установить по величине периода изменения блеска, что также позволяет определять расстояния до них.

    Расстояния оцениваются также по систематическим компонентам лучевых скоростей (См. Лучевая скорость) и собственных движений звёзд (См. Собственные движения звёзд), обусловленным особенностями вращения Галактики и движением Солнца (вместе с Землёй) в пространстве и зависящим, т. о., от удалённости З. Чтобы исключить влияние собственных скоростей отдельных З., определяют расстояние сразу до большой группы их (статистические или групповые параллаксы).

    Наиболее яркие З. приведены в табл. 1, ближайшие З. — в табл. 2.

    Табл. 1.—Наиболее яркие звезды

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    | Название      | Видимая      | Спект-        | Собст-     | Парал-     | Лучевая       | Тангенци-     | Абсолют-      | Светимость (в    |

    |     | звёздная      | ральный     | венное     | лакс        | скорость,     | альная         | ная        | единицах    |

    |     | величина      | класс и      | движе-     |         км/сек   | скорость,     | звёздная      | светимости        |

    |     | (систе-         | класс         | ние   |         |      км/сек   | величина      | Солнца)      |

    |     | ма V)     | свети-        |         |         |      |      | (систе-         |           |

    |     |      | мости  |         |         |      |      | ма V)     |           |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Большого Пса     | –1,46     | А1 V          | 1,32“        | 0,375“      | -8          | 17         | + 1,4     | 22,4    |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 8,5        | А5       |         |         |      |      | +11,4     | 0,002          |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Киля     | -0,75      | F0 lb-ll        | 0,02  | 0,018       | +20       | 5   | -4,4       | 4700           |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Волопаса     | -0,05      | К2 IIIp  | 2,28  | 0.090       | -5          | 120        | -0,3       | 107     |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Лиры    | +0,03     | А0 V          | 0,34  | 0,123       | -14        | 13         | -+0,5     | 51       |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Центавра     | 0,06       | G2 V   | 3,68  | 0,751       | --22       | 23         | +4,5      | 1,3      |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 1,51       | К5       |         |         |      |      | +5,9      | 0,34    |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Возничего    | 0,08       | G8 III   | 0,44  | 0,073       | +30       | 29         | -0,6       | 141     |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | β    | Ориона | 0,13       | В8 Iа   | 0,00  | 0,003       | +24       | 0   | -7,5       | 81000  |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Малого Пса         | 0,37       | F5 IV-V       | 1,25  | 0,288       | -3          | 20         | +2,6      | 7,4      |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 10,8       | белый        |         |         |      |      | 13,1       | 0,0004 |

    |       |     |      | карлик |         |         |      |      |      |           |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Ориона | 0,42 пер.      | М2 lab        | 0,03  | 0,005       | +21       | 28         | -6,1       | 22400  |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Эридана       | 0,47       | В5 IV   | 0,10  | 0,032       | +19       | 15         | -2,0       | 510     |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | β    | Центавра     | 0,59       | В1 II    | 0,04  | 0,016       | -12        | 11         | -3,4       | 1860           |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Орла    | 0,76       | А7 IV-V      | 0,66  | 0,198       | -26        | 16         | +2,3      | 9,8      |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Креста         | 0,79       | В1 IV   | 0,04  | 0,008       | -6          | 24         | -4,7       | 6200           |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 1,3        | В1       |         |         |      |      | -4,2       | 3700           |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Тельца         | 0,86       | К5 III    | 0,20  | 0,048       | +54       | 20         | -0,7       | 155     |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 13,6       | М2 V   |         |         |      |      | +11,8     | 0,0015 |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Скорпиона    | 0,91 пер.      | MI la    | 0,03  | 0,019       | -3          | 7   | -2,7       | 980     |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 6,8        | В4       |         |         |      |      | +3,2      | 4,1      |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Девы    | 0,97 пер.      | В1 V          | 0,05  | 0,021       | +1         | 11         | -2,4       | 740     |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | β    | Близнецов    | 1,14       | К0 III    | 0,62  | 0,093       | +3         | 32         | +1,0      | 32       |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Южной Рыбы       | 1,16       | A3 V          | 0,37  | 0,144       | +6         | 12         | +2,0      | 13       |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Лебедя | 1,25 пер.      | А2 la   | 0,00  | 0,003       | -3          | 0   | -6,2       | 24 600 |

    |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α    | Льва    | 1,35 пер.      | B7 V          | 0,24  | 0,039       | +3         | 29         | -0,7       | 155     |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 7,6        | К2       |         |         |      |      | +5,6      | 0,45    |

    |       |     |-----------------------------------------|         |         |      |      |-------------------------------------------------|

    |       |     | 13         |    |         |         |      |      | +11       | 0,003          |

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Табл. 2.— Ближайшие звёзды

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    | Название        | Видимая  | Спектраль-      | Собст-     | Парал-     | Расстоя-    | Абсолютная       |

    |       | звёздная        | ный класс и    | венное     | лакс        | ние,    | звёздная    |

    |       | величина        | класс       | движе-     |         парсек       | величина    |

    |       | (система V)    | светимости     | ние   |         |    | (система V)       |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Ближайшая Центавра     | 10,68       | М5е         | 3,85“        | 0,762“      | 1,31    | +15,1  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α Центавра А  | 0,32         | G2 V        | 3,79  | 0,751       | 1,33    | +4,76  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | α Центавра В  | 1,72         | K5 V        |         |         |    | +6,16  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Звезда Барнарда    | 9,54         | М5 V        | 10,30       | 0,545       | 1,83    | +13,22        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Вольф № 359         | 13,66       | dM6e       | 4,84  | 0,427       | 2,34    | +16,62        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | BD +36°2147   | 7,47         | M2V | 4,78  | 0,396       | 2,52    | +10,46        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Сириус А        | -1,47        | А1 V        | 1,32  | 0,375       | 2,66    | +1,42  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Сириус В        | 8,67         | А5           |         |         |    | +11,55        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Лейтен 726—8 (UV Кита)        | 12,45       | dM6e       | 3,36  | 0,371       | 2,69    | +15,3  |

    |       |------------------------------------------------|         |         |    |-------------------------- |

    |       | 12,95       | dM6e       |         |         |    | +15,8  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Росс №154     | 10,6         | dM4e       | 0,67  | 0,340       | 2,93    | +13,3  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Росс № 248    | 12,24       | dM6e       | 1,58  | 0,316       | 3,16    | +14,74        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | ε Эридана       | 3,73         | К2 V        | 0,97  | 0,303       | 3,30    | +6,14  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Росс № 128    | 11,13       | dM5         | 1,40  | 0,298       | 3,34    | +13,50        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Лейтен 789-6   | 12,58       | dM6e       | 3,27  | 0,298       | 3,34    | +14,9  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | 61 Лебедя А           | 5,19         | K5 V        | 5,22  | 0,292       | 3,42    | +7,52  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | 61 Лебедя В           | 6,02         | K7 V        |         |         |    | +8,35  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Процион А      | 0,34         | F5 IV-V    | 1,25  | 0,288       | 3,48    | +2,67  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Процион В      | 10,7         | dF    |         |         |    | +13,1  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | ε Индейца       | 4,73         | K5 V        | 4,67  | 0,285       | 3,50    | +7,0    |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | BD +59° 1915 А       | 8,90         | dM4         | 2,29  | 0,278       | 3,58    | +11,12        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | BD+59° 1915 В        | 9,69         | dM5         |         |         |    | +11,91        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | BD +43° 44A           | 8,07         | MI V | 2,91  | 0,278       | 3,58    | +10,29        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | BD +43° 44В           | 11,04       | M6 V        |         |         |    | +13,26        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | τ Кита     | 3,50         | G8 Vp      | 1,92  | 0,275       | 3,62    | +5,70  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | CD +36° 15693        | 7,39         | M2 V        | 6,87  | 0,273       | 3,65    | +9,57  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | BD +5° 1668    | 9,82         | dM4         | 3,73  | 0,266       | 3,75    | +11,95        |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | CD-39° 4192    | 6,72         | MOI         | 3,46  | 0,255       | 3,90    | +8,75  |

    |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Звезда Каптейна     | 8,8   | sdMO       | 8,79  | 0,251       | 3,99    | +10,8  |

    ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Температуры и спектральные классы звёзд. Распределение энергии в спектрах раскалённых тел неодинаково; в зависимости от температуры максимум излучения приходится на разные длины волн, меняется цвет суммарного излучения. Исследование этих эффектов у З., изучение распределения энергии в звёздных спектрах, измерения показателей цвета позволяют определять их температуры (см. Температура в астрофизике). температуры З. определяют также по относительным интенсивностям некоторых линий в их спектре, позволяющим установить спектральный класс З. (см. Спектральная классификация звёзд). Спектральные классы З. зависят от температуры и с убыванием её обозначаются буквами: О, В, A, F, G, К, М. Кроме того, от класса G ответвляется побочный ряд углеродных звёзд С (ранее обозначавшихся R, N), а от класса К — побочная ветвь S. Из класса О выделяют более горячие З. — ядра планетарных туманностей (класс Р) и Вольфа - Райе звёзды с широкими яркими линиями излучения в спектре (класс W). Зная механизм образования линий в спектрах, температуру можно вычислить по спектральному классу, если известно ускорение силы тяжести на поверхности З., связанное со средней плотностью её фотосферы, а следовательно, и размерами З. (плотность может быть оценена по тонким особенностям спектров). Зависимость спектрального класса или показателя цвета от эффективной температуры З. называется шкалой эффективных температур. Зная температуру, можно теоретически рассчитать, какая доля излучения З. приходится на невидимые области спектра — ультрафиолетовую и инфракрасную. Абсолютная звёздная величина и поправка, учитывающая излучение в ультрафиолетовой и инфракрасной частях спектра (болометрическая поправка), дают возможность найти полную Светимостьзвезды.

    Радиусы звёзд. Зная эффективную температуру Tef и светимость L, можно вычислить радиус R звезды по формуле:

    L=4πR2σT4ef

    основанной на Стефана — Больцмана законе излучения (См. Стефана - Больцмана закон излучения) (σ — постоянная Стефана). Радиусы З. с большими угловыми размерами могут быть измерены непосредственно с помощью звёздных интерферометров (См. Звёздный интерферометр). У затменно-двойных З. могут быть вычислены значения наибольших диаметров компонентов, выраженные в долях большой полуоси их относительной орбиты.

    Вращение звёзд. Вращение З. изучается по их спектрам. При вращении один край диска З. удаляется от нас, а другой приближается с той же скоростью. В результате в спектре З., получающемся одновременно от всего диска, линии расширяются и, в соответствии с принципом Доплера, приобретают характерный контур, по которому возможно определять скорость вращения. З. ранних спектральных классов О, В, А вращаются со скоростями (на экваторе) 100—200 км/секи больше. Скорости вращения более холодных З. — значительно меньше (несколько км/сек). Уменьшение скорости вращения З. связано, по-видимому, с переходом части момента количества движения к окружающему её газо-пылевому диску вследствие действия магнитных сил. Из-за быстрого вращения З. принимает форму сплюснутого сфероида. Излучение из звёздных недр просачивается к полюсам скорее, чем к экватору, вследствие чего температура на полюсах оказывается более высокой. Поэтому на поверхности З. возникают меридиональные течения от полюсов к экватору, которые замыкаются в глубоких слоях З. Такие движения играют существенную роль в перемешивании вещества в слоях, где нет конвекции.

    Зависимости между звёздными параметрами. Массы З. заключены в пределах от 0,04 до 100 масс Солнца, светимости от 5∙10-4 до 105 светимостей Солнца, радиусы от 2∙10-1 до 103 радиусов Солнца. Эти параметры связаны определёнными зависимостями. Наиболее важные из них выявляются на диаграммах «спектр — светимость» (Герцшпрунга - Ресселла диаграммах) или «эффективная температура — светимость», и др. Почти все З. располагаются на таких диаграммах вдоль нескольких полос, схематически изображенных на рис. 2 и соответствующих различным последовательностям, пли классам светимости. Большинство З. расположено на главной последовательности (V класс светимости). Левый её конец образуют З. класса О с температурами 30 000—50 000°, правый — красные звёзды-карлики класса М с температурами 3000—4000°. На диаграмме видна последовательность гигантов (III класс), в которую входят З. высокой светимости (т. е. имеющие большие радиусы). Выше расположены последовательности ещё более ярких сверхгигантов Ia, Iв и II. (Принадлежность З. к числу карликов, гигантов и сверхгигантов обозначалась ранее буквами d, g и с перед спектральным классом.) Внизу диаграммы расположены белые карлики (VII), размеры которых сравнимы с размерами Земли при плотности порядка 106 г/см3. Кроме этих основных последовательностей, отмечаются субгиганты (IV) и субкарлики (VI).

    Диаграмма Герцшпрунга — Ресселла нашла своё объяснение в теории внутреннего строения З.

    Внутреннее строение звёзд. Поскольку недра З. недоступны непосредственным наблюдениям, внутреннее строение З. изучается путём построения теоретических звёздных моделей (См. Звёздные модели), которым соответствуют значения масс, радиусов и светимостей, наблюдаемые у реальных З. В основе теории внутреннего строения обычных З. лежит представление о З. как о газовом шаре, находящемся в механическом и тепловом равновесии, в течение длительного времени не расширяющемся и не сжимающемся. Механическое равновесие поддерживается силами гравитации, направленными к центру З., и газовым давлением в недрах З., действующим наружу и уравновешивающим силы гравитации. Давление растет с глубиной, а вместе с ним увеличиваются и плотность и температура. Тепловое равновесие заключается в том, что температура З. — во всех её элементарных объёмах — практически не меняется со временем, т. е. что количество энергии, уходящей из каждого такого объёма, компенсируется приходящей в него энергией, а также энергией, вырабатываемой там ядерными или др. источниками.

    Температуры обычных З. меняются от нескольких тыс. градусов на поверхности до десяти млн. градусов и более в центре. При таких температурах вещество состоит из почти полностью ионизованных атомов, благодаря чему оказывается возможным в расчётах звёздных моделей применять уравнения состояния идеального газа. При исследованиях внутреннего строения З. существенное значение имеют предпосылки об источниках энергии, химическом составе З. и о механизме переноса энергии.

    Основным механизмом переноса энергии в З. является лучистая теплопроводность. При этом диффузия тепла из более горячих внутренних областей З. наружу происходит посредством квантов ультрафиолетового излучения, испускаемого горячим газом. Эти кванты поглощаются в др. частях З. и снова излучаются; по мере перехода во внешние, более холодные слои частота излучения уменьшается. Скорость диффузии определяется средней величиной пробега кванта, которая зависит от прозрачности звёздного вещества, характеризуемой коэффициент поглощения. Основными механизмами поглощения в З. являются фотоэлектрическое поглощение и рассеяние свободными электронами.

    Лучистая теплопроводность является основным видом переноса энергии для большинства З. Однако в некоторых частях З., а в З. с малой массой — почти во всём объёме, существенную роль играет конвективный перенос энергии, т. е. перенос тепла массами газа, поднимающимися и спускающимися под влиянием различия температуры. Конвективный перенос, если он действует, гораздо эффективнее лучистого, но конвекция возникает только там, где водород или гелий ионизованы частично: в этом случае энергия их рекомбинации поддерживает движение газовых масс. У Солнца зона конвекции занимает слой от поверхности до глубины, равной около 0,1 его радиуса: ниже этого слоя водород и гелий ионизованы уже полностью. У холодных З. полная ионизация наступает на большей глубине, так что конвективная зона у них толще и охватывает большую часть объёма. Наоборот, у горячих З. водород и гелий полностью ионизованы, начиная почти от самой поверхности, поэтому у них нет внешней конвективной зоны. Однако они имеют конвективное ядро, где движения поддерживаются теплом, выделяющимся при ядерных реакциях.

    Звёзды-гиганты и сверхгиганты устроены иначе, чем З. главной последовательности. Маленькое плотное ядро их (1% радиуса) содержит 20—30% массы, а остальная часть представляет собой протяжённую разреженную оболочку, простирающуюся на расстояния, составляющие десятки и сотни солнечных радиусов. температуры ядер достигают 100 млн. градусов и более. Белые карлики по существу представляют собой те же ядра гигантов, но лишённые оболочки и остывшие до 8—10 тыс. градусов. Плотный газ ядер и белых карликов обладает особыми свойствами, отличными от свойств идеального газа. В нём энергия передаётся не излучением, а электронной теплопроводностью, как в металлах. Давление такого газа зависит не от температуры, а только от плотности, поэтому равновесие сохраняется даже при остывании З., не имеющей источников энергии.

    Химический состав вещества недр З. на ранних стадиях их развития сходен с химическим составом звёздных атмосфер (см. Атмосферы звёзд), который определяется из спектроскопических наблюдений (диффузионное разделение может произойти лишь за время, значительно превосходящее время жизни З.). С течением времени ядерные реакции изменяют химический состав звёздных недр и внутреннее строение З. меняется.

    Источники звёздной энергии и эволюция звёзд. Основным источником энергии З. являются термоядерные реакции, при которых из лёгких ядер образуются более тяжёлые; чаще всего это — превращение водорода в гелий. В З. с массой, меньшей двух солнечных, оно происходит главным образом путём соединения двух протонов в ядро дейтерия (лишний заряд уносится рождающимся позитроном), затем превращением дейтерия в изотоп He3 путём захвата протона и, наконец, превращением двух ядер He3 в He4 и два протона. В более массивных З. преобладает углеродно-азотная циклическая реакция: углерод захватывает последовательно 4 протона, выделяя попутно два позитрона, превращается сначала в азот, затем распадается на гелий и углерод. Окончательным результатом обеих реакций является синтез ядра гелия из четырёх ядер водорода с выделением энергии: ядра азота и углерода в углеродно-азотной реакции играют лишь роль катализатора. Для сближения ядер на такое расстояние, когда может произойти захват, нужно преодолеть электростатическое отталкивание, поэтому реакции могут идти только при температурах, превышающих 107 градусов. Такие температуры встречаются в самых центральных частях З. В З. малых масс, где температура в центре недостаточна для термоядерных реакций, источником энергии служит гравитационное сжатие З.

    Зная процессы передачи и выделения тепла, можно решить систему уравнений механического и теплового равновесия и рассчитать внутреннее строение З., имеющей данную массу. При этом вычисляются также радиус и светимость З., которые являются функцией массы. Полученные таким путём теоретические зависимости могут быть сопоставлены с диаграммами «масса — светимость» и «масса — радиус», составленными по наблюдениям З. Для З. главной последовательности результаты наблюдений согласуются с теорией. З. др. последовательностей теоретическим зависимостям не удовлетворяют. Причина появления др. последовательностей заключается в изменении химического состава недр З. в процессе эволюции. Превращение водорода в гелий увеличивает молекулярный вес газа, вследствие чего ядро сжимается, температура его растет, а соседний с ядром газ нормального состава расширяется. З. становится гигантом, причём на диаграмме Герцшпрунга — Ресселла она перемещается по одной из линий, называемых эволюционными треками. Иногда треки имеют сложный вид; перемещаясь по ним, З. несколько раз переходит от одного края диаграммы к другому и обратно. После расширения, а затем рассеяния оболочки З. становится белым карликом.

    У массивных З. ядро в конце эволюции неустойчиво, радиус его уменьшается приблизительно до 10 км, и З. превращается в нейтронную (состоит из нейтронов, а не из ядер и электронов, как обычные З.). Нейтронные З. имеют сильное магнитное поле и быстро вращаются. Это приводит к наблюдаемым всплескам радиоизлучения, а иногда к всплескам также и оптических и рентгеновского излучений. Такие объекты называются пульсарами (См. Пульсары).При ещё больших массах происходит коллапс — неограниченное падение вещества к центру со скоростью, близкой к скорости света. Часть гравитационной энергии сжатия производит выброс оболочки со скоростью до 7000км/сек.При этом З. превращается в сверхновую З., её излучение увеличивается до нескольких млрд. светимостей Солнца, а затем постепенно, в течение ряда месяцев угасает. О происхождении и эволюции З. см. также в ст. Космогония.

    Двойные звёзды. Большая часть З. входит в состав двойных или кратных звёздных систем (см. Двойные звёзды).Если компоненты двойных З. расположены достаточно далеко друг от друга, они видны отдельно. Это т. н. визуально-двойные З. Иногда один, более слабый, компонент не виден, и двойственность обнаруживается по непрямолинейному движению более яркой З. Чаще же всего двойные З. распознаются по периодическому расщеплению линий в спектре (спектрально-двойные З.) или по характерным изменениям блеска (затменно-двойные З.). Большая часть двойных З. образует тесные пары. На эволюцию компонентов таких З. существенное влияние оказывают взаимные приливные возмущения. Если один из компонентов З. вздувается в процессе эволюции, то при некоторых условиях из точки её поверхности, обращенной к др. компоненту, начинается истечение газа. Газ образует потоки вокруг второго компонента и частично попадает на него. В результате первый компонент может потерять большую часть массы и превратиться в субгиганта или даже в белого карлика. Второй же компонент приобретает часть потерянной массы и соответственно увеличивает светимость. Поскольку эта масса может включать газ не только из атмосферы, но и из глубоких слоев, близких к ядру первого компонента, в двойной З. могут наблюдаться аномалии химического состава. Однако эти аномалии касаются только лёгких элементов, т.к. тяжёлые элементы в гигантах не образуются. Они появляются при взрывах сверхновых З., когда выделяется много нейтронов, которые захватываются ядрами атомов и увеличивают их вес.

    Пекулярные и магнитные звёзды. Аномалии химического состава, причём различные в разных местах поверхности З., особенно часто наблюдаются у т. н. магнитных звёзд. Эти З., спектральный класс которых близок к АО, имеют на поверхности магнитные поля с очень высокой напряжённостью (до 10 000 гаусс и больше). Напряжённость поля периодически меняется со средним периодом от 4 до 9 сут,причём часто изменяется и знак напряжённости. С этим же периодом обычно меняется и характер спектра, как если бы менялся химический состав З. Такие изменения могут быть объяснены вращением З., имеющей два или несколько магнитных полюсов, не совпадающих с полюсом вращения. Изменения химического состава при этом объясняются тем, что на магнитном полюсе сосредоточено больше одних элементов, а на магнитном экваторе — других. У разных пекулярных (особых) З., характеризующихся наиболее существенными особенностями химического состава, аномалии могут быть разными: чаще всего наблюдается большой избыток отдельных элементов типа Si, Mg, Cr, Eu, Mn и некоторых др. и недостаток Не. Появление этих аномалий обусловлено, по-видимому, тем, что сильное магнитное поле подавляет конвекцию. При отсутствии перемешивания происходит медленная диффузия элементов под действием силы тяжести и давления радиации. Одни элементы опускаются вниз, другие поднимаются вверх, в результате чего на поверхности наблюдается недостаток первых и избыток вторых. Магнитные З. вращаются медленнее, чем нормальные З. того же класса. Это является результатом того, что магнитное поле тормозило вращение сжимающегося сгустка вещества, из которого впоследствии сформировалась З.

    Кроме обычных пекулярных З. имеются т. н. З. с металлическими линиями поздних спектральных подклассов А. У них также есть магнитное поле, но более слабое, и аномалии химического состава не так велики. Природа таких З. пока не изучена.

    Некоторые типы аномалий, например обилие Li, связаны с дроблением более тяжёлых ядер космическими лучами, образующимися на самой З. в результате электромагнитных явлений, сходных с хромосферными вспышками. Такие аномалии наблюдаются, например, у ещё сжимающихся З. типа Т Тельца, с сильной конвекцией.

    Аномалии др. вида, наблюдаемые, например, у гигантов спектрального класса S, обусловлены тем, что глубокая поверхностная конвективная зона смыкается с центральной конвективной зоной, что вызывается усилением ядерных реакций на определённом этапе эволюции З. В результате вещество всей З. перемешивается, и наружу выносятся элементы, синтезированные в её центральных областях.

    Переменные звёзды. Блеск многих З. непостоянен и изменяется в соответствии с тем или иным законом; такие З. называются переменными звёздами (См. Переменные звёзды). З., у которых изменения блеска связаны с физическими процессами, происходящими в них самих, представляют собой физические переменные З. (в отличие от оптических переменных З., к числу которых относятся затменно-двойные З.). Периодическая и полупериодическая переменность связана обычно с пульсациями З., а иногда с крупномасштабной конвекцией. Вообще говоря, З. как системам, находящимся в устойчивом равновесии, свойственны пульсации с собственными периодами. Колебания могут возникнуть в процессе перестройки структуры З., связанной с эволюционными изменениями. Однако, чтобы они не затухали, должен существовать механизм, поддерживающий или усиливающий их: в период максимального сжатия З. необходимо получить тепловую энергию, которая уйдёт наружу в период расширения. Согласно современным теориям, пульсации у многих типов переменных З. (цефеиды, переменные типа RR Лиры и др.) объясняются тем, что при сжатии З. увеличивается коэффициент поглощения; это задерживает общий поток излучения, и газ получает дополнительную энергию. При расширении поглощение уменьшается, и энергия выходит наружу. Неоднородное строение З., наличие в них нескольких слоев с различными свойствами нарушает регулярную картину, делает изменения параметров З. отличными от правильной синусоиды. Основная стоячая волна колебания часто находится в глубине З., а на поверхность выходят порождаемые ею бегущие волны, которые влияют на фазы изменений блеска, скорости и др. параметров.

    Некоторые виды переменных З. испытывают вспышки, при которых блеск возрастает на 10—15 звёздных величин (т. н. новые З.), на 7—8 величин (повторные новые З.) или на 3—4 величины (новоподобные). Такие вспышки связаны с внезапным расширением фотосферы с большими скоростями (до 1000—2000 км/сек у новых З.), что приводит к выбросу оболочки с массой около 10-5—10-4 масс Солнца. После вспышки блеск начинает уменьшаться с характерным временем 50—100 сут. В это время продолжается истечение газов с поверхности со скоростью в несколько тыс. км/сек.Все эти З. оказываются тесными двойными, и их вспышки, несомненно, связаны с взаимодействием компонентов системы, один из которых или оба обычно являются горячими звёздами-карликами. На структуру оболочек, выброшенных новыми З., по-видимому, существенное влияние оказывает сильное магнитное поле З. Быстрая неправильная переменность З. типа Т Тельца, UV Кита и некоторых др. типов молодых сжимающихся З. связана с мощными конвективными движениями в этих З., выносящими на поверхность горячий газ. К переменным З. можно отнести и уже упоминавшиеся сверхновые З. В Галактике известно свыше 30 000 переменных З.

    Работы по изучению З. в СССР ведутся на Крымской астрофизической обсерватории АН СССР, Главной астрономической обсерватории АН СССР, в Государственном астрономическом институте им. П. К. Штернберга, в Астрономическом совете АН СССР и др. астрономических учреждениях. Статьи по этим вопросам печатаются в «Астрономическом журнале», в журнале «Астрофизика» и в изданиях обсерваторий. За рубежом исследования З. ведутся в США, Великобритании, Австралии и многих др. странах. В зарубежной литературе основным является «Astrophysical Journal» (США) и ряд др. изданий США, Великобритании и др. стран.

    Лит.: Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959; Мустель Э. Р., Звездные атмосферы, М., 1960; Шварцшильд М., Строение и эволюция звезд, пер. с англ., М., 1961; Горбацкий В. Г., Минин И. Н., Нестационарные звезды, М., 1963; Звездные атмосферы, под ред. Лж. Л. Гринстейна, пер. с англ., М., 1963; Каплан С. А., Физика звезд, 2 изд., М., 1970; Пульсирующие звезды, М., 1970; Мартынов Д. Я., Курс общей астрофизики, 2 изд., М., 1971.

    С. Б. Пикельнер.

    Рис. 1. Сравнительные размеры звёзд-гигантов и звёзд-карликов.

    Рис. 2. Диаграмма Герцшпрунга — Ресселла.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Толково-фразеологический словарь Михельсона

    (иноск.) — выдающиеся артистки

    Ср. Звезда девка! — бойкая.

    Ср. Звездочка имеет много общего с астрономическими "падающими звездами": они и появляются на горизонте — в известный сезон, как падающие звезды.

    *** Афоризмы.

    Ср. Она с первого появления своего попала в звезды первой величины. Без нее не обходился ни один праздник.

    Б.М. Маркевич. Бездна. 1, 2.

    Ср. Он считается звездой! Как подумаешь, как легко у нас прослыть звездой, так даже смешно становится.

    К.М. Станюкович. Откровенные. 1, 18.

    Ср. Ради приюта и хлеба,

    К добрым России сынам,

    Звездочка венского неба

    В Питер скатилася к нам.

    В. Курочкин. Звездочка венского неба.

  3. Источник: Русская мысль и речь. Свое и чужое. Опыт русской фразеологии. Сборник образных слов и иносказаний. Т.Т. 1—2. Ходячие и меткие слова. Сборник русских и иностранных цитат, пословиц, поговорок, пословичных выражений и отдельных слов. СПб., тип. Ак. наук.. М. И. Михельсон. 1896—1912.



  4. Большой энциклопедический словарь

    ЗВЕЗДЫ - светящиеся газовые (плазменные) шары, подобные Солнцу. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационной неустойчивости. При достижении в недрах звезд высокой плотности и температуры (ок. 10-12 млн. К) начинаются термоядерные реакции синтеза элементов - основной источник энергии большинства звезд. Массы звезд (М) заключены в пределах от 0,04 до ~ 60 М?, светимости (L) - от 0,5 до сотен тыс. L?. Звезды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра. На определенных этапах звездной эволюции ряд звезд проходит через стадию нестационарности (см. Нестационарные звезды). В зависимости от массы звезды в конце эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

  5. Источник: Большой Энциклопедический словарь. 2000.



  6. Современная энциклопедия

    ЗВЁЗДЫ, светящиеся газовые (плазменные) шары, подобные Солнцу. Массы звезд от >0,04 до >60 Мs, светимости от >0,5 до сотен тысяч Ls (Ms и Ls - соответственно масса и светимость Солнца). Образуются из межзвездной газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. При достижении в недрах звезд высоких плотностей и температур (10-12 млн. градусов) начинаются термоядерные реакции - основной источник энергии большинства звезд. Среднее количество энергии, вырабатываемой в 1 с одним граммом вещества звезд, не превосходит 10 тыс. эрг (эта же величина для человеческого тела в 10 раз больше, ~100 тыс. эрг). По мере истощения запасов ядерного горючего изменяются структура, размеры и химический состав звезд. Когда ядерные реакции в недрах звезд прекращаются, звезды сжимаются под действием сил гравитации, превращаясь (в зависимости от массы) в белый карлик, нейтронную звезду или черную дыру. Большая часть звезд нашей Галактики входит в двойные и кратные звездные системы (смотри Двойные звезды). На определенных этапах эволюции звезды становятся переменными (смотри Переменные звезды). Ближайшая к Солнцу звезда - Проксима Кентавра (Проксима - "Ближайшая") на расстоянии около 4,3 световых года.

  7. Источник: Современная энциклопедия. 2000.



  8. Физическая энциклопедия

    ЗВЁЗДЫ

    в обычном (стационарном) состоянии раскалённые газовые (плазменные) шарообразные небесные тела, находящиеся в гидродинамич. и тепловом равновесии. Гидродинамич. равновесие обеспечивается равенством сил тяготения и сил внутр. давления, действующих на каждый элемент массы З. Тепловое равновесие соответствует равенству энергии, выделяемой из недр З., и энергии, излучаемой с её поверхности. З. (кроме ближайшей З.— Солнца) находятся на столь больших расстояниях от Земли, что даже в самые сильные телескопы видны как светящиеся точки разл. яркости и цвета. Осн. видимая хар-ка З.— её блеск, к-рый определяется мощностью излучения (светимостью) З. и расстоянием до неё.

    Осн. параметрами состояния З. явл. светимость L, масса M} и радиус R. Их численные значения принято выражать в солн. ед. (Lсолн=3,86
    • 1033 эрг/с, Mсолн=1,99
    • 1033 г, Rсолн=6,96
    • 1010 см). Значения масс З. заключены в пределах от =0,03 до =60Mсолн. Светимости стационарных З. лежат в интервале от =10-4 до 105 Lсолн, а радиусы — от =10 км (нейтронные звёзды) до —103 Rсолн (сверхгиганты). З. представляют большой интерес для физики, т. к. в них реализуются условия, недостижимые в земных лабораториях (темп-ры до 109 К, плотности до 1014 г/см3, магн. поля напряжённостью до 1014 Э), и наблюдаются характерные для этих условий процессы. Огромную информацию даёт изучение спектров З. (определение их хим. состава, темп-ры поверхности, магн. полей, скоростей движения и вращения, расстояний до З.).

    З. по состоянию в-ва в недрах разделяют на три главные группы: 1) нормальные З., гидростатич. равновесие к-рых поддерживается давлением классической идеальной плазмы, существующей благодаря термич. ионизации атомов (эффекты неидеальности становятся важными только в З. малой массы?0,5Mсолн); 2) белые карлики, к-рые удерживаются в равновесии фермиевским давлением эл-нов вырожденной плазмы (ионизованной даже при низких темп-pax давлением); 3) нейтронные З. с высокой ср. плотностью (r?1012 г/см3), при к-рой ферми энергия эл-нов столь высока, что энергетически выгоден процесс нейтронизации вещества, т. е. слияние протонов и эл-нов, из-за чего в-во внеш. слоев З. состоит из ядер, обогащённых нейтронами, а внутренних — из свободных нейтронов (с малой примесью протонов и эл-нов).

    Осн. источник излучения З. (фотонного и нейтринного, а также корпускулярного) — реакции термояд. синтеза (см. ТЕРМОЯДЕРНЫЕ РЕАКЦИИ). На непродолжит. стадиях перехода от одной реакции к другой, сопровождающихся сжатием З., существенным становится также выделение потенциальной гравитац. энергии. Наиболее энергетически эфф. процессом, идущим при самой низкой темп-ре (=107 К), явл. процесс превращения водорода в гелий. Поскольку водородный цикл реакций обязательно содержит к.-л. реакцию, идущую по слабому взаимодействию, этот процесс явл. и самым медленным. Поэтому б. ч. наблюдаемых З. находится в стадии водородного горения в центре. При данном хим. составе условия теплового и механич. равновесия дают для этих З. однозначную связь светимости, массы и радиуса. Вследствие этого на диаграммах «светимость — темп-pa поверхности» и «масса — радиус» большинство З. группируется вдоль определ. линии, т. <н. главной последовательности. После выгорания водорода в центре, сжатия ядра и повышения его темп-ры (см. ВИРИАЛА ТЕОРЕМА) становится возможным (при достаточно большой массе З.) горение всё более тяжёлых элементов (повышение темп-ры создаёт условия для преодоления более высокого, чем у водорода, кулоновского барьера при слиянии тяжёлых ат. ядер).

    Б. ч. своей жизни З. находятся в стационарном состоянии (напр., светимость Солнца примерно постоянна уже неск. млрд. лет). Равновесность З. при непрерывной потере энергии обусловлена сильным различием характерных времён протекающих в них процессов. Время установления механич. равновесия определяется отношением (радиус/ср. скорость звука), равным 103
    • r-1/2с (для Солнца =1 ч); время диффузии фотонов от центра к поверхности определяется отношением (гравитац. энергия/светимость), равным для Солнца =3
    • 107 лет; время термояд. эволюции =10-3M с2/L (для Солнца =1010 лет).

    Нарушение механич. равновесия, напр. снижение давления в З., приводит к сжатию З. и превращению части гравитац. энергии в теплоту. В результате внутр. давление возрастает, механич. равновесие восстанавливается. З. представляют собой, т. о., саморегулирующуюся систему. Если устойчивость З. нарушается, она становится нестационарной. Различные виды нестационарности имеют своё характерное время и могут проявляться в виде автоколебаний (цефеиды), гравитационного коллапса и др. При неустойчивости теплового равновесия нестационарность проявляется в виде вспышки с характерным временем диффузии фотонов. На поздних стадиях эволюции ядра З. становятся компактными, характерные времена сближаются, картина эволюции усложняется. Амплитуда проявлений нестационариости может быть самой разной: от долей процента при слабых пульсациях до вспышек с увеличением светимости в =1010 раз у сверхновых звёзд. У большинства З. малой массы наблюдаются также вспышки, не связанные с их внутр. равновесием. Они происходят в верхних слоях (атмосферах З.), по-видимому, из-за аннигиляции в к.-л. области атмосферы противоположных по направлению магн. полей (аналогично хромосферным вспышкам на Солнце).

    Общая картина эволюции З. может быть охарактеризована след. образом: З. возникают в результате конденсации межзвёздных пыли и газа, богатого водородом (процесс звездообразования продолжается). Затем следует наиболее длит. стадия звёздной эволюции — период термояд. реакций превращения водорода в гелий в центре З. Когда водород в центре исчерпан, ядро сжимается и нагревается, а оболочка сильно расширяется, причём, несмотря на рост светимости, темп-ра поверхности падает — З. становится красным гигантом. После этого в ядре З. становится возможным термояд. загорание гелия и более тяжёлых элементов, сопряжённое в ряде случаев со сбросом водородной оболочки и образованием т. н. планетарной туманности. Остаток З. остывает, переходя в стадию белого карлика. В зависимости от нач. массы, а возможно и от момента вращения, З. могут закончить свою эволюцию взрывом сверхновой (с остатком в виде нейтронной звезды либо без остатка). Согласно общей теории относительности Эйнштейна, наиб. массивные З., если они сохранили свою массу вплоть до исчерпания термояд. горючего, должны коллапсировать в состояние чёрной дыры.

    Справедливость осн. положений теории строения и эволюции З. подтверждается успешным объяснением: зависимости светимость — спектр. класс и др. закономерностей для З. главной последовательности; распространённости разных типов З.; пульсаций цефеид и др. Термояд. эволюция подтверждается распространённостью хим. элементов, а также наличием гелиевых З., углеродных З. и др. с аномалиями хим. состава на поздних стадиях. Теория предсказала подтверждающуюся наблюдениями зависимость масса — радиус для белых карликов, а также существование нейтронных З., открытых в виде пульсаров.

  9. Источник: Физическая энциклопедия



  10. Энциклопедия Кольера

    горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце - типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны. Живя на поверхности Земли, мы находимся на дне воздушного океана, который непрерывно волнуется и бурлит, преломляя лучи света звезд, отчего они кажутся нам мигающими и дрожащими. Космонавты на орбите видят звезды как цветные немигающие точки.

    КАРТА ЗВЕЗДНОГО НЕБА

    Многие века звездное небо вдохновляло людей; это нашло отражение в литературе и религии. Некоторые боги отождествлялись с отдельными звездами, планетами и созвездиями. В давние времена все небесные светила, кроме Луны и Солнца, называли "звездами", а планеты - "блуждающими звездами". Перемещение блуждающих звезд относительно неподвижных вызывало интерес и благоговение. Поскольку люди считали себя центром мироздания, они думали, что перемещение светил как-то влияет на их судьбу. Это астрологическое поверье, не исчезнувшее до сих пор, стимулировало астрономические наблюдения, необходимые для составления астрологических прогнозов. Поскольку все планеты движутся приблизительно в одной плоскости, их наблюдаемые с Земли траектории проходят на небе вдоль узкой полосы, называемой Зодиаком. Поэтому расположенные вдоль Зодиака созвездия - Телец, Овен и др. - в прежние времена считались особенно важными.

    См. также

    АСТРОЛОГИЯ;

    СОЗВЕЗДИЕ;

    ЗОДИАК. Многие храмы были ориентированы по звездам. Скажем, Великие пирамиды в Гизе построены так, что узкий коридор в них направлен точно на полярную звезду, роль которой тогда выполняла a Дракона. Мегалитическая постройка Стоунхендж на Солсберийской равнине в Англии сооружена в точном соответствии с сезонными изменениями положения Солнца и Луны. В нашу эпоху звезды часто используют как яркие метки на небе для определения времени и для навигации. Поскольку Земля вращается, каждый наблюдатель замечает, как звезды поочередно пересекают воображаемую линию север-зенит-юг (небесный меридиан). Это явление применяют для отсчета звездного времени. За начало новых звездных суток на всей Земле принят момент пересечения определенной точкой небесной сферы меридиана Гринвича в Англии.

    См. также ВРЕМЯ; НАВИГАЦИЯ. В настоящее время известно, что звезды - это гигантские природные генераторы энергии, с высокой эффективностью превращающие часть своего вещества в излучение. В последние десятилетия было окончательно установлено, как формируются звезды. Это происходит в тех областях пространства, где собирается достаточно большая масса межзвездного газа, который под действием собственного тяготения сжимается и разогревается до тех пор, пока температура не достигнет критического значения, необходимого для протекания ядерных реакций. Свойства образовавшейся звезды практически полностью определяются массой исходного газового облака.

    См. также

    КОСМОЛОГИЯ;

    ГРАВИТАЦИОННЫЙ КОЛЛАПС;

    ЯДЕРНЫЙ СИНТЕЗ.

    Обозначения звезд. В нашей Галактике более 100 млрд. звезд. На фотографиях неба, полученных крупными телескопами, видно такое множество звезд, что бессмысленно даже пытаться дать им всем имена или хотя бы сосчитать их. Около 0,01% всех звезд Галактики занесено в каталоги. Таким образом, подавляющее большинство звезд, наблюдаемых в крупные телескопы, пока не обозначено и не сосчитано. Самые яркие звезды у каждого народа получили свои имена. Многие из ныне употребляющихся, например, Альдебаран, Алголь, Денеб, Ригель и др., имеют арабское происхождение; культура арабов послужила мостом через интеллектуальную пропасть, отделяющую падение Рима от эпохи Возрождения. В прекрасно иллюстрированной "Уранометрии" (Uranometria, 1603) немецкого астронома И.Байера (1572-1625), где изображены созвездия и связанные с их названиями легендарные фигуры, звезды были впервые обозначены буквами греческого алфавита приблизительно в порядке убывания их блеска: a - ярчайшая звезда созвездия, b - вторая по блеску, и т.д. Когда не хватало букв греческого алфавита, Байер использовал латинский. Полное обозначение звезды состояло из упомянутой буквы и латинского названия созвездия. Например, Сириус - ярчайшая звезда в созвездии Большого Пса (Canis Major), поэтому его обозначают как a Canis Majoris, или сокращенно a CMa; Алголь - вторая по яркости звезда в Персее обозначается как b Persei, или b Per. Дж. Флемстид (1646-1719), первый Королевский астроном Англии, ввел систему обозначения звезд, не связанную с их блеском. В каждом созвездии он обозначил звезды номерами в порядка увеличения их прямого восхождения, т.е. в том порядке, в котором они пересекают меридиан. Так, Арктур, он же a Волопаса (b Bootes), обозначен как 16 Bootes. Некоторые необычные звезды иногда называют именами астрономов, впервые описавших их уникальные свойства. Например, звезда Барнарда названа в честь американского астронома Э.Барнарда (1857-1923), а звезда Каптейна - в честь нидерландского астронома Я.Каптейна (1851-1922). На современных картах звездного неба обычно нанесены древние собственные имена ярких звезд и греческие буквы в системе обозначений Байера (его латинские буквы используют редко); остальные звезды обозначают согласно Флемстиду. Но не всегда на картах хватает места для этих обозначений, поэтому обозначения остальных звезд нужно искать в звездных каталогах.

    Звездные каталоги. Самый обширный звездный каталог "Боннское обозрение" (Bonner Durchmusterung, BD) составил немецкий астроном Ф. Аргеландер (1799-1875). В нем указаны положения 324 198 звезд от северного полюса до склонения -2°. Звезда, обозначенная, например, как BD +7°1226, является 1226-й в порядке прямого восхождения звездой в восьмом поясе северных склонений. Продолжение этого каталога (SBD) к югу до склонения -23°, содержащее 133 659 звезд, составил немецкий астроном Э.Шенфельд (1828-1891). Оставшуюся часть южного неба покрыли каталоги Кордовское обозрение (Cordoba Durchmusterung, CD) и Капское фотографическое обозрение (Cape Photographic Durchmusterung, CPD). Всего в этих каталогах более 1 млн. звезд приблизительно до 10 звездной величины. Значительно больше звезд в каталоге Карта неба (Carte du ciel, или Astrographic Catalogue), содержащем положения нескольких миллионов звезд на 44 000 фотопластинок, полученных в обсерваториях всего мира. Современный большой каталог точных положений 258 997 звезд создан в Смитсоновской астрофизической обсерватории (SAO). Обширный каталог звездных спектров создан американским астрономом Э.Кэннон (1863-1941) и назван Каталогом Генри Дрэпера (Henry Draper Catalogue of Stellar Spectra, HD). Существует множество специальных каталогов. Например, звезды с измеренными собственными движениями собраны в Общем каталоге (General Catalogue, GC) и в Йельских зонных каталогах (Yale Zone Catalogues). Есть каталоги звезд с измеренными лучевыми скоростями, звезд с переменным блеском, каталоги двойных звезд. Самые слабые звезды не занесены в каталоги, но их можно найти на фотографических картах неба и определить их координаты и блеск относительно более ярких звезд. Самый полный фотографический атлас, покрывающий все небо, - это Паломарский обзор (Palomar Survey), на картах которого видны звезды до 21-й звездной величины.

    Переменные звезды. Переменные звезды обозначают в порядке их обнаружения в каждом созвездии. Первую обозначают буквой R, вторую - S, затем T и т.д. После Z идут обозначения RR, RS, RT и т.д. После ZZ идут AA и т.д. (Букву J не используют, чтобы не было путаницы с I.) Когда все эти комбинации истощаются (всего их 334), то продолжают нумерацию цифрами с буквой V (variable - переменный), начиная с V335. Примеры: S Car, RT Per, V557 Sgr.

    Расстояния до звезд. Ближайшая к нам звезда - Солнце, до него ок. 150 млн. км. Ближайшая к Солнцу яркая звезда - a Кентавра, которую можно увидеть только в Южном полушарии, до нее 42 000 млрд. км. Но еще чуть ближе к нам расположен ее невидимый глазом спутник, звезда Проксима ("ближайшая") Кентавра. Всего лишь вдвое дальше расположен Сириус, ярчайшая звезда нашего неба. Поскольку расстояния до звезд так велики, их неудобно измерять в километрах. Лучше использовать специальные единицы; например, в научно-популярной литературе часто используют "световой год", т.е. расстояние, которое луч света проходит со скоростью около 300 000 км/с за год; это ок. 9460 млрд. км. Расстояние до Проксимы 4,3 св. года, а до Сириуса ок. 8,7 св. года. Впервые расстояния до звезд были независимо измерены в 1838 Ф. Бесселем в Германии (до звезды 61 Лебедя), Т.Хендерсоном на мысе Доброй Надежды (до a Кентавра) и В.Струве в России (до Веги). Однако полутора веками ранее И.Ньютон сумел оценить порядок расстояния до звезд. Полагая, что Солнце - это рядовая звезда, он вычислил, что ее нужно удалить в 250 000 раз, чтобы Солнце выглядело как обычная звезда на небе. Так Ньютон ввел весьма универсальный метод определения расстояний в астрономии. Если каким-либо образом нам известна истинная светимость звезды, то нетрудно рассчитать, на каком расстоянии она будет иметь наблюдаемый блеск. Главное здесь - определить истинную светимость звезды. На практике для этого используют спектроскопию: в спектре звезды есть несколько индикаторов ее светимости.

    Но спектроскопический метод нуждается в калибровке. Для некоторых групп звезд используются специальные методы определения расстояний, например, статистический метод, основанный на видимом движении звезд по небу. Однако базовым методом определения расстояний до звезд служит метод тригонометрических параллаксов.

    Параллакс. Метод параллакса основан на измерении видимого смещения близких звезд на фоне более далеких при наблюдении из разных точек орбиты Земли. Чем ближе звезда, тем больше ее угловое смещение. Параллаксом звезды называют угол, под которым от нее виден радиус земной орбиты, равный 1 астрономической единице (а.е.), или 150 млн. км. Это чисто геометрический и поэтому очень надежный метод. К сожалению, параллаксы удается измерить лишь у нескольких тысяч ближайших звезд. Расстояния до них служат фундаментом при определении спектральными методами расстояний до более далеких звезд.

    ПАРАЛЛАКС - видимое смещение звезды на фоне более далеких светил при ее наблюдении из двух разных точек. Максимальное смещение достигается при наблюдении звезды из противолежащих точек орбиты. Параллаксом звезды называют половину максимального смещения.

    ПАРАЛЛАКС - видимое смещение звезды на фоне более далеких светил при ее наблюдении из двух разных точек. Максимальное смещение достигается при наблюдении звезды из противолежащих точек орбиты. Параллаксом звезды называют половину максимального смещения.

    Астрономы прошлого, например Т. Браге (1546-1601), не смогли заметить параллактического смещения звезд, из чего они заключили, что Земля неподвижна. Действительно, параллаксы даже ближайших звезд не превышают 1 "; под таким углом виден мизинец с расстояния в километр. Измерение столь малых углов - большое достижение современной техники. Наибольший параллакс (0,762 ") имеет Проксима Кентавра - маленький спутник звезды a Кентавра, расположенный ближе нее к Солнцу. На основе тригонометрических параллаксов астрономы ввели единицу длины "парсек" (пк) - расстояние до звезды, параллакс которой равен 1 "; 1 пк = 3,26 св. года. Наименьшие параллаксы, которые удается сейчас измерять, составляют 0,01 "; это соответствует расстоянию в 100 пк или 326 св. лет. Светимость звезд. Полную мощность излучения звезды во всем диапазоне электромагнитного спектра называют истинной или болометрической "светимостью". Например, светимость Солнца 3,86*10 26 Вт. Чем больше масса нормальной звезды, тем выше ее светимость; она возрастает примерно как куб массы. Это соотношение масса - светимость сначала было найдено из наблюдений, а позже получило теоретическое обоснование. Поток энергии, приходящий от звезды на Землю, называют "видимым блеском"; он зависит не только от истинной светимости звезды, но и от ее расстояния до Земли. Звезда низкой светимости, расположенная близко к Земле, может иметь больший блеск, чем звезда высокой светимости на большом расстоянии.

    Звездные величины. Блеск звезд выражают в особых, исторически сложившихся "звездных величинах". Происхождение этой системы связано с особенностью нашего зрения: если сила источника света изменяется в геометрической прогрессии, то наше ощущение от него - лишь в арифметической. Греческий астроном Гиппарх (до 161 - после 126 до н.э.) разделил все видимые глазом звезды на 6 классов по яркости. Самые яркие он назвал звездами 1-й величины, а самые слабые - 6-й. Позже измерения показали, что поток света от звезд 1-й величины примерно в 100 раз больше, чем от звезд 6-й величины по Гиппарху. Для определенности решили, что различие на 5 звездных величин в точности соответствует отношению потоков света 1:100. Тогда разница блеска на 1 звездную величину соответствует отношению яркостей

    . Например, звезда 1-й звездной величины в 2,512 раза ярче звезды 2-й величины, которая, в свою очередь, в 2,512 раза ярче звезды 3-й величины, и т.д. Это весьма универсальная шкала; она годится для выражения освещенности, создаваемой на Земле любым источником света.

    . Например, звезда 1-й звездной величины в 2,512 раза ярче звезды 2-й величины, которая, в свою очередь, в 2,512 раза ярче звезды 3-й величины, и т.д. Это весьма универсальная шкала; она годится для выражения освещенности, создаваемой на Земле любым источником света.

    ВИДИМАЯ ЗВЕЗДНАЯ ВЕЛИЧИНА, или относительная яркость при наблюдении с Земли для некоторых ярчайших звезд и планет. Венера - единственная планета, которая всегда ярче самой яркой звезды - Сириуса.

    ВИДИМАЯ ЗВЕЗДНАЯ ВЕЛИЧИНА, или относительная яркость при наблюдении с Земли для некоторых ярчайших звезд и планет. Венера - единственная планета, которая всегда ярче самой яркой звезды - Сириуса.

    Для сравнения звезд по их истинной светимости используют "абсолютную звездную величину", которая определяется как видимая звездная величина, которую имела бы данная звезда, если поместить ее на стандартном расстоянии от Земли в 10 пк. Если какая-либо звезда имеет параллакс p и видимую величину m, то ее абсолютную величину M вычисляют по формуле

    Звездными величинами можно описывать излучение звезды в различных диапазонах спектра. Например, визуальная величина (mv) выражает блеск звезды в желто-зеленой области спектра, фотографическая (mp) - в голубой, и т.п. Разность между фотографической и визуальной величинами называют "показателем цвета" (color index)

    он тесно связан с температурой и спектром звезды.

    Размеры звезд. Звезды очень сильно различаются по диаметру: белые карлики бывают размером с земной шар (ок. 13 000 км), а звезды-гиганты превышают размером орбиту Марса (455 млн. км). В среднем размер звезд, видимых на небе невооруженным глазом, близок к диаметру Солнца (1 392 000 км). За редкими исключениями диаметры звезд не поддаются прямому измерению: даже в крупнейшие телескопы звезды выглядят точками из-за гигантских расстояний до них. Конечно, Солнце является исключением: его угловой диаметр (32ў) легко измерить; еще у нескольких самых крупных и близких звезд с большим трудом удается измерить угловой размер и, зная расстояние до них, определить их линейный диаметр. Эти данные приведены ниже в таблице.

    В некоторых случаях удается прямо определить линейные диаметры звезд в двойных системах. Если звезды периодически закрывают друг друга, то по продолжительности затмения, измерив по смещению спектральных линий орбитальную скорость звезд, можно вычислить их диаметр. Для подавляющего большинства звезд диаметры определяют косвенно, на основе законов излучения. Определив по виду спектра температуру звезды, на основе законов физики можно вычислить интенсивность излучения ее поверхности. Зная полную светимость, уже легко вычислить площадь поверхности и диаметр звезды. Полученные таким образом диаметры хорошо согласуются с измеренными непосредственно. В течение жизни размер звезды сильно меняется. Она начинает свою эволюцию как сжимающееся газовое облако огромного размера, затем длительное время остается в виде нормальной звезды, а в конце своей жизни увеличивается в десятки раз, становясь гигантом, сбрасывает оболочку и превращается в маленький "белый карлик" или совсем крохотную "нейтронную звезду".

    См. также НЕЙТРОННАЯ ЗВЕЗДА; ПУЛЬСАР.

    Звездные населения. В 1944 американский астроном немецкого происхождения В.Бааде предложил разделить звезды на два типа, которые он назвал Населением I и Населением II. К Населению I он отнес молодые звезды и связанные с ними межзвездные газ и пыль, которые наблюдаются в спиральных рукавах галактик и рассеянных скоплениях. Население II состоит из старых звезд, встречающихся в шаровых скоплениях, эллиптических галактиках и центральных областях спиральных галактик. Ярчайшие звезды Населения I - это голубые сверхгиганты, которые раз в 100 ярче, чем ярчайшие звезды Населения II, красные гиганты. У звезд Населения I значительно выше содержание тяжелых элементов. Концепция звездных населений имела большое значение для развития теории эволюции звезд.

    Движения звезд. Обычно движение звезды характеризуют с двух точек зрения: как орбитальное движение вокруг центра Галактики и как относительное движение в группе ближайших звезд. Например, Солнце обращается вокруг центра Галактики со скорость ок. 240 км/с, а по отношению к окружающим его звездам движется значительно медленнее, со скоростью ок. 19 км/с. Основной системой отсчета для измерения движения звезд служит Галактика в целом. Но для земного наблюдателя обычно удобнее использовать систему отсчета, связанную с центром Солнечной системы, фактически - с Солнцем. По отношению к Солнцу ближайшие звезды движутся со скоростями от 10 км/с и выше. Но расстояния до звезд так велики, что фигуры созвездий изменяются лишь за многие тысячелетия. Перемещение звезд впервые обнаружил в 1718 Э.Галлей, сравнивая их положения, точно определенные им в Гринвиче, с теми, которые указал в своем каталоге Птолемей (2 в. н. э.).

    ДВИЖЕНИЕ ЗВЕЗДЫ В ПРОСТРАНСТВЕ невозможно определить непосредственно, но можно вычислить, измерив тангенциальную скорость поперек луча зрения, которая определяется угловым собственным движением звезды (m) и расстоянием до нее, а также радиальную скорость вдоль луча зрения (лучевую скорость).

    ДВИЖЕНИЕ ЗВЕЗДЫ В ПРОСТРАНСТВЕ невозможно определить непосредственно, но можно вычислить, измерив тангенциальную скорость поперек луча зрения, которая определяется угловым собственным движением звезды (m) и расстоянием до нее, а также радиальную скорость вдоль луча зрения (лучевую скорость).

    Угловое перемещение звезды на небесной сфере по отношению к далеким звездам называют ее "собственным движением" и выражают обычно в угловых секундах за год. Так, собственное движение Арктура 2,3"/год, а Сириуса 1,3"/год. Наибольшее собственное движение у звезды Барнарда, 10,3"/год. Чтобы вычислить линейную скорость звезды в километрах в секунду, используют формулу T = 4,74 m/p, где T - тангенциальная скорость (т.е. компонента полной скорости, направленная поперек луча зрения), m -собственное движение в секундах дуги за год и p - параллакс.

    Лучевая скорость. Скорость звезды вдоль луча зрения, которую называют лучевой скоростью, измеряется по доплеровскому смещению линий в ее спектре с точностью до долей километра в секунду. Смещение линий в красную сторону спектра говорит об удалении звезды от Земли, а в голубую - о приближении. Скорости звезд не так велики, чтобы это привело к изменению цвета звезды, но быстрое движение далеких галактик весьма заметно меняет их цвет. Измерение доплеровского смещения линий - очень тонкая операция. В телескопе одновременно со спектром звезды на ту же пластинку фотографируют спектр лабораторного источника с точно известным положением линий. Затем с помощью измерительной машины, снабженной мощным микроскопом, с точностью до 1 мкм определяется смещение линий (Dl) в спектре звезды относительно тех же линий лабораторного источника с длиной волны l. Лучевая скорость звезды определяется по формуле V = cDl/l, где c - скорость света. Эта формула пригодна для нормальных звездных скоростей, но для быстро движущихся галактик она не подходит. Точность измерения лучевых скоростей звезд не зависит от расстояния до них, а всецело определяется возможностью получать хорошие спектры и точно измерять в них положение линий. Однако точность измерения тангенциальных скоростей звезд зависит не только от аккуратности измерения их собственного движения, но и от их параллакса, т.е. от расстояния до них: чем больше расстояние, тем ниже точность.

    Пространственная скорость. Лучевая и тангенциальная скорости - это компоненты полной пространственной скорости звезды по отношению к Солнцу (ее легко вычислить по теореме Пифагора). Чтобы движение самого Солнца "не вмешивалось" в эту скорость, ее обычно пересчитывают по отношению к "местному стандарту покоя" - искусственной системе координат, в которой среднее движение околосолнечных звезд равно нулю. Скорость звезды по отношению к местному стандарту покоя называют ее "пекулярной скоростью".

    СОБСТВЕННОЕ ДВИЖЕНИЕ, т.е. видимое перемещение звезд на небе со временем изменяет очертания Ковша Бол. Медведицы. Стрелки указывают направление собственного движения семи звезд Ковша.

    СОБСТВЕННОЕ ДВИЖЕНИЕ, т.е. видимое перемещение звезд на небе со временем изменяет очертания Ковша Бол. Медведицы. Стрелки указывают направление собственного движения семи звезд Ковша.

    Каждая из звезд обращается по орбите вокруг центра Галактики. Звезды Населения I обращаются по почти круговым орбитам, лежащим в плоскости галактического диска. Солнце и соседние с ним звезды тоже движутся по орбитам, близким к круговым, со скоростью около 240 км/с, завершая оборот за 200 млн. лет (галактический год). Звезды Населения II движутся по эллиптическим орбитам с различными эксцентриситетами и наклонениями к плоскости Галактики, приближаясь к галактическому центру в перигалактии орбиты и удаляясь от него в апогалактии. Основное время они проводят в районе апогалактия, где их движение замедляется. Но по отношению к Солнцу их скорости велики, поэтому их называют "высокоскоростными звездами".

    Двойные звезды. Около половины всех звезд входит в состав двойных и более сложных систем. Центр масс такой системы движется по орбите вокруг центра Галактики, а отдельные звезды обращаются вокруг центра масс системы. В двойной звезде один компонент обращается вокруг другого в соответствии с гармоническим (третьим) законом Кеплера:

    где m1 и m2 - массы звезд в единицах массы Солнца, P - период обращения в годах и D - расстояние между звездами в астрономических единицах. Обе звезды при этом обращаются вокруг общего центра масс, причем их расстояния от этого центра обратно пропорциональны их массам. Определив относительно окружающих звезд орбиту каждого из компонентов двойной системы, легко найти отношение их масс.

    См. также КЕПЛЕРА ЗАКОНЫ.

    КРИВЫЕ БЛЕСКА ЗАТМЕННЫХ ДВОЙНЫХ различаются по глубине, периоду и форме в зависимости от светимости, относительного размера и расстояния между звездами. Если вокруг большой и яркой звезды обращается маленький и тусклый компаньон (слева), как в AR Кассиопеи, то видны лишь слабые вариации блеска. Если размеры звезд примерно одинаковы, а светимости различаются (в центре), как в MU Геркулеса, то кривая блеска имеет два округлых максимума, расположенных примерно посередине между минимумами. Если яркая звезда движется в паре с крупным, но неярким соседом (справа), как в Алголе, то на кривой блеска между глубокими главными минимумами видны мелкие вторичные.

    КРИВЫЕ БЛЕСКА ЗАТМЕННЫХ ДВОЙНЫХ различаются по глубине, периоду и форме в зависимости от светимости, относительного размера и расстояния между звездами. Если вокруг большой и яркой звезды обращается маленький и тусклый компаньон (слева), как в AR Кассиопеи, то видны лишь слабые вариации блеска. Если размеры звезд примерно одинаковы, а светимости различаются (в центре), как в MU Геркулеса, то кривая блеска имеет два округлых максимума, расположенных примерно посередине между минимумами. Если яркая звезда движется в паре с крупным, но неярким соседом (справа), как в Алголе, то на кривой блеска между глубокими главными минимумами видны мелкие вторичные.

    Многие двойные звезды движутся так близко одна к другой, что заметить их по отдельности в телескоп невозможно; их двойственность можно обнаружить только по спектрам. В результате орбитального движения каждая из звезд периодически то приближается к нам, то удаляется. Это вызывает доплеровское смещение линий в ее спектре. Если светимости обеих звезд близки, то наблюдается периодическое раздвоение каждой спектральной линии. Если же одна из звезд гораздо ярче, то наблюдается только спектр более яркой звезды, в котором все линии периодически колеблются.

    Переменные звезды. Видимый блеск звезды может изменяться по двум причинам: либо изменяется светимость звезды, либо что-то ее загораживает от наблюдателя, например, вторая звезда в двойной системе. Звезды с изменяющейся светимостью делятся на пульсирующие и эруптивные (т.е. взрывающиеся). Существует два важнейших типа пульсирующих переменных - лириды и цефеиды. Первые, переменные типа RR Лиры, имеют примерно одинаковую абсолютную звездную величину и периоды короче суток. У цефеид, переменных типа d Цефея, периоды изменения блеска тесно связаны с их средней светимостью. Оба типа пульсирующих переменных очень важны, поскольку знание их светимости позволяет определять расстояния. Американский астроном Х.Шепли использовал лириды для измерения расстояний в нашей Галактике, а его коллега Э. Хаббл использовал цефеиды для определения расстояния до галактики в Андромеде. Эруптивные переменные бывают различным типов. Такие, как SS Лебедя, вспыхивают время от времени совершенно непредсказуемо. Взрывы новых звезд происходят очень редко, но мощно; при этом они не разрушают звезду, представляющую собой белый карлик в тесной двойной системе. Когда на его поверхности накапливается достаточно вещества, падающего с нормальной соседней звезды, оно взрывается. Это может происходить неоднократно. Сверхновые звезды взрываются только раз, но уж так, что по яркости сравниваются с целой галактикой. Такой взрыв почти полностью разрушает звезду.

    См. также

    НОВАЯ ЗВЕЗДА;

    СВЕРХНОВАЯ ЗВЕЗДА;

    ПЕРЕМЕННЫЕ ЗВЕЗДЫ.

    Цвета звезд. Звезды имеют самые разные цвета. У Арктура желто-оранжевый оттенок, Ригель бело-голубой, Антарес ярко-красный. Доминирующий цвет в спектре звезды зависит от температуры ее поверхности. Газовая оболочка звезды ведет себя почти как идеальный излучатель (абсолютно черное тело) и вполне подчиняется классическим законам излучения М.Планка (1858-1947), Й.Стефана (1835-1893) и В.Вина (1864-1928), связывающим температуру тела и характер его излучения. Закон Планка описывает распределение энергии в спектре тела. Он указывает, что с ростом температуры повышается полный поток излучения, а максимум в спектре сдвигается в сторону коротких волн. Длина волны (в сантиметрах), на которую приходится максимум излучения, определяется законом Вина: lmax = 0,29/T. Именно этот закон объясняет красный цвет Антареса (T = 3500 K) и голубоватый цвет Ригеля (T = 18000 К). Закон Стефана дает полный поток излучения на всех длинах волн (в ваттах с квадратного метра): E = 5,67ґ10-8 T 4.

    Спектры звезд. Изучение звездных спектров - это фундамент современной астрофизики. По спектру можно определить химический состав, температуру, давление и скорость движения газа в атмосфере звезды. По доплеровскому смещению линий измеряют скорость движения самой звезды, например, по орбите в двойной системе. В спектрах большинства звезд видны линии поглощения, т.е. узкие разрывы в непрерывном распределении излучения. Их называют также фраунгоферовыми или абсорбционными линиями. Они образуются в спектре потому, что излучение горячих нижних слоев атмосферы звезды, проходя сквозь более холодные верхние слои, поглощается на некоторых длинах волн, характерных для определенных атомов и молекул. Спектры поглощения звезд сильно различаются; однако интенсивность линий какого-либо химического элемента далеко не всегда отражает его истинное количество в атмосфере звезды: в значительно большей степени вид спектра зависит от температуры звездной поверхности. Например, атомы железа есть в атмосфере большинства звезд. Однако линии нейтрального железа отсутствуют в спектрах горячих звезд, поскольку все атомы железа там ионизованы. Водород - это главный компонент всех звезд. Но оптические линии водорода не видны в спектрах холодных звезд, где он недостаточно возбужден, и в спектрах очень горячих звезд, где он полностью ионизован. Зато в спектрах умеренно горячих звезд с температурой поверхности ок. 10 000 К самые мощные линии поглощения - это линии бальмеровской серии водорода, образующиеся при переходах атомов со второго энергетического уровня. Давление газа в атмосфере звезды также имеет некоторое влияние на спектр. При одинаковой температуре линии ионизованных атомов сильнее в атмосферах с низким давлением, поскольку там эти атомы реже захватывают электроны и, следовательно, дольше живут. Давление атмосферы тесно связано с размером и массой, а значит и со светимостью звезды данного спектрального класса. Установив по спектру давление, можно вычислить светимость звезды и, сравнивая ее с видимым блеском, определить "модуль расстояния" (M - m) и линейное расстояние до звезды. Этот очень полезный метод называют методом спектральных параллаксов.

    Показатель цвета. Спектр звезды и ее температура тесно связаны с показателем цвета, т.е. с отношением яркостей звезды в желтом и голубом диапазонах спектра. Закон Планка, описывающий распределение энергии в спектре, дает выражение для показателя цвета: C.I. = 7200/T - 0,64. У холодных звезд показатель цвета выше, чем у горячих, т.е. холодные звезды относительно ярче в желтых лучах, чем в голубых. Горячие (голубые) звезды выглядят более яркими на обычных фотопластинках, а холодные звезды выглядят ярче для глаза и особых фотоэмульсий, чувствительных к желтым лучам.

    Спектральная классификация. Все разнообразие звездных спектров можно уложить в логичную систему. Гарвардская спектральная классификация впервые была представлена в Каталоге звездных спектров Генри Дрэпера, подготовленного под руководством Э.Пикеринга (1846-1919). Сначала спектры были расставлены по интенсивности линий и обозначены буквами в алфавитном порядке. Но развитая позже физическая теория спектров позволила расположить их в температурную последовательность. Буквенное обозначение спектров не изменили, и теперь порядок основных спектральных классов от горячих к холодным звездам выглядит так: O B A F G K M. Дополнительными классами R, N и S обозначены спектры, похожие на K и M, но с иным химическим составом. Между каждыми двумя классами введены подклассы, обозначенные цифрами от 0 до 9. Например, спектр типа A5 находится посередине между A0 и F0. Дополнительными буквами иногда отмечают особенности звезд: "d" - карлик, "D" - белый карлик, "p" - пекулярный (необычный) спектр. Наиболее точную спектральную классификацию представляет система МК, созданная У.Морганом и Ф.Кинаном в Йеркской обсерватории. Это двумерная система, в которой спектры расставлены как по температуре, так и по светимости звезд. Ее преемственность с одномерной Гарвардской классификацией в том, что температурная последовательность выражена теми же буквами и цифрами (A3, K5, G2 и т.д.). Но дополнительно введены классы светимости, отмеченные римскими цифрами: Ia, Ib, II, III, IV, V и VI, соответственно указывающие на яркие сверхгиганты, сверхгиганты, яркие гиганты, нормальные гиганты, субгиганты, карлики (звезды главной последовательности) и субкарлики. Например, обозначение G2 V относится к звезде типа Солнца, а обозначение G2 III показывает, что это нормальный гигант с температурой примерно как у Солнца.

    Последовательности звезд. В 1905-1913 Э.Герцшпрунг в Дании и Г.Рессел в США независимо нашли эмпирическую связь между температурой (спектральным классом) и светимостью звезд. Они обнаружили, что большинство звезд лежит вдоль широкой полосы на диаграмме температура - светимость. Эта полоса, названная "главной последовательностью", проходит от верхнего левого угла диаграммы, где находятся горячие и яркие О и В звезды, к правому нижнему углу, населенному холодными и тусклыми К и М карликами. Открытие главной последовательности стало сюрпризом: было неясно, почему звезды с определенной температурой поверхности не могут иметь какой угодно размер, а следовательно и светимость. Оказалось, что радиус звезды и температура ее поверхности связаны друг с другом. На диаграмме Герцшпрунга - Рессела обнаружилась и вторая последовательность - ветвь гигантов, широкой полосой отходящая от середины главной последовательности (класс G, абсолютная звездная величина +1) почти перпендикулярно ей в сторону верхнего правого угла диаграммы (класс М, абсолютная величина -1). На ветви гигантов лежат звезды большого размера и довольно высокой светимости, в отличие от карликов, населяющих главную последовательность. Они разделены "провалом Герцшпрунга".

    ДИАГРАММА ГЕРЦШПРУНГА - РЕССЕЛА (ГР), называемая также диаграммой температура-светимость, показывает распределение звезд нашей Галактики по цвету и звездной величине. Термины карлик, гигант и сверхгигант в большей степени отражают светимость, чем размер звезд.

    ДИАГРАММА ГЕРЦШПРУНГА - РЕССЕЛА (ГР), называемая также диаграммой температура-светимость, показывает распределение звезд нашей Галактики по цвету и звездной величине. Термины "карлик", "гигант" и "сверхгигант" в большей степени отражают светимость, чем размер звезд.

    В нижнем левом углу диаграммы расположились белые карлики - необычные звезды с высокой температурой поверхности, но низкой светимостью, что указывает на их очень маленький размер. В этих остатках эволюции нормальных звезд уже не происходит термоядерных реакций, и они медленно остывают. Спустя несколько десятилетий после открытия Герцшпрунга и Рессела выяснилось, что у разных групп звезд диаграммы температура-светимость существенно различаются. Особенно ясно это прослеживается при сравнении звездных скоплений, в каждом из которых все звезды имеют одинаковый возраст. Диаграммы рассеянных скоплений, таких, как Гиады и Плеяды, в целом похожи на диаграмму околосолнечных звезд и резко отличаются от диаграмм шаровых скоплений, таких, как большое скопление в Геркулесе, где яркая часть главной последовательности отсутствует, а нижняя ее часть смыкается с ветвью гигантов, круто уходящей вверх, в область больших светимостей. Такие диаграммы оказались характерными для звезд Населения II, а диаграммы рассеянных скоплений типичны для звезд Населения I. Таким образом, диаграмма Герцшпрунга - Рессела служит важным инструментом для выяснения эволюционного статуса звездных населений.

    Звездные скопления. Известны три различных типа звездных группировок: звездные ассоциации, шаровые скопления и рассеянные скопления (иногда их называют "открытыми" или "галактическими"). Звездные скопления очень ценны для астрофизики, поскольку это группы звезд, одинаково удаленных от нас и сформировавшихся одновременно из вещества одного облака. Звезды в пределах одного скопления различаются лишь исходной массой, что значительно облегчает изучение их эволюции.

    Звездные ассоциации. Это относительно разреженные группировки звезд, разлетающихся от общего центра, где они, вероятно, родились. Если проследить их траектории обратно, то оказывается, что они "тронулись в путь" всего около миллиона лет назад - совсем недавно по звездным масштабам. Ассоциации расположены в спиральных рукавах Галактики, там же, где сконцентрировано межзвездное вещество, из которого формируются звезды. Известно менее ста ассоциаций, и все они состоят из молодых, ярких и массивных звезд в основном спектральных классов О и В. Звезды меньшей массы в ассоциациях тоже есть, но их сложнее распознать. Когда через несколько миллионов лет эволюция О и В звезд закончится, заметить на небе ныне известные ассоциации станет невозможно. Все говорит о том, что ассоциации - короткоживущие образования. Возможно, большая часть звезд в Галактике родилась именно в составе ассоциаций.

    РАССЕЯННОЕ ЗВЕЗДНОЕ СКОПЛЕНИЕ Плеяды в созвездии Тельца содержит около 250 звезд, большинство из которых видно лишь в телескоп. Туман, окружающий яркие звезды, вызван рассеянием их света в межзвездном веществе.

    РАССЕЯННОЕ ЗВЕЗДНОЕ СКОПЛЕНИЕ Плеяды в созвездии Тельца содержит около 250 звезд, большинство из которых видно лишь в телескоп. Туман, окружающий яркие звезды, вызван рассеянием их света в межзвездном веществе.

    Рассеянные скопления. Замечательными представителями звездных скоплений более высокого порядка служат Плеяды, Гиады и Ясли. Если в ассоциациях наблюдается обычно не более 100 звезд, то в рассеянных скоплениях - порядка 1000. Более плотно упакованные, они могут значительно дольше противостоять разрушающему гравитационному влиянию Галактики; например, возраст скопления Плеяды, определенный по виду его диаграммы Герцшпрунга - Рессела, ок. 50 млн. лет. Еще более плотные скопления могут сохраняться сотни миллионов лет; одно из старейших рассеянных скоплений М 67 является и наиболее плотным из них. Известно более 1000 рассеянных скоплений, однако еще многие тысячи их наверняка скрываются в удаленных областях Галактики.

    Шаровые скопления. Эти скопления во многих отношениях отличаются от рассеянных скоплений и ассоциаций. До сих пор обнаружено около 150 шаровые скоплений и, похоже, это почти все, что есть в Галактике. Не заметить их трудно: при диаметре от 40 до 900 св. лет они содержат от 10 000 до нескольких миллионов звезд. Такие "монстры" видны на больших расстояниях. К тому же они не скрываются в запыленном диске Галактики, а заполняют весь ее объем, концентрируясь к галактическому ядру. Фотографии шаровых скоплений, таких, как М 13 в созвездии Геркулеса, представляют впечатляющее зрелище. В центре скопления звезды кажутся слившимися в единое месиво, хотя в действительности расстояния между ними не так уж малы и столкновения звезд практически не происходят. Каждая из звезд движется по орбите вокруг центра скопления, а оно само движется по орбите вокруг центра Галактики. Благодаря своей большой массе и плотности шаровые скопления очень устойчивы; они почти без изменений существуют миллиарды лет. Их звезды родились в эпоху формирования Галактики; они содержат мало тяжелых элементов и относятся к Населению II. В нашу эпоху такие звезды уже не формируются.

    Источники энергии звезд. Когда теория Эйнштейна возвестила об эквивалентности массы (m) и энергии (E), связанных соотношением E = mc2, где c - скорость света, стало ясно, что для поддержания излучения Солнца с мощностью 4ґ1026 Вт необходимо ежесекундно превращать в излучение 4,5 млн. т его массы. По земным меркам эта величина выглядит большой, но для Солнца, имеющего массу 2ґ1027 т, такая потеря остается незаметной в течение миллиардов лет. Излучение звезд поддерживается в основном за счет двух типов термоядерных реакций. У массивных звезд это реакции углерод-азотного цикла, а у маломассивных звезд типа Солнца это протон-протонные реакции. В первых углерод играет роль катализатора: сам не расходуется, но способствует превращению других элементов, в результате чего 4 ядра водорода объединяются в одно ядро гелия.

    Выраженные в атомных единицах, массы ядер водорода и гелия составляют соответственно 1,00813 и 4,00389. Четыре водородных ядра (т.е. протона) имеют массу 4,03252 и, следовательно, на 0,02863 а.е., или на 0,7% превосходят массу ядра гелия. Эта разница превращается в энергичные гамма-кванты, которые, много раз поглощаясь и излучаясь, постепенно просачиваются к поверхности звезды и покидают ее в виде света. Похожие трансформации вещества происходят и в протон-протонной реакции:

    В принципе возможно великое множество других термоядерных реакций, но расчеты показывают, что при температурах, царящих в ядрах звезд, именно реакции этих двух циклов происходят наиболее интенсивно и дают выход энергии, в точности необходимый для поддержания наблюдаемого излучения звезд. Как видим, звезда - это природная установка для управляемых термоядерных реакций. Если создать в земной лаборатории такие же температуру и давление плазмы, то и в ней начнутся такие же ядерные реакции. Но как удержать эту плазму в пределах лаборатории? Ведь у нас нет материала, который бы выдержал прикосновение вещества с температурой 10-20 млн. К и при этом не испарился. А звезде этого не требуется: ее мощная гравитация с успехом противостоит гигантскому давлению плазмы. Пока в звезде протекают протон-протонная реакция или углерод- азотный цикл, она находится на главной последовательности, где проводит основную часть жизни. Позже, когда у звезды образуется гелиевое ядро и температура в нем повысится, происходит "гелиевая вспышка", т.е. начинаются реакции превращения гелия в более тяжелые элементы, также приводящие к выделению энергии.

    Строение звезд. Может показаться, что невозможно узнать что-либо о внутреннем строении звезд. Не только далекие звезды, но и наше Солнце кажется абсолютно недоступным для изучения его недр. Тем не менее о строении звезд мы знаем не меньше, чем о строении Земли. Дело в том, что звезды - это газовые шары, в большинстве своем - стабильные, не испытывающие ни коллапса, ни расширения. Поэтому на любой глубине давление газа равно весу вышележащих слоев, а поток излучения пропорционален перепаду температуры от внутренних горячих к наружным холодным слоям. Этих условий, сформулированных в виде математических уравнений, достаточно, чтобы на основе законов поведения газа рассчитать структуру звезды, т.е. изменение давления, температуры и плотности с глубиной. При этом из наблюдений нужно знать только массу, радиус, светимость и химический состав звезды, чтобы теоретически определить ее структуру. Расчеты показывают, что в центре Солнца температура достигает 16 млн. К, плотность 160 г/см3, а давление 400 млрд. атм. Звезда является природной саморегулирующейся системой. Если по какой-то причине мощность энерговыделения в ядре звезды не сможет компенсировать излучение энергии с поверхности, то звезда не сможет противостоять гравитации: она начнет сжиматься, от этого повысится температура в ее ядре и возрастет интенсивность ядерных реакций - таким образом баланс энергии будет восстановлен.

    Эволюция звезд. Звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. В прошлом столетии вообще считали, что энергии, выделяющейся при сжатии звезды, достаточно для поддержания ее светимости, но геологические данные пришли в противоречие с этой гипотезой: возраст Земли оказался значительно больше того времени, в течение которого Солнце могло бы поддерживать свое излучение за счет сжатия (ок. 30 млн. лет). Сжатие звезды приводит к повышению температуры в ее ядре; когда она достигает нескольких миллионов градусов, начинаются термоядерные реакции, и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга - Рессела, пока не закончатся запасы топлива в ее ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра.

    ЭВОЛЮЦИЯ ЗВЕЗДЫ начинается с холодного и разреженного газо-пылевого облака и для большинства звезд заканчивается в виде сжатого силой тяжести белого карлика.

    ЭВОЛЮЦИЯ ЗВЕЗДЫ начинается с холодного и разреженного газо-пылевого облака и для большинства звезд заканчивается в виде сжатого силой тяжести белого карлика.

    В этот период структура звезды начинает заметно меняться. Ее светимость растет, внешние слои расширяются, а температура поверхности снижается - звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса ее изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжелые элементы.

    Белые карлики и нейтронные звезды. Вскоре после гелиевой вспышки "загораются" углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и ее быстрое перемещение по диаграмме Герцшпрунга - Рессела. Размер атмосферы звезды увеличивается еще больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звездного ветра. Судьба центральной части звезды полностью зависит от ее исходной массы: ядро звезды может закончить свою эволюцию как белый карлик, нейтронная звезда (пульсар) или черная дыра. Подавляющее большинство звезд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится темной и невидимой. У звезд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 100 млн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

    См. также НЕЙТРОННАЯ ЗВЕЗДА.

    Черные дыры. У звезд более массивных, чем предшественники нейтронных звезд, ядра испытывают полный гравитационной коллапс. По мере сжатия такого объекта сила тяжести на его поверхности возрастает настолько, что никакие частицы и даже свет не могут ее покинуть, - объект становится невидимым. В его окрестности существенно изменяются свойства пространства-времени; их может описать только общая теория относительности. Такие объекты называют черными дырами. Если предшественник черной дыры был членом затменной двойной системы, то и черная дыра будет продолжать обращаться вокруг соседней нормальной звезды. Про этом газ из атмосферы звезды может попадать в окрестность черной дыры и падать на нее. Но прежде чем исчезнуть в области невидимости (под горизонтом событий), он разогреется до высокой температуры и станет источником рентгеновского излучения, которое можно наблюдать с помощью специальных телескопов. Когда нормальная звезда заслоняет черную дыру, рентгеновское излучение должно пропадать. Несколько затменных двойных с рентгеновскими источниками уже обнаружено; в них подозревают наличие черных дыр. Пример такой системы - объект Лебедь X-1. Спектральный анализ показал, что орбитальный период этой системы 5,6 сут, и с таким же периодом происходят рентгеновские затмения. Почти нет сомнений, что там находится черная дыра.

    См. также ЧЕРНАЯ ДЫРА.

    Продолжительность эволюции звезд. Если отвлечься от некоторых катастрофических эпизодов в жизни звезд, то человеческая жизнь слишком коротка, чтобы заметить эволюционные изменения каждой конкретной звезды. Поэтому об эволюции звезд судят так же, как о росте деревьев в лесу, т.е. одновременно наблюдая множество экземпляров, находящихся в данный момент на разных стадиях эволюции. Скорость и картина эволюции звезды почти полностью определяются ее массой; некоторое влияние оказывает и химический состав. Звезда может быть физически молодой, но уже эволюционно состарившейся в таком же смысле, как месячный мышонок старше годовалого слоненка. Дело в том, что интенсивность выделения энергии (светимость) звезд очень быстро возрастает с ростом их массы. Поэтому более массивные звезды гораздо быстрее сжигают свое горючее, чем маломассивные. Яркие массивные звезды верхней части главной последовательности (спектральные классы О, В и А) живут значительно меньше, чем звезды типа Солнца и еще менее массивные члены нижней части главной последовательности. Поэтому родившиеся одновременно с Солнцем звезды классов О, В и А уже давно закончили свою эволюцию, а те, что наблюдаются сейчас (например, в созвездии Ориона), должны были родиться относительно недавно. В окрестности Солнца встречаются звезды различного физического и эволюционного возраста. Однако в каждом звездном скоплении все его члены имеют практически одинаковый физический возраст. Изучая самые молодые скопления с возрастом ок. 1 млн. лет, мы видим все его звезды на главной последовательности, а некоторые еще только приближающимися к ней. В более старых скоплениях наиболее яркие звезды уже покинули главную последовательность и стали красными гигантами. У наиболее старых скоплений осталась лишь нижняя часть главной последовательности, но зато богато населены звездами ветвь гигантов и следующая за ней горизонтальная ветвь. Если сравнить между собой диаграммы Герцшпрунга - Рессела различных рассеянных скоплений, то можно легко понять, какое из них старше. Об этом судят по положению точки обрыва главной последовательности, отмечающей вершину ее сохранившейся нижней части. У двойного скопления h и c Персея эта точка лежит значительно выше, чем у скоплений Плеяды и Гиады, следовательно, оно намного моложе их. Диаграммы Герцшпрунга - Рессела шаровых скоплений указывают на их очень большой возраст, близкий к возрасту самой Галактики. Эти скопления состоят из звезд, сформировавшихся в ту далекую эпоху, когда вещество Галактики почти не содержало тяжелых элементов. Поэтому их эволюция протекает не совсем так, как у современных звезд, хотя в целом соответствует ей.

    В заключение укажем, что возраст Солнца около 5 млрд. лет, и в настоящее время оно находится в середине своего эволюционного пути. Но если бы исходная масса Солнца была всего вдвое выше, то его эволюция уже давно закончилась бы, и жизнь на Земле так и не успела бы достигнуть своей вершины в образе человека.

    См. также

    АСТРОНОМИЯ И АСТРОФИЗИКА;

    ГАЛАКТИКИ;

    ГРАВИТАЦИОННЫЙ КОЛЛАПС;

    МЕЖЗВЕЗДНОЕ ВЕЩЕСТВО;

    СОЛНЦЕ.

    ЛИТЕРАТУРА

    Тейлер Р. Строение и эволюция звезд. М., 1973 Каплан С.А. Физика звезд. М., 1977 Шкловский И.С. Звезды. Их рождение, жизнь и смерть. М., 1984 Масевич А.Г., Тутуков А.В. Эволюция звезд: теория и наблюдения. М., 1988 Бисноватый-Коган Г. С., Физические процессы теории звездной эволюции. М., 1989 Сурдин В.Г., Ламзин С. А., Протозвезды. Где, как и из чего формируются звезды. М., 1992

  11. Источник: Энциклопедия Кольера



  12. Энциклопедический словарь

    звёзды

    гигантские светящиеся газовые (плазменные) шары, подобные Солнцу. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационной неустойчивости. При достижении в недрах звёзд высокой плотности и температуры (около 10—12 млн. К) начинаются термоядерные реакции синтеза элементов — основной источник энергии большинства звёзд. Массы звёзд (М) заключены в пределах от 0,04 до звёзды60МS, светимости (L) — от звёзды0,5 до сотен тысяч LS. Звёзды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра. На определенных этапах звёздной эволюции ряд звёзд проходит через стадию нестационарности (см. Нестационарные звёзды). В зависимости от массы звёзды в конце эволюции становятся либо белыми карликами, либо нейтронными звёздами, либо чёрными дырами.

    * * *

    ЗВЕЗДЫ

    ЗВЕЗДЫ, светящиеся газовые (плазменные) шары, подобные Солнцу. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационной неустойчивости(см. ГРАВИТАЦИОННАЯ НЕУСТОЙЧИВОСТЬ). При достижении в недрах звезд высокой плотности и температуры (ок. 10—12 млн. К) начинаются термоядерные реакции синтеза элементов — основной источник энергии большинства звезд. Массы звезд (М) заключены в пределах от 0,04 до ЗВЕЗДЫ 60 М¤, светимости(см. СВЕТИМОСТЬ (в астрономии)) (L) — от 0,5 до сотен тыс. L¤. Звезды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра. На определенных этапах звездной эволюции(см. ЗВЕЗДНАЯ ЭВОЛЮЦИЯ) ряд звезд проходит через стадию нестационарности (см. Нестационарные звезды(см. НЕСТАЦИОНАРНЫЕ ЗВЕЗДЫ)). В зависимости от массы звезды в конце эволюции становятся либо белыми карликами(см. БЕЛЫЕ КАРЛИКИ), либо нейтронными звездами(см. НЕЙТРОННЫЕ ЗВЕЗДЫ), либо черными дырами(см. ЧЕРНЫЕ ДЫРЫ).

  13. Источник: Энциклопедический словарь



  14. Начала современного естествознания

    самосветящиеся гигантские газовые (плазменные) тела, подобные Солнцу. Образуются из газово-пылевой среды, состоящей в основном из водорода и гелия, в результате т. н. гравитационной неустойчивости — основной причины образования многих типов астрономических объектов, состоящей в том, что в практически первоначально однородной среде возникают малые возмущения (флуктуации), ведущие в итоге к образованию сгустков вещества, с последующим нарастанием этого процесса. В недрах звезд, как правило, идут термоядерные реакции синтеза элементов, вплоть до образования элементов железа. Звезды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра. Различают семь спектральных классов звезд: О, В, A, F, G, К, М — от самых горячих к самым холодным (мнимонические правила: Один Великий Англичанин Финики Жевал Как Морковь; О, Be A Fine Girl, Kiss Me). В результате звездной эволюции они становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

  15. Источник: Начала современного естествознания



  16. Библия. Ветхий и Новый заветы. Синодальный перевод. Библейская энциклопедия арх. Никифора.

    (Втор.4:19 ) - под сим названием Евреи разумели все созвездия, планеты и небесные тела, кратко, все светила, за исключением солнца и луны, созданные Богом вместе с солнцем и луною в четвертый день творения. Псалмопевец, изображая всемогущество и всеведение Божие, говорит, что Он исчисляет количество звезд, всех их называет именами их (Пс.146:4 ). свящ. писатели для выражения необъятного множества употребляют следующие выражения: сосчитай звезды, если ты можешь счесть их; столько будет у тебя потомков (Быт.15:5 ), сказал Господь Аврааму; или другое равносильное сему выражение: как песок морской. Ничто в видимом мире не говорит так красноречиво о славе и всемогуществе Творца как звездное небо (Пс.18:1 ). "Небеса проповедуют славу Божию, и о делах рук Его возвещает твердь, - Когда взираю я на небеса Твои, дело Твоих перстов, на луну и звезды, которые Ты поставил, взывает псалмопевец, то что есть человек, что Ты помнишь его, или сын человеческий, что посещаешь его?" (Пс.8:4,5). В кн. Иова пишется, что когда Господь полагал краеугольный камень в основание земли, тогда, при общем ликовании утренних звезд все сыны Божии восклицали от радости (Иов.38:7 ). Вифлеемская звезда, явившаяся волхвам и приведшая их к месту рождения Спасителя, очевидно, была не естественным явлением, но чудесным: - исполнивши свое назначение, она затем исчезла с неба. св. Иоанн Златоуст говорит, что в виде звезды, руководившей волхвов, был ангел. "И звезды спадут с неба" (Мат.24:29 ), указывал Господь Спаситель, как на одно из знамений Своего второго будущего пришествия на землю и страшного Суда. В свящ. Писании в особенности упоминаются следующие звезды: утренняя звезда (планета Венера), по пр. Исаии (Ис.14:12 ) денница или сын зари; Плеяды, Орион, Медведица. "Сотворил Ас, Кесиль и Хима (созвездия соответствующие оным в настоящее время) и тайники юга" говорится в кн. Иова (Иов.9:9 ). "Можешь ли ты связать узел Хима и разрешить узы Кесиль? Можешь ли ты выводит созвездия в свое время, и вести Ас с ее детьми?" говорил Бог Иову. Знаешь ли ты уставы неба? (Иов.38:31,33). Дракон или змей. Рука Его образовала быстрого скорпиона (Иов.26:13 ). В пророчестве Валаама - восходит звезда от Иакова (Чис.24:17 ), под звездою разумеется Мессия - Христос, называемый также в Откровении Иоанна светлою, утреннею звездою (Отк.22:16 ), так как Он озарил землю светом евангельского дня и вполне открыл людям тайны царствия Божия.

  17. Источник: Библия. Ветхий и Новый заветы. Синодальный перевод. Библейская энциклопедия арх. Никифора.



  18. Оригинальная словарная подборка афоризмов


    • Когда человек становится богатым или знаменитым, с ним приходится знакомиться заново.

  19. Источник: Оригинальная словарная подборка афоризмов



  20. Dictionnaire technique russo-italien

    ж. мн. ч.

    stelle f pl(см. тж звезда)

    - магнитные звёзды

    - неподвижные звёзды

  21. Источник: Dictionnaire technique russo-italien



  22. Естествознание. Энциклопедический словарь

    светящиеся газовые (плазменные) шары, подобные Солнцу. Массы 3. от ~= 0,04 до 60 М0, светимости от ~=0,5 до сотен тысяч L0 0 и L0 - соответственно масса и светимость Солнца). Образуются из межзвёздной газовопылевой среды (гл. обр. из водорода и гелия) в результате гравитац. сжатия. При достижении в недрах 3. высоких плотн. и темп-р (10-12 млн. К) начинаются термоядерные реакции - оси. источник энергии большинства 3. Ср. кол-во энергии, вырабатываемой 1 г в-ва 3. в 1 с не превосходит 10-3 Дж (эта же величина для человеч. тела ~=10-2 Дж). По мере истощения запасов ядерного горючего изменяются структура, размеры и хим. состав 3. Когда ядерные реакции в недрах 3. прекращаются, 3. сжимаются под действием сил гравитации, превращаясь (в зависимости от массы) в белый карлик, нейтронную звезду или чёрную дыру. Большая часть 3. нашей Галактики входит в двойные и кратные звёздные системы (см. Двойные звёзды). На определ. этапах эволюции 3. становятся переменными (см. Переменные звёзды). Ближайшая к Солнцу 3. - Проксима Кентавра, на расстоянии ок. 4,3 световых года. См. также Приложение VII.

  23. Источник: Естествознание. Энциклопедический словарь



  24. Астрономический словарь

    светящиеся газовые (плазменные) шары, подобные Солнцу. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационной неустойчивости. При достижении в недрах звезд высокой плотности и температуры (около 10-12 млн. К) начинаются термоядерные реакции синтеза элементов - основной источник энергии большинства звезд. Массы звезд (М) заключены в пределах от 0,04 до Звезды 60 М, светимости (L) - от 0,5 до сотен тыс. L. Звезды классифицируют по светимости, массе, температуре поверхности, химическому составу, особенностям спектра. На определенных этапах звездной эволюции ряд звезд проходит через стадию нестационарности. В зависимости от массы звезды в конце эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.

  25. Источник: Астрономический словарь



  26. Астрологическая энциклопедия

    Древние говорили о "неподвижных звездах в отличие от "блуждающих звезд" - планет. Хотя реально звезды обладают собственным движением, но в масштабе человеческой жизни оно незначимо. Многие авторы считают, что звезды обладают собственным астрологическим влиянием, в особенности в соединении и в параллели с планетами (как в карте рождения, так и в транзитах). Звезда первой величины на Асценденте или МС при рождении указывает на блестящие возможности в соответствующей сфере. Две противостоящие звезды, Альдебаран и Антарес, оказываясь в углах карты, порождают стресс. По распространенному мнению влияние звезд осуществляется лишь через соединение с чувствительными точками (в особенности - планетами) в гороскопе рождения, в пределах от 2о до 5о (в зависимости от величины звезды) долготы и в пределах 1о широты. Наличие определенных звезд в определенных градусах зодиака определяло в истории астрологии индивидуальную характеристику градусов (см. Градусы индивидуальные), и различные их группировки - фасы (см. "темные и светлые градусы") и др., хотя и не было для этого единственным основанием. Видимых невооруженным глазом звезд - менее 5 тысяч.

  27. Источник: Астрологическая энциклопедия



  28. Большой Энциклопедический словарь

  29. Источник: