«Электропроводность электролитов»

Электропроводность электролитов в словарях и энциклопедиях

Значение слова «Электропроводность электролитов»

Источники

    Большая Советская энциклопедия

    обусловлена наличием в них положительных и отрицательных ионов (катионов и анионов). Доли общего количества электричества, переносимого катионами и анионами, называются переноса числами (См. Переноса число).Э. э. количественно характеризуют эквивалентной электропроводностью Λ:

    ,

    где χ — удельная электропроводность раствора (в ом-1·см-1), с —- его концентрация (в г·экв/л). Предельно разбавленному раствору, в котором молекулы электролита полностью диссоциированы на ионы, соответствует наибольшее значение Λ, равное сумме эквивалентных электропроводностей катионов и анионов (см. также Кольрауша закон).

    Эквивалентная электропроводность электролитов уменьшается с ростом концентрации раствора. В растворах слабых электролитов Λ быстро падает с ростом с, в основном из-за уменьшения подвижности ионов и степени диссоциации. В растворах сильных электролитов уменьшение Λ определяется главным образом торможением ионов из-за взаимодействия их зарядов, интенсивность которого растет с концентрацией вследствие уменьшения среднего расстояния между ионами, а также из-за уменьшения подвижности ионов при увеличении вязкости раствора (см. Подвижность ионов и электронов). В электрических полях большой протяжённости подвижность ионов настолько велика, что Ионная атмосфера, тормозящая движение ионов, не успевает образовываться, и Λ резко возрастает (эффект Вина). Подобное явление наблюдается н при приложении к раствору электролита электрического поля высокой частоты (эффект Дебая — Фалькенхагена).

    Электропроводность сильных электролитов удовлетворительно описывается теоретическими уравнениями лишь в области небольших концентраций, например Онсагера уравнением электропроводности (См. Онсагера уравнение электропроводности).

    А. И. Мишустин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Химическая энциклопедия

    ,

    способность электролитов проводить электрич. ток при приложении электрич. напряжения. Носителями тока являются положительно и отрицательно заряженные ионы - катионы и анионы, к-рые существуют в р-ре вследствие электролитич. диссоциации. Ионная Э. э., в отличие от электронной, характерной для металлов, сопровождается переносом в-ва к электродам с образованием вблизи них новых хим. соед. (см. Электролиз). Общая (суммарная) проводимость состоит из проводимости катионов и анионов, к-рые под действием внешнего электрич. поля движутся в противоположных направлениях. Доля общего кол-ва электричества, переносимого отд. ионами, наз. числами переноса, суммак-рых для всех видов ионов, участвующих в переносе, равна единице.

    Количественно Э. э. характеризуют эквивалентной электропроводностью 6035-30.jpg - проводящей способностью всех ионов, образующихся в 1 грамм-эквиваленте электролита. Величина 6035-31.jpg связана с уд. электропроводностью 6035-32.jpg соотношением:

    6035-33.jpg

    где с - концентрация р-ра в г-экв/л. Эквивалентная электропроводность зависит от природы растворенного в-ва и р-рителя, структуры р-ра, а также от концентрации, т-ры, давления. Предельно разбавленному р-ру, в к-ром все молекулы диссоциированы на ионы, соответствует предельное значение 6035-34.jpg В соответствии с Кольрауша законом 6035-35.jpg равна сумме эквивалентных электропроводностей катионов и анионов. Эквивалентная электропроводность отд. иона пропорциональна скорости его движения в р-ре и характеризует подвижность иона в р-ре.

    Описание концентрац. зависимости 6035-36.jpgкак и других св-в р-ров электролитов (см. Растворы электролитов), обычно базируется на ионном подходе, в рамках к-рого р-ритель рассматривается как бесструктурная диэлектрич. среда, в к-рой ионы движутся в соответствии с законами гидродинамики и характером межионного взаимодействия. Простейшей моделью является модель заряженных твердых сфер, движущихся в вязком р-рителе под влиянием силы, обусловленной градиентом потенциала. При этом сила сопротивления движению иона в р-ре определяется ур-нием Стокса (см. Вискозиметрия). В рамках применимости этого ур-ния выполняется правило Вальдена-Писаржевского, в соответствии с к-рым для одного и того же электролита в любых р-рителях произведение предельного значения эквивалентной электропроводности 6035-37.jpg на вязкость р-рителя 6035-38.jpg является постоянной величиной, к-рая не зависит от природы р-рителя, но является ф-цией т-ры. Сравнительно хорошо это правило выполняется только для слабо сольватир. ионов, в частности ионов, имеющих большие размеры в кристаллич. фазе. С увеличением концентрации значение 6035-39.jpg уменьшается в осн. в р-рах слабых электролитов и в области малых концентраций удовлетворительно описывается законом разведения Оствальда (см. Электролитическая диссоциация).

    В р-рах сильных электролитов концентрац. зависимость 6035-40.jpg определяется межионным взаимодействием. В области применимости Дебая-Хюккеля теории имеются две причины для торможения ионов вследствие межионного взаимодействия. Первая из них связана с тем, что движение иона тормозится ионной атмосферой, к-рая имеет заряд, противоположный центральному иону, и под влиянием поля движется в направлении, противоположном перемещению иона (электрофоретич. эффект). Вторая причина связана с тем, что при движении иона под действием электрич. поля его ионная атмосфера деформируется и теряет сферич. симметрию, причем большая часть заряда ионной атмосферы концентрируется позади центрального иона (релаксац. эффект). Учет обоих эффектов приводит кур-нию Онсагера:

    6035-41.jpg

    где Аи В - эмпирич. постоянные, являющиеся ф-циями т-ры, вязкости и диэлектрич. проницаемости р-рителя.

    Как и теория Дебая-Хюккеля, ур-ние Онсагера ограничено областью умеренно разбавленных р-ров. Для описания концентрир. р-ров возникает необходимость в учете некулоновской части межионного взаимод., в частности в учете ионных размеров. Для этой цели применяют методы кинетич. теории ионных систем. К дополнит. уменьшению 6035-42.jpg приводит образование ионных ассоциатов - пар, тройников и т. п., к-рое, как и эффект неполной диссоциации, сокращает общее число своб. ионов в р-ре. Для учета этого эффекта в ур-нии Онсагера заменяют общую концентрацию ионов концентрацией своб. ионов 6035-43.jpg (6035-44.jpg- степень электролитич. диссоциации), что приводит к ур-нию Фуосса-Онсагера:

    6035-45.jpg

    В переменных электрич. полях при достаточно высокой частоте ион не уходит далеко от центра ионной атмосферы, вследствие чего она не деформируется. Обусловленный деформацией релаксац. эффект не возникает, что приводит к увеличению 6035-46.jpg -т. наз. эффект Дебая-Фалькенхагена. Величина 6035-47.jpg возрастает также в постоянных электрич. полях достаточно высокой напряженности (104-105 В/см). В этих условиях ионы движутся настолько быстро, что ионная атмосфера не успевает образоваться, вследствие чего практически отсутствуют и релаксац. и электрофоретич. эффекты. В результате 6035-48.jpg стремится к предельному значению 6035-49.jpg (т. наз. эффект Вина). В слабых электролитах эффект Вина вызывается также смещением диссоциативного равновесия в сильном электрич. поле в сторону образования ионов.

    Влияние т-ры и давления на Э. э. обусловлено изменением предельного значения 6035-50.jpg вследствие изменения структуры р-рителя и характера ион-молекулярного взаимод., изменения влияния межионного взаимод. и смещения диссоциативного равновесия. Более детальное описание механизма Э. э. в широкой области концентраций, т-р и давлений возможно в рамках ион-молекулярного подхода. При этом уд. электропроводность рассчитывают через электрич. поток j(t)=6035-51.jpg и автокорреляц. ф-цию 6035-52.jpg с помощью соотношения:

    6035-53.jpg

    где 6035-54.jpg- кол-во ионов электролита в единице объема р-ра, е - элементарный электрич. заряд,6035-55.jpg - приведенная масса катиона и аниона, a -> степень окисления иона сорта физико-химического анализа, поскольку зависимость Э. э. от состава р-ра позволяет судить о концентрации солей, качественный, состав к-рых известен (см. также Кондуктометрия). Измерения l используют для определения подвижностей ионов.

    Лит.: Скорчеллетти В. В., Теоретическая электрохимия, 4 изд., Л., 1974; Измайлов Н. А., Электрохимия растворов, 3 изд., М., 1976; Эрдеи-Груз Т., Явления переноса в водных растворах, пер. с англ., М., 1976. См. также лит. к ст. Растворы электролитов.

    М. Ф. Головко.

  3. Источник: Химическая энциклопедия