Большая Советская энциклопедия

    выражение особых свойств поверхностных слоев, т. е. тонких слоев вещества на границе соприкосновения тел (сред, фаз). Эти свойства обусловлены избытком свободной энергии (См. Свободная энергия) поверхностного слоя, особенностями его структуры и состава. П. я. могут иметь чисто физический характер или сопровождаться химическими превращениями; они протекают на жидких (легкоподвижных) и твёрдых межфазных границах. П. я., связанные с действием поверхностного натяжения (См. Поверхностное натяжение) и вызываемые искривлением жидких поверхностей раздела, называются также капиллярными явлениями (См. Капиллярные явления). К ним относятся капиллярное всасывание жидкостей в пористые тела, капиллярная конденсация, установление равновесной формы капель, газовых пузырей, менисков. Свойства поверхности контакта двух твёрдых тел или твёрдого тела с жидкой и газовой средами определяют условия таких явлений, как Адгезия, Смачивание, трение. Молекулярная природа и свойства поверхности могут коренным образом изменяться в результате образования поверхностных мономолекулярных слоев или фазовых (полимолекулярных) плёнок. Такие изменения часто происходят вследствие физических процессов (адсорбции, поверхностной диффузии, растекания жидкости) или химического взаимодействия компонентов соприкасающихся фаз. Любое «модифицирование» поверхностного (межфазного) слоя обычно приводит к усилению или ослаблению молекулярного взаимодействия между контактирующими фазами (см. Лиофильность и лиофобность). Физические или химические превращения в поверхностных слоях сильно влияют на характер и скорость гетерогенных процессов — коррозионных, каталитических, мембранных и др. П. я. отражаются и на типично объёмных свойствах тел. Так, уменьшение свободной поверхностной энергии твёрдых тел под действием адсорбционно активной среды вызывает понижение их прочности (см. Ребиндера эффект). Особую группу составляют П. я., обусловленные наличием в поверхностном слое электрических зарядов: электроадгезионные явления, Электрокапиллярные явления, электродные процессы. Физические или химические изменения в поверхностном слое проводника или полупроводника существенно сказываются на работе выхода (См. Работа выхода) электрона. Они также влияют на П. я. в полупроводниках (См. Полупроводники) (поверхностные состояния, поверхностную проводимость, поверхностную рекомбинацию), что отражается на эксплуатационных характеристиках полупроводниковых приборов (солнечных батарей, фотодиодов и др.). П. я. имеют место в любой гетерогенной системе, состоящей из двух или нескольких фаз. По существу весь материальный мир — от космических объектов до субмикроскопических образований — гетерогенен. Как гомогенные можно рассматривать системы лишь в ограниченных объёмах пространства. Поэтому роль П. я. в природных и технологических процессах чрезвычайно велика. Особенно важны П. я. в коллоидно-дисперсных (микрогетерогенных) системах, где межфазная поверхность наиболее развита. С П. я. связана сама возможность возникновения и длительного существования таких систем. К П. я. в дисперсных системах (См. Дисперсные системы) сводятся основные проблемы коллоидной химии (См. Коллоидная химия). Во взаимосвязи броуновского движения (См. Броуновское движение) и П. я. протекают все процессы, приводящие к изменению размеров частиц высокодисперсной фазы (Коагуляция, Коалесценция, Пептизация, эмульгирование). В грубодисперсных и макрогетерогенных системах на первый план выступает конкуренция поверхностных сил и внешних механических воздействий. П. я., влияя на величину свободной поверхностной энергии и строение поверхностного слоя, регулируют зарождение и рост частиц новой фазы в пересыщенных парах, растворах и расплавах, взаимодействие коллоидных частиц при формировании разного рода дисперсных структур (См. Дисперсная структура). На глубину и направление процессов, обусловленных П. я., часто решающим образом влияют Поверхностно-активные вещества, меняющие в результате адсорбции структуру и свойства межфазных поверхностей. Основы современной термодинамики П. я. созданы американским физикохимиком Дж. Гиббсом. В трудах советских учёных П. А. Ребиндера, А. Н. Фрумкина, Б. В. Дерягина, А. В. Думанского (См. Думанский) получили развитие теоретические представления о природе и молекулярном механизме П. я., имеющие важное практическое значение.

    Использование П. я. в производственной деятельности человека позволяет интенсифицировать существующие технологические процессы. П. я. в значительной мере определяют пути получения и долговечность важнейших строительных и конструкционных материалов; эффективность добычи и обогащения полезных ископаемых; качество и свойства продукции, выпускаемой химической, текстильной, пищевой, химико-фармацевтической и многими другими отраслями промышленности. Большое значение имеют П. я. в металлургии, производстве керамики, металлокерамики, полимерных материалов (пластических масс, резины, лакокрасочных продуктов). Для техники важны такие П. я., как смазочное действие, износ, контактные взаимодействия, структурные изменения в поликристаллических и композиционных материалах, а также электрические и электрохимические процессы и явления на поверхностях твёрдых тел. Познание П. я. в живой природе позволяет сознательно влиять на биологические процессы с целью повышения продуктивности сельского хозяйства, развития микробиологической промышленности, расширения возможностей медицины и ветеринарии.

    Л. А. Шиц.

    В биологии П. я. играют важную роль прежде всего на клеточном, субклеточном и молекулярном уровнях организации живых систем. Различные Биологические мембраны отграничивают клетку от внешней среды и обеспечивают её микрогетерогенность. На мембранах клетки и внутриклеточных органелл (митохондрий, пластид и др.) происходят фундаментальные для жизни процессы: рецепция экзо- и эндогенных биологически активных веществ (гормонов, медиаторов, антигенов, феромонов и т.д.); Ферментативный катализ (многие ферменты встроены в мембраны, образуя многоферментные каталитические ансамбли); преобразование химической энергии в осмотическую работу; Окислительное фосфорилирование, т. е. сопряжение процессов окисления с накоплением энергии в макроэргических соединениях. Особенности взаимодействия поверхностей ответственны за агрегацию клеток, их прикрепление к живым и неживым субстратам (в т. ч. образование тромба при повреждении стенки сосуда, сорбция вирусов на клетках и т.п.). Функционирование важнейших ферментных систем (например, ансамбля дыхательных ферментов) — пример гетерогенного катализа. Адсорбция соответствующих физиологически активных веществ на поверхностях лежит в основе «распознавания» своих и чужих макромолекул (см. Иммунология, Компетенция, Хеморецепция), наркоза, передачи нервного импульса. В целом П. я. в живых системах отличаются от таковых в неживой природе гораздо большей химической специфичностью, взаимной согласованностью во времени и пространстве. Например, рецепция гормона на поверхности клетки вызывает конформационный переход (см. Конформация) ряда компонентов мембраны, что обусловливает изменение её проницаемости и гетерокаталитической активности. Это, в свою очередь, вызывает многочисленные физико-химические и биохимические сдвиги в клетке, что в совокупности и определяет её реакцию на воздействие.

    По мере эволюции роль П. я. в процессах жизнедеятельности возрастает. Так, более древний механизм обеспечения клеток энергией — Гликолиз— осуществляется ферментами цитоплазмы, лишь частично закрепленными на структурах эндоплазматической сети; эволюционно более поздний и экономичный путь получения энергии — Дыхание— осуществляется за счёт гетерокаталитических систем (см. Окисление биологическое). У одноклеточных организмов питание происходит путём заглатывания целых макромолекул и их последующего расщепления внутри клетки (см. Пиноцитоз); у высших — существенную роль играет пристеночное (контактное) Пищеварение, когда ферментативный гидролиз макромолекул пищи происходит на внешней поверхности клетки и координирован с последующим транспортом продуктов расщепления в клетку. См. также Проницаемость биологических мембран.

    А. Г. Маленков.

    Лит.: Мелвин-Хьюз Э. А., Физическая химия, пер. с англ., кн. 2, М., 1962, с. 807; Курс физической химии, под ред. Я. И. Герасимова, 2 изд., т. 1, М. — Л., 1969; Успехи коллоидной химии, под ред. П. А. Ребиндера и Г. И. Фукса, М., 1973; Гиббс Д ж. В., Термодинамические работы, пер. с англ.. М. — Л., 1958; Русанов А. И., Фазовые равновесия и поверхностные явления. Л,, 1967; Межфазовая граница газ — твёрдое тело, пер. с англ., М., 1970; Дерягин Б. В., Кротова Н. А., Смилга В. П., Адгезия твёрдых тел, М., 1973; 3имон А. Д., Адгезия жидкости и смачивание, М., 1974; Семенченко В. К., Поверхностные явления в металлах и сплавах, М.. 1957; Recent progress in surface science, ed by J. F. Danielli [a. o.], v. 1—5, N. Y. — L., 1964—72. См. также лит. при статьях Коллоидная химия, Поверхностное натяжение. Васильев Ю. М., Маленков А. Г., Клеточная поверхность и реакции клеток, Л., 1968; Пасынский А. Г., Биофизическая химия, 2 изд., М., 1968; Surface phenomena in chemistry and biology, L. — [a. o.], 1958; Surface chemistry of biological systems, N. Y. — L., 1970.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ - группа явлений, обусловленных тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности. К числу поверхностных явлений относятся поверхностное натяжение, капиллярные явления, поверхностная активность, смачивание, адсорбция, адгезия, и др.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Современная энциклопедия

    ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ, обусловлены особыми физическими и химическими свойствами тонких слоев вещества на границе тел (сред, фаз). Важнейшее поверхностное явление - адсорбция. Определяют прочность и долговечность материалов. С поверхностным явлением связано образование коллоидных систем, слияние капель и пузырьков в эмульсиях, пенах, тумане. Поверхностные явления играют большую роль в трении, сварке, пайке, окраске, моющем действии мыла и т.д.

  5. Источник: Современная энциклопедия. 2000.



  6. Физическая энциклопедия

    ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ

    явления, вызываемые избытком свободной энергии в пограничном слое — поверхностной энергии, повышенной активностью и ориентацией молекул поверхностного слоя, особенностями его структуры и состава. П. я. определяются также тем, что хим. и физ. вз-ствия тел происходят прежде всего в поверхностных слоях. Осн. П. я. связаны с уменьшением поверхностной энергии, пропорциональной площади поверхности. Так, образование равновесных форм жидких капель или газовых пузырей, а также кристаллов при их росте определяется минимумом свободной энергии при пост. объёме. П. я., возникающие при совместном действии молекулярных сил (поверхностного натяжения и смачивания) и внеш. сил (силы тяжести) и вызывающие искривление жидких поверхностей раздела, наз. капиллярными явлениями.

    П. я. в тв. телах имеют место прежде всего на внеш. поверхности тела. К ним относятся: сцепление (когезия), прилипание (адгезия), смачивание, трение. Из условий минимума свободной поверхностной энергии кристалла, на разл. гранях к-рого поверхностные натяжения различны, выводятся математически все возможные формы кристаллич. многогранников, изучаемые в геом. кристаллографии.

    П. я. имеют место и на внутр. поверхностях, развивающихся на основе дефектов кристаллич. решётки. Любое разрушение тв. тела, связанное с преодолением его прочности, по существу представляет собой П. я., т. к. выражается в образовании новой поверхности раздела. Образование и развитие зародышей новой фазы в первоначально однородной среде, находящейся в метастабильном состоянии, также определяется П. я. (с этим связано повышение растворимости малых капель и кристалликов и повышение над ними давления насыщенного пара; (см. КЕЛЬВИНА УРАВНЕНИЕ)).

    Значит. группу П. я. составляют адсорбционные явления, при к-рых изменяется хим. состав поверхностного слоя (см. АДСОРБЦИЯ). К этой группе явлений примыкают разл. случаи активированной и хим. адсорбции, переходящей в поверхностные хим. реакции с образованием поверхностного слоя хим. соединения. Сюда относятся разл. топохим. процессы (напр., образование металлич. зеркал на поверхностях при восстановлении металла из раствора его солей, образование накипи на поверхностях нагрева и т. д.). Образование хемосорбционных мономолекулярных слоев-покрытий служит эффективным методом изменения мономолекулярно-поверхностных св-в тела и характера его вз-ствия с окружающей средой. Адсорбционные слои могут резко повышать устойчивость эмульсий, пен, суспензий, что связано в пределе со структурно-механич. св-вами этих слоев (высокая вязкость, упругость и прочность).

    Особенности теплового движения в поверхностных слоях приводят к мол. рассеянию света поверхностями. К др. группе явлений относятся: термоэлектронная эмиссия, возникновение скачков потенциала и образование двойного электрического слоя на поверхности раздела фаз. Эти П. я. связаны с адсорбцией ионов и дипольных молекул. П. я. влияют на термодинамич. равновесие фаз только в случае весьма развитой поверхности их раздела в коллоидных системах. Скорости же процессов теплообмена и массообмена — растворение, испарение, конденсация, кристаллизация, гетерогенные хим. процессы (напр., коррозия) — определяются величиной и св-вами поверхности раздела и поэтому резко зависят от мол. природы и строения этой поверхности. Адсорбционные слои могут вызвать существ. изменение, замедление процессов межфазового обмена. Так, монослои нек-рых поверхностно-активных в-в, напр. цетилового спирта, на поверхности воды могут значительно замедлить её испарение. Таково же замедление процессов коррозии под действием поверхностных слоев ингибиторов или защитных плёнок окислов и др. хим. соединений на поверхности металла.

    П. я. определяют особенности граничных условий при движении поверхностей раздела (движение капель, пузырей и жидких струй, распадающихся на капли, капиллярные волны на поверхности жидкости). Адсорбционные слон вызывают гашение капиллярных волн вследствие возникновения местных разностей поверхностного натяжения, т. е. изменения граничных гидродинамич. условий.

    П. я. определяют долговечность материалов и конструкций в данной среде. Не только растворение и коррозия, но даже и обратимая адсорбция вызывают облегчение деформаций и разрушения тв. тел, понижая работу образования новых поверхностей. Малые примеси адсорбирующихся в-в, образующие мономол. слои на поверхностях раздела, позволяют управлять мн. св-вами материалов. Изучение мономолекулярных поверхностных слоев приводит к новым методам исследования молекул и установления их размеров. П. я. определяют процессы выветривания горных пород и почвообразования, испарения и конденсации влаги, а также мн. процессы в живых организмах. На использовании П. я. основаны многие технологич. процессы (смазка, смачивание, флотация и т. д.).

  7. Источник: Физическая энциклопедия



  8. Химическая энциклопедия

    , физ.-хим. явления, к-рые обусловлены особыми (по сравнению с объемными) св-вами поверхностных слоев жидкостей и твердых тел. Наиб. общее и важное св-во этих слоев - избыточная своб. энергия F = sS, где s-поверхностное (межфазное) натяжение, для твердых тел-уд. своб. поверхностная энергия, S-площадь пов-сти раздела фаз. П. я. протекают наиб. выраженно в гетерог. системах с сильно развитой пов-стью раздела фаз, т. е. в дисперсных системах. Изучение закономерностей П. я. является составной частью коллоидной химии и чрезвычайно важно для всех ее практич. приложений.

    Самопроизвольные П. п. происходят вследствие уменьшения поверхностной энергии системы. Они м. б. обусловлены уменьшением общей пов-сти системы либо уменьшением поверхностного натяжения на границе раздела фаз. К П. я., связанным с уменьшением общей пов-сти, относят: 1) капиллярные явления, в частности приобретение каплями (в туманах) и газовыми пузырьками (в жидкой среде) сферич. формы, при к-рой пов-сть капли (пузырька) минимальна. 2) Коалесценция - слияние капель в эмульсиях (или газовых пузырьков в пенах )при их непосредств. контакте. 3) Спекание мелких твердых частиц в порошках при достаточно высоких т-рах. 4) Собирательная рекристаллизация - укрупнение зерен поликристаллич. материала при повышении т-ры. 5) Изотермич. перегонка - увеличение объема крупных капель за счет уменьшения мелких. При этом вследствие повыш. давления паров жидкости с более высокой кривизной пов-сти происходит испарение мелких капель и последующая их конденсация на более крупных каплях. Для жидкости, находящейся на твердой подложке, существ. роль в переносе в-ва от мелких капель к крупным играет поверхностная диффузия. Изотермич. перегонка твердых частиц может происходить через жидкую фазу вследствие повыш. р-римости более мелких частиц.

    При определенных условиях в системе могут происходить самопроизвольные П. я., сопровождающиеся увеличением общей пов-сти раздела фаз. Так, самопроизвольное диспер-гирование и образование устойчивых лиофильных коллоидных систем (напр., критич. эмульсий) происходит в условиях, когда увеличение поверхностной энергии, вызываемое измельчением частиц, компенсируется их вовлечением в тепловое движение и соответствующим возрастанием энтропии (см. Микроэмульсии). При гомог. образовании зародышей новой фазы при конденсации паров, кипении, кристаллизации из р-ров и расплавов увеличение энергии системы вследствие образования новой пов-сти компенсируется уменьшением хим. потенциала в-ва при фазовом переходе. Критич. размеры зародышей, при превышении к-рых выделение новой фазы идет самопроизвольно, зависят от поверхностного натяжения, а также от величины перегрева (переохлаждения, пересыщения). Связь между этими параметрами определяется ур-нием Гиббса (см. Зарождение новой фазы).

    Самопроизвольные П. я., в к-рых изменяется поверхностное натяжение: 1) образование огранки (равновесной формы) кристаллов. Равновесной форме соответствует минимум поверхностной энергии (принцип Гиббса-Кюри -Вульфа). Поэтому грани с меньшей уд. своб. поверхностной энергией имеют большую площадь пов-сти, чем грани с высокой уд. своб. поверхностной энергией. 2) Коагуляция-слипание мелких твердых частиц в золях, суспензиях в крупные агрегаты с послед. разрушением системы и образованием коагуляц. осадков разл. структуры. Слипание происходит вследствие снижения межфазного натяжения в месте контакта частиц. Самопроизвольный обратный процесс -пептизация, т. е. распад коагуляц. агрегатов-происходит в том случае, если образование участков пов-сти с повыш. значением поверхностного натяжения компенсируется вовлечением образующихся частиц в тепловое движение и соответствующим увеличением энтропии системы. 3) Адгезия - прилипание жидкости к твердому телу вследствие понижения уд. своб. поверхностной энергии. Адгезия определяет величину краевого угла смачивания, образуемого касательной к пов-сти жидкости в контакте с твердым телом. 4) Гетерог. образование зародышей новой фазы-конденсация паров на твердой пов-сти, образование на стенках паровых пузырьков при кипении, рост кристаллов на затравках. В этих П. я. существ. роль играют микронеоднородности твердой пов-сти. Так, капиллярная конденсация легче идет в микроуглублениях, чем на плоских участках. 5) Растекание жидкости с меньшим поверхностным натяжением по пов-сти др. жидкости (напр., нефти по воде). 6) Адсорбция -концентрирована в поверхностном слое или на пов-сти жидкостей и твердых тел в-в, понижающих их поверхностное натяжение (уд. своб. поверхностную энергию) (см. Поверхностно-активные вещества).8) Электроповерхностные явления, обусловленные двойным электрич. слоем ионов и межфазными скачками потенциала на пов-сти раздела фаз. К ним относятся электрокапиллярные явления, связанные с влиянием заряда пов-сти на величину поверхностного натяжения; электрокинетич. явления - электрофорез, электроосмос, возникновение потенциала течения при протекании жидкости через пористую диафрагму и потенциала оседания при перемещении частиц в жидкости.

    П. я. при деформировании и разрушении происходят не самопроизвольно, поскольку требуют затраты работы на образование и развитие новых пов-стей. Закономерности этих П. я. изучает физико-химическая механика. Одно из основных П. я. при деформации и разрушении - эффект Ребиндера (адсорбц. понижение прочности). Оно заключается в изменении прочности и пластичности твердых тел вследствие снижения поверхностной энергии во время деформации и развития трещины. Эффект Ребиндера происходит при нагружении материалов в присут. определенных ПАВ или в контакте с жидкостями родственной мол. природы. Др. важное П. я.- значит. повышение прочности кристаллов в результате растворения поверхностных слоев или в процессе деформирования (эффект Иоффе); его связывают с устранением структурных дефектов, к-рых особенно много в поверхностных слоях кристаллич. в-ва.

    Затрата работы приводит также к механохим. эффектам, обусловленным кратковременной активацией атомов (молекул) поверхностного слоя в момент разрушения. Механохим. активация используется для инициирования и ускорения ряда хим. р-ций (см. Механохимия).

    Использование П. я. широко и многообразно во мн. отраслях произ-ва. Напр., смачивание играет определяющую роль в вытеснении нефти из пластов, при флотац. обогащении полезных ископаемых, нанесении красок и покрытий, очистке газов от пыли, пропитке строит. и текстильных материалов. Как гомогенное, так и гетерог. образование зародышей новой фазы существенно сказывается на эффективности теплообменных процессов. Эффект Ребиндера используют при бурении горных пород, мех. обработке высокопрочных материалов, измельчении, обусловливая значит. сокращение энергозатрат. Модифицирование пов-сти адсорбц. слоями позволяет гидрофобизировать разл. материалы (произ-во водоотталкивающих тканей, предотвращение слеживания гидрофильных порошков). Смачивание, адгезия, адсорбция изменяют биосовместимость крови с полимерными материалами, применяемыми для протезирования кровеносных сосудов. Спекание твердых частиц в порошковой металлургии, микрокапсулирование и мн. др. важные направления техники и технологии основаны на разнообразных П. я. в дисперсных и коллоидных системах.

    П. я. играют важную роль в прир. атм. процессах; напр., возникновение значит. потенциалов оседания при перемещении капель тумана и дождя приводит к грозовым разрядам. Разрушение горных пород, контактирующих с оксидными и силикатными расплавами, обусловлено эффектом Ребиндера; адсорбция белков и липидов - важнейшая стадия в функционировании клеточных мембран; растекание орг. жидкостей по пов-сти воды-одна из осн. причин загрязнения естеств. водоемов.

    Исторический очерк. Исследования П. я. начались в 18 в. Первым экспериментально установленным фактом стал закон капиллярного подъема жидкости, смачивающей стенки капилляра (Дж. Жюрен, 1718). Сферич. форма капель несмачивающих жидкостей на твердой пов-сти и цилиндрич. струй объяснена с помощью понятия о поверхностном натяжении жидкости в 1752 (Я. Сегнер). В 1785 Т. Е. Лови-цем обнаружена адсорбция растворенных в воде в-в на угле.

    В 19 в. установлены осн. количеств. закономерности П. я.: закон капиллярного давления (П. Лаплас, 1806), постоянство краевого угла смачивания (T. Юнг, 1804), зависимость давления насыщ. пара жидкости от кривизны пов-сти (У. Томсон, 1870); первые термодинамич. соотношения -ур-ние изотермы адсорбции Гиббса (1878), зависимость поверхностного натяжения от электрич. потенциала (Г. Липман, 1875), сформулирован принцип минимума площади пов-сти жидкости (Ж. Плато, 1843). Среди важнейших П. я.-наличие капиллярных волн на пов-сти жидкости (У. Рэлей, 1890), двухмерное состояние и независимость действия адсорбц. слоев на пов-сти раздела фаз (И. Ленг-мюр, 1917), адсорбц. понижение прочности (П. А. Ребиндер, 1923), расклинивающее давление в тонких жидких пленках (Б. В. Дерягин, 1935).

    Новые направления исследования П. я. и их использование связаны с развитием микроэлектроники, космонавтики, биотехнологии, мицеллярного катализа, с разработкой биомембран, применением порошковой металлургии, произ-вом тромборезистентных материалов, глазных линз и пр. В настоящее время проводят исследования П. я. в экстремальных условиях-при высоких т-рах и давлениях, в глубоком вакууме, вблизи абс. нуля т-р, при большой кривизне пов-сти жидкости, в условиях интенсивных внеш. воздействий (вибрации, сильных электрич. и магн. полей, ионизирующих излучений и т. п.). Существ. внимание уделяется изучению кинетич. закономерностей П. я., что необходимо для выяснения их мол. механизмов.

    Лит.:Pyсанов А. И., Фазовые равновесия и поверхностные явления, Л., 1967; Ребиндер П. А., Поверхностные явления в дисперсных системах, т. 1 - Коллоидная химия; т. 2-Физико-химическая механика, M., 1978-79; АдамсонА., Физическая химия поверхностей, пер. с англ., M., 1979; Щукин Е. Д., ПерцовА. В., Амелина Е. А., Коллоидная химия, M., 1982; Дерягин Б. В., Чураев H. В., Муллер В. M., Поверхностные силы, M., 1985; Измайлова В.H., Ямпольская Г. П., Сумм Б. Д., Поверхностные явления в белковых системах, M., 1988. Б. Д. Сумм.

  9. Источник: Химическая энциклопедия



  10. Энциклопедический словарь

    пове́рхностные явле́ния

    группа явлений, обусловленных тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности. К числу поверхностных явлений относят поверхностное натяжение, капиллярные явления, поверхностную активность, смачивание, адсорбцию, адгезию и др.

    * * *

    ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ

    ПОВЕ́РХНОСТНЫЕ ЯВЛЕ́НИЯ, группа явлений, обусловленных тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности. К числу поверхностных явлений относятся поверхностное натяжение, капиллярные явления, поверхностная активность, смачивание, адсорбция, адгезия, и др.

  11. Источник: Энциклопедический словарь



  12. Большой энциклопедический политехнический словарь

    совокупность явлений связанных с особыми св-вами поверхностных слоев на границах между соприкасающимися телами П я обусловлены наличием поверхностной энергии особенностями состава и структуры поверхностных слоев. К П. я. относятся: поверхностное натяжение, смачивание, адгезия, когезия, трение, адсорбция т. д. П. я. играют осн. роль в высокодисперсных (коллоидных) системах, при росте кристаллов. в капиллярных явлениях, почвообразовании, выветривании, размывании и эрозии горных пород, при испарении и конденсации, образовании осадков и т д. П. я. имеют большое значение в технологии строит. материалов, в металлургии и обработке металлов, в процессах трения, износа.тонкого измельчения, крашения, флотации, смазки и мн. др.

  13. Источник: Большой энциклопедический политехнический словарь



  14. Большая политехническая энциклопедия

    ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ — явления, происходящие в поверхностном слое, на границах раздела между средами и вызываемые повышенной активностью и ориентацией молекул поверхностного слоя, особенностями его структуры и состава, а также хим. и физ. взаимодействиями в поверхностных слоях. К ним относятся сцепление, прилипание, смачивание, трение, адсорбция. П. я. определяют долговечность материалов и конструкций в данной среде. На их использовании основаны многие технологические процессы (смазка, смачивание, флотация, адсорбция и др.).

  15. Источник: Большая политехническая энциклопедия



  16. Русско-украинский политехнический словарь

    поверхне́ві я́вища

  17. Источник: Русско-украинский политехнический словарь



  18. Русско-украинский политехнический словарь

    поверхне́ві я́вища

  19. Источник: Русско-украинский политехнический словарь



  20. Естествознание. Энциклопедический словарь

    группа явлений, обусловленных тем, что силы взаимодействия между частицами, составляющими тело, не скомпенсированы на его поверхности. К числу П. я. относят поверхностное натяжение, капиллярные явления, поверхностную активность, смачивание, адсорбцию, адгезию и др.

  21. Источник: Естествознание. Энциклопедический словарь



  22. Большой Энциклопедический словарь

  23. Источник: