«Нейтронные детекторы»

Нейтронные детекторы в словарях и энциклопедиях

Значение слова «Нейтронные детекторы»

Источники

    Большая Советская энциклопедия

    приборы для регистрации нейтронов. Действие Н. д. основано на регистрации вторичных частиц, образующихся в результате взаимодействия нейтронов с атомными ядрами. Для регистрации медленных нейтронов (См. Медленные нейтроны) используются ядерные реакции расщепления лёгких ядер под действием нейтронов [10В (n, α) 7Li, 6Li (n, α) 3H и 3He (n, p)1H] с регистрацией α-частиц и протонов; деления тяжёлых ядер с регистрацией осколков деления (см. Ядра атомного деление);Радиационный захватнейтронов ядрами (n, γ) с регистрацией γ-квантов, а также возбуждения искусственной радиоактивности. Для регистрации α-частиц, протонов и осколков деления применяются ионизационные камеры (См. Ионизационная камера) и пропорциональные счётчики (См. Пропорциональный счётчик), которые заполняют газообразным BF3 и др. газами, содержащими В или 3H, либо покрывают их стенки тонким слоем твёрдых В, Li или делящихся веществ. Конструкция и размеры таких камер и счётчиков разнообразны. Пропорциональные счётчики могут достигать 50 мм в диаметре и 2 м длины (СНМ-15). Наибольшей эффективностью к тепловым нейтронам обладают Н. д., содержащие 10B или 3He. Для регистрации медленных нейтронов используются также сцинтилляционные счётчики (См. Сцинтилляционный счётчик) (на кристаллах Lil с примесью Eu, на сцинтиллирующих литиевых стеклах, либо смеси борсодержащих веществ и сцинтиллятора ZnS). Эффективность регистрации тепловых нейтронов в этом случае может достигать 40—60%. В Объединённом институте ядерных исследований (См. Объединённый институт ядерных исследований) создан сцинтилляционный Н. д., в котором регистрируются акты радиационного захвата. Он предназначен для нейтронов с энергией до 10 кэв и имеет эффективность — 20—40%.

    Эффективность регистрации быстрых нейтронов перечисленными детекторами в сотни раз меньше, поэтому быстрые нейтроны предварительно замедляют в парафиновом блоке, окружающем Н. д. (см. Замедление нейтронов). Специально подобранные форма и размеры блоков позволяют получить практически постоянную эффективность регистрации нейтронов в диапазоне энергии от нескольких кэв до 20 Мэв(всеволновой счётчик). При непосредственном детектировании нейтронов с энергиями Нейтронные детекторы 100 кэв обычно используется упругое рассеяние нейтронов в водороде или гелии или регистрируются ядра отдачи. Так как энергия последних зависит от энергии нейтронов, то такие Н. д. позволяют измерять энергетический спектр нейтронов. Сцинтилляционные Н. д. также могут регистрировать быстрые нейтроны по протонам отдачи в органических и водородсодержащих жидких сцинтилляторах. Некоторые тяжёлые ядра, например 238U и 232Th, делятся только под действием быстрых нейтронов. Это позволяет создавать пороговые Н. д., служащие для регистрации быстрых нейтронов на фоне тепловых.

    Для регистрации продуктов ядерных реакций нейтронов с ядрами В и Li, протонов отдачи и осколков деления используются также ядерные фотографические эмульсии (См. Ядерная фотографическая эмульсия). Этот метод особенно удобен в дозиметрии (См. Дозиметрия), так как позволяет определить суммарное число нейтронов за время облучения. При делении ядер энергия осколков столь велика, что они производят заметные механические разрушения. На этом основан один из способов их обнаружения: осколки деления замедляются в стекле, которое затем травится плавиковой кислотой; в результате следы осколков можно наблюдать под микроскопом.

    Возбуждение искусственной радиоактивности под действием нейтронов используется для регистрации нейтронов, особенно при измерениях плотности потока нейтронов, так как число распадов (активность) пропорционально потоку нейтронов, прошедшему через вещество (измерение активности можно производить после прекращения облучения нейтронами). Существует большое количество различных изотопов, применяемых в качестве радиоактивных индикаторов нейтронов разных энергий E.В тепловой области энергий наибольшее распространение имеют 55Mn, 107Ag, 197Au: для регистрации резонансных нейтронов применяют 55Mn (E= 300 эв), 59Co(E=100эв), 103Rh, 115In (E= 1,5 эв), 127I (E = 35 эв), 107Ag, 197Au (E = 5 эв).В области больших энергий используют пороговые детекторы 12C (E = 20 Мэв), 32S (E = 0,9 Мэв) и 63Cu (E = 10 Мэв) (см. Нейтронная спектроскопия).

    Лит.: Аллен В. Д., Регистрация нейтронов, пер. с англ., М., 1962; Власов Н. А., Нейтроны, 2 изд., М., 1971.

    Б. Г. Ерозолимский, Ю. А. Мостовой.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Физическая энциклопедия

    НЕЙТРОННЫЕ ДЕТЕКТОРЫ

    - приборы для регистрации и определения энергетич. спектра нейтронов. Нейтроны не обладают электрич. зарядом и не оставляют после себя следов (треков) из ионизир. и возбуждённых частиц, появление к-рых вызывает срабатывание большинства детекторов частиц. Поэтому H. д. всегда содержит нек-рое вещество - радиатор (конвертер), ядра к-рого при взаимодействии с нейтронами порождают заряж. частицы или g-кванты. Для детектирования нейтронов используются разл. виды взаимодействия нейтронов с ядрами.

    Упругое рассеяние нейтронов на ядрах. Нейтроны, упруго рассеивающиеся на ядрах, передают им кине-тич. энергию (энергию отдачи), к-рая зависит от параметра удара, массы ядра и энергии налетающего нейтрона. Для лёгких ядер (1H, 2H, Не) доля передаваемой энергии высока. При центр. ударе нейтрон передаёт протону всю энергию. Для регистрации ядер отдачи используются обычно пропорциональные счётчики, наполненные H2, CH4 и 4He до давлений p в неск. атмосфер. Их эффективность h невелика (h ~ 10-2 - 10-4 для 3056-66.jpg ~ 0,01-20 МэВ). Этим методом можно регистрировать только нейтроны с 3056-67.jpg неск. десятков кэВ, т. к. слабую ионизацию от ядер отдачи трудно выделить над шумами аппаратуры и фоном от g-квантов. Для восстановления спектра регистрируемых нейтронов необходимо измерять помимо энергии протона угол между траекториями нейтрона и протона. Это осуществляется в трековых детекторах - пропорц. и пузырьковых камерах, годоскопах счётчиков, фотоэмульсиях и т. д.

    Для детектирования нейтронов больших энергий обычно используются сцинтилляциоииые детекторы с органич. сцинтилляторами (содержащие много водорода) значит. размеров, в к-рых пробеги протонов отдачи l велики (напр., при 3056-68.jpg ~ 100 МэВ в воде l = =10 см). Спектры нейтронов больших энергий измеряются по отклонению протонов отдачи в магн. поле. Однако этот метод пригоден только для интенсивных потоков нейтронов, т. к. толщина радиатора должна быть мала, чтобы в нём протоны отдачи не испытывали заметного торможения; достаточно малым должен быть и используемый телесный угол, в к-ром протоны вылетают из радиатора. Для 3056-69.jpg ~ 1 ГэВ регистрация нейтронов по протонам отдачи становится малоэффективной, т. <к. сечение упругого рассеяния, продолжая монотонно падать, становится меньше сечения множественного рождения частиц (см. Множественные процессы).

    Ядерные реакции с вылетом заряженных частиц.

    Для детектирования нейтронов обычно применяют 3 реакции (табл.).

    Сечение захвата s и суммарная энергия Q заряжен ных частиц для 3056-70.jpg =25,3 мэВ

    3056-71.jpg

    Пробеги l в веществе a-частиц и протонов малы, поэтому ядра 3He, 6Li, 10B обычно вводятся внутрь газоразрядных, сцинтилляц. и др. детекторов. Иногда радиатор в виде твёрдого хим. соединения 10B наносится тонким слоем на внутр. поверхность газоразрядного детектора, однако из-за сильного поглощения ядер 7Li и a-частиц в самом радиаторе такие H. д. по эффективности уступают детекторам, наполненным газообразными радиаторами 10BF3, 10BCH3, 3He. Из-за "прилипания" электронов к ионам не удаётся создать газовый H. д. с p >1атм. Исключение - H. д. с 3He ( р<= 10 атм), к-рые имеют h 3056-72.jpg 100% для тепловых нейтронов.

    Цилиндрич. газоразрядные H. д. работают в режимах ионизационной камеры, пропорционального счётчика, Гейгера счётчика и др. Наиб. распространён пропорц. режим, т. к. он позволяет отделить по амплитуде импульсы нейтрона от обычно сопутствующего фона g-квантов. Импульс на выходе H. д. (амплитуда I ~ 10 мВ, длительность переднего фронта 1 мкс) запаздывает относительно момента захвата нейтрона на время дрейфа электронов в газе до анода (5 мкс), что определяет разрешающее время т H. д.

    С увеличением 3056-73.jpg эффективность падает: h ~3056-74.jpg для 3056-75.jpg 0,1 МэВ. Поэтому при регистрации быстрых нейтронов H. д. окружаются водородсодержащим веществом, в к-ром происходит замедление нейтронов (это увеличивает т до 50 мкс). В счётчике Хансена - Мак-Киббена подбором конфигурации замедлителя достигается практически постоянная h в диапазоне 3056-76.jpg ~ ~10 кэВ - 5 МэВ. Энергию детектируемых нейтронов в диапазоне энергии 0,1-2 МэВ можно определить с помощью пропорционального счётчика, наполненного 3He по смещению пика амплитудного распределения, соответствующего энергии, выделяемой при реакции 3He (n, р)3 Н, Q =0,764 МэВ.

    При высоких плотностях 3He для регистрации p и t пользуются сцинтилляц. детектором, причём сцин-тиллятором служит сам 3He. Это приводит и к сокращению т до 10 нc. Сцинтилляц. метод применяется и для регистрации продуктов реакций 10B(n,a)7Li, 6Li(n, a)3H. При этом порошок 10B или соединения 6Li смешиваются с порошком сцинтиллятора ZnS (Ag). T. к. такая смесь слабопрозрачна, то её можно использовать только в тонких слоях, т. е. для тепловых нейтронов. Более прозрачны борсодержащие жидкие и пластич. сцинтилляторы и литиевые стёкла.

    Деление ядер под действием нейтронов. Разлетающиеся осколки деления, обладая большой энергией (~80 МэВ на 1 осколок), образуют на выходе H. д. импульс с амплитудой в 50-100 раз большей, чем в предыдущих случаях. Радиаторами служат 233U (сечение деления для тепловых нейтронов sf =533 барн), 235U (sf = 580 барн), 239Pu (sf = 750 барн). Внутр. поверхность ионизац. камеры покрывается тонким слоем делящихся веществ (камера деления). T. к. пробег осколков в радиаторе мал (8 мг . см -2), то даже для толстого слоя 235U эффективность h <= 0,1% для тепловых нейтронов. Для увеличения h камеры делаются многослойными (до 20 слоев). Для снижения собств. фона от спонтанного a-распада делящихся ядер оптимизируют давление газа в камере и расстояние между электродами (пробеги l у осколков меньше, чем у a-частиц, и плотность ионизации для них в начале трека больше, чем в конце, а для a-частиц - наоборот). Для медленных нейтронов h ~ 3056-77.jpg и имеет резонансные максимумы в области 3056-78.jpg ~ 0,5-100 эВ. Для быстрых нейтронов эффективность камер деления ещё меньше (~10-5 на 1 слой). Быстрые нейтроны удобнее регистрировать радиаторами из 238U или 232Th, у к-рых sf для тепловых нейтронов <10-5 барн (см. Деление ядер).

    Наиб. простой способ регистрации осколков и их пространств. распределений - по дефектам образованных осколками в приповерхностных слоях нек-рых твёрдых прозрачных материалах (см. Диэлектрический детектор). T. к. эффективность у камер деления низкая, они используются для детектирования интенсивных потоков нейтронов, напр. в системах управления ядерными реакторами.

    Радиационный захват нейтронов (n, g) стабильными ядрами (практически всеми и при любых 3056-79.jpg) сопровождается мгновенным g-излучением (т ~ 10-14 с). При 3056-80.jpg ~ 1 - 10 МэВ H. д. имеет радиатор, содержащий ядра с большим сечением реакции (n, g), окружённый сцинтилляц. детекторами g-лучей. Нейтроны с 3056-81.jpg до неск. десятков кэВ детектируют по мягким g-лучам (3056-82.jpg = 478 кэВ) от реакции 10B(n, ag)7Li. Регистрация g-квантов позволяет использовать толстые радиаторы; h ~ 1%. Для резонансных нейтронов удобен H. д. с радиатором, содержащим смесь ядер лантаноидов, обладающих большим сечением s(n, g), с небольшим кол-вом воды. Замедление нейтронов в воде позволяет сгладить зависимость h(3056-83.jpg), имеющую без воды вид частокола из множества отд. максимумов (нейтронные резонансы, см. Нейтронная спектроскопия). Ядра лантаноидов после захвата нейтрона излучают каскад g-квантов. Это позволяет, включив отд. секции сцинтилляц. детектора g-квантов в схему совпадений, снизить фон при h ~ 30% и т ~ 10-6-10-7 с.

    Радиоактивные индикаторы. Захват нейтрона стабильными ядрами часто приводит к образованию b-ак-тивных ядер. Облучённые нейтронами вещества (индикаторы) в виде тонких фольг (Au, In, Ag, Cu и т. д.) помещаются перед детектором b-частиц. Если период полураспада T1/2 значительно больше времени облучения индикатора, то по величине b-активности можно определить кол-во нейтронов, попавших в индикатор за время облучения. Измерения абс. b-активности требуют знания телесного угла, поглощения и рассеяния b-частиц в самом индикаторе и стенках детектора. Для относит. измерений нейтронных потоков достаточно ограничиться измерениями b-активностей индикаторов в тождеств. условиях. Так измеряют, напр., пространств. распределение нейтронов в активной зоне реактора. Для измерения интенсивности слабых нейтронных потоков пользуются радиохимич. методом, основанном на Сциларда - Чалмерса эффекте. Для детектирования быстрых нейтронов используются реакции (n, p); (n, 2 n); (n, a), пороги к-рых ~10 МэВ, а сечения ~0,5 барна, приводящие к образованию b-активных ядер. Бета-распад короткожи-вущих ядер радиатора (T1/2 3056-84.jpg 1c) вызывает электрич. ток в т. н. датчиках прямой зарядки, применяемых для детектирования интенсивных потоков нейтронов.

    Детектирование ультрахолодных нейтронов (3056-85.jpg < < 5-10-8 эВ) затруднено тем, что такие нейтроны эффективно отражаются от поверхности радиаторов, проникая вглубь на малую глубину (~150 3056-86.jpg), на к-рой вероятность захвата нейтрона незначительна. Поэтому их предварительно ускоряют в гравитац. и магн. полях, механич. ударом от движущихся поверхностей или с помощью неупругого рассеяния на ядрах H. Отражение нейтрона становится несущественным, если детектор движется навстречу нейтронам со скоростью, намного превышающей скорости нейтронов. При этом детектируются нейтроны сколь угодно малых энергий, т. е. практически "стоячие" нейтроны с h ~ 100% (см. Ультрахолодные нейтроны).

    Детектирование нейтронов сверхвысоких энергий (3056-87.jpg> 1 ГэВ) осуществляется т. н. адронным калориметром с установленным перед ним магнитом, поле к-рого "очищает" пучок нейтронов от фона заряж. частиц. Импульс от калориметра пропорц. 3056-88.jpg с разрешением по энергии 3056-89.jpg при h ~ 100%. Идентификация нейтрона происходит по срабатыванию схемы антисовпадений калориметра с установленным перед ним детектором заряж. частиц (сцинтиллятор, пропорц. камера и т. д.) и по форме ливня (эл.-магн. ливни, вызванные g-квантами таких же энергий, значительно плотнее и уже адронных, см. Ионизационный калориметр).

    Пространственное распределение нейтронов измеряется системами идентичных H. д. или детекторами, в к-рых координата попадания нейтрона определяется по амплитуде, фронту или длительности электрич. сигнала. Такие системы бывают одно- и многомерные и оснащаются малыми ЭВМ.

    Лит. см. при ст. Нейтронная физика, Детекторы.

    А. В. Стрелков.

  3. Источник: Физическая энциклопедия