Большая Советская энциклопедия

    газообразные углеводороды, образующиеся в земной коре.

    Общие сведения и геология. Промышленные месторождения Г. п. г. встречаются в виде обособленных скоплений, не связанных с каким-либо др. полезным ископаемым; в виде газонефтяных месторождений, в которых газообразные углеводороды полностью или частично растворены в нефти или находятся в свободном состоянии и заполняют повышенную часть залежи (газовые шапки) или верхние части сообщающихся между собой горизонтов газонефтяной свиты; в виде газоконденсатных месторождений, в которых газ обогащен жидкими, преимущественно низкокипящими углеводородами.

    Г. п. г. состоят из метана, этана, пропана и бутана, иногда содержат примеси легкокипящих жидких углеводородов — пентана, гексана и др.; в них присутствуют также углекислый газ, азот, сероводород и инертные газы. Многие месторождения Г. п. г., залегающие на глубине не более 1,5 км, состоят почти из одного метана с небольшими примесями его гомологов (этапа, пропана, бутана), азота, аргона, иногда углекислого газа и сероводорода; с глубиной содержание гомологов метана обычно растет. В газоконденсатных месторождениях содержание гомологов метана значительно выше, чем метана. Это же характерно для газов нефтяных попутных (См. Газы нефтяные попутные). В отдельных газовых месторождениях наблюдается повышенное содержание углекислого газа, сероводорода и азота. Встречаются Г. п. г. в отложениях всех геологических систем начиная с конца протерозоя (рис. 1) и на различных глубинах, но чаще всего до 3 км. Образуются Г. п. г. в основном в результате катагенетического преобразования органического вещества осадочных горных пород (см. Газы земной коры).Залежи Г. п. г. формируются в природных ловушках на путях миграции газа.

    Миграция происходит в результате статической или динамической нагрузки пород, выжимающих газ, а также при свободной диффузии газа из областей высокого давления в зоны меньшего давления. Различают внерезервуарную региональную миграцию сквозь мощные толщи пород различной проницаемости по капиллярам, порам, разломам и трещинам и внутрирезервуарную локальную миграцию внутри хорошо проницаемых пластов, коллектирующих газ.

    Газовые залежи по особенностям их строения разделяются на две группы: пластовые и массивные (рис. 2). В пластовых залежах скопления газа приурочены к определённым пластам-коллекторам. Массивные залежи не подчиняются в своей локализации определённым пластам. Наиболее распространены среди пластовых сводовые залежи, сохраняемые мощной глинистой или галогенной покрышкой. Подземными природными резервуарами для 85% общего числа газовых и газоконденсатных залежей служат песчаные, песчано-алевритовые и алевритовые породы, нередко переслоённые глинами; в остальных 15% случаев коллекторами газа являются карбонатные породы. Серия залежей, подчинённых единой геологической структуре, составляет отдельные месторождения. Структуры месторождений различны для складчатых и платформенных условий. В складчатых районах выделяются две группы структур, связанные с антиклиналями и моноклиналями. В платформенных районах намечаются 4 группы структур: куполовидных и брахиантиклинальных поднятий, эрозионных и рифовых массивов, моноклиналей, синклинальных прогибов. Все газовые и газонефтяные месторождения приурочены к тому пли иному газонефтеносному осадочному (осадочно-породному) бассейну, представляющему собой автономные области крупного и длительного погружения в современной структуре земной коры. Среди них различают 4 группы: приуроченные к внутриплатформенным прогибам (например, Мичиганский и Иллинойсский бассейн Сев. Америки, Волго-Уральская обл. СССР); приуроченные к прогнутым краевым частям платформ (например, Зап.-Сибирский в СССР); контролируемые впадинами возрожденных гор (бассейны Скалистых гор в США, бассейны Ферганской и Таджикской впадин в СССР); связанные с предгорными и внутренними впадинами молодых альпийских горных сооружений (Калифорнийский бассейн в США, сахалинский бассейн в СССР). Всё больше открывается газовых залежей в зоне шельфа и в мелководных бассейнах (например, в Северном море крупные газовые месторождения — Уэст-Сол, Хьюит, Леман-Банк).

    Мировые геологические запасы горючих газов на континентах, в зоне шельфов и мелководных морей, по прогнозной оценке, достигают 1015 м3, что эквивалентно 1012 т нефти.

    СССР обладает огромными ресурсами Г. п. г. Наиболее крупными месторождениями являются: Уренгойское (4 триллиона м3) и Заполярное (1,5 триллиона м3), приуроченные к меловым отложениям Зап.-Сибирского бассейна Вуктыльское (750 млрд. м3) и Оренбургское (650 млрд. м3) в Волго-Уральской обл.; Газли (445 млрд. м3) в Средней Азии; Шебслинское (390 млрд. м3) на Украине; Ставропольское (220 млрд. м3) на Сев. Кавказе. Среди зарубежных стран наиболее крупными запасами Г. п. г. располагают (оценка общих запасов в триллионах м3): США (8,3), Алжир (4,0), Иран (3,1), Нидерланды (2,3); крупнейшими месторождениями за рубежом являются (в триллионах м3): в США — Панхандл-Хьюготон (1,96); в Нидерландах — Слохтерен (Гронинген) (1,65); в Алжире — Хасси-Рмель (около 1).

    Н. Б. Вассоевич.

    Применение. Г. п. г. — высокоэкономичное энергетическое топливо, теплота сгорания 32,7 Мдж/м3 (7800 ккал/м3) и выше, широко применяется как топливо на электростанциях, в чёрной и цветной металлургии, цементной и стекольной промышленности, при производстве стройматериалов и для коммунально-бытовых нужд.

    Углеводороды, входящие в состав Г. п. г., — сырьё для производства метилового спирта, формальдегида, ацетальдегида, уксусной кислоты, ацетона и др. органических соединений. Конверсией кислородом или водяным паром из метана — основного компонента Г. п. г. — получают синтез-газ (CO+H2), широко применяемый для получения аммиака, спиртов и др. органических продуктов. Пиролизом и дегидрогенизацией (см. Гидрогенизация) метана получают ацетилен, сажу и водород, используемый главным образом для синтеза аммиака. Г. п. г. применяют также для получения олефиновых углеводородов, и в первую очередь этилена и пропилена, которые в свою очередь являются сырьём для дальнейшего органического синтеза. Из них производят пластические массы, синтетические каучуки, искусственные волокна и др. продукты.

    С. Ф. Гудков.

    Добыча Г. п. г. включает извлечение газов из недр, их сбор, учёт и подготовку к транспортировке потребителю (т. н. разработка газовых месторождений), а также эксплуатацию скважин и наземного оборудования. Особенность добычи Г. п. г. из недр по сравнению с добычей твёрдых полезных ископаемых состоит в том, что весь сложный путь газа от пласта до потребителя герметизирован.

    Выходы Г. п. г. из естественных источников (например, «вечные огни» в Дагестане, Азербайджане, Иране и др.) использовались человеком с незапамятных времён. Позже нашёл применение природный газ, получаемый из колодцев и скважин (например, в 1-м тыс. н. э. в Китае, в провинции Сычуань, при бурении скважин на соль было открыто месторождение Цзылюцзин, газ которого служил для выпаривания соли из растворов). Эпизодическое использование природного газа, добываемого из случайно открытых залежей, продолжалось на протяжении многих столетий. К середине 19 в. относят применение природного газа как технологического топлива (например, на базе месторождения Дагестанские Огни было организовано стекольное производство). Поисками и разработкой газовых залежей не занимались вплоть до 20-х гг. 20 в., когда начинается промышленная разработка чисто газовых месторождений: вначале залегающих на малых (около сотен м), а затем на всё больших глубинах. В этот период разработка месторождений велась примитивно: буровые скважины размещались на залежи по равномерной сетке с расстоянием между ними в среднем в 1 милю (1,6 км). Добыча Г. п. г. из скважины составляла 10—20% от потенциальной производительности скважины (абсолютно свободного её дебита), а в отдельных случаях (при благоприятных геологических условиях и характеристике пласта) рабочие дебиты были большие.

    В 30-х гг. благодаря развитию техники бурения (См. Бурение) скважин и переходу на большие глубины (1500—3000 м и более) был открыт новый тип залежи — газоконденсатный; разработка этих залежей потребовала создания новой технологии.

    Конец 40-х гг. характеризуется интенсивным развитием отечественной газовой промышленности и внедрением в практику научных методов разработки газовых и газоконденсатных месторождений. В 1948 под руководством сов. учёного Б. Б. Лапука создан первый научно обоснованный проект разработки газового месторождения (Султангулово Куйбышевской обл.). В последующие годы промышленные месторождения Г. п. г. разрабатываются по проектам, составленным на основе последних достижений промысловой геологии, гидродинамики и др. Важным этапом освоения месторождения является его разведка. Детальная разведка газовой залежи требует бурения большого числа глубоких скважин (См. Скважина), часто количество разведочных скважин превышает необходимое число эксплуатационных.

    Советскими учёными в послевоенный период созданы и внедрены новые методы разработки месторождений газа. На первой стадии освоения газовой залежи происходит её опытно-промышленная эксплуатация, в ходе которой (2—5 лет) уточняются характеристики залежи — свойства пласта, запасы газа, продуктивность скважин, степень подвижности пластовых вод и т. д. Месторождение подключается к ближайшему газопроводу или служит для газоснабжения местных потребителей. Вторая стадия — промышленная эксплуатация, основанная на достаточно полных сведениях о месторождении, полученных в ходе опытно-промышленной разработки. В этой стадии различают три основных периода — нарастающей, постоянной и падающей добычи. Первый период занимает 3—5 лет. Он связан с бурением скважин и оснащением газового промысла. За это время добывается 10—20% от общих запасов газа. Второй период продолжается около 10 лет, в течение которых из залежи отбирается 55—60% запасов газа. Количество скважин в это время растет, т. к. продуктивность каждой из них в отдельности падает, а общий отбор газа по залежи остаётся неизменным. Когда давление в пласте понижается до 5—6 Мн/м2 (50—60 кгс/см2), вводится в эксплуатацию дожимная Газокомпрессорная станция, повышающая давление газа, отбираемого из залежей, до значения, при котором обычно работает магистральный газопровод. Третий период — падающей добычи — не ограничен во времени. Разработка газовой залежи происходит в основном 15—20 лет. За это время извлекается 80—90% запасов газа.

    В себестоимости добычи Г. п. г. 40—60% составляют затраты на сооружение эксплуатационных скважин. Чтобы скважина, пробурённая на газоносный пласт, дала газ, достаточно её открыть, однако высокодебитные скважины полностью открывать нельзя, т. к. при свободном истечении газа может произойти разрушение пласта и ствола скважины, обводнение скважины за счёт притока пластовой воды, нерационально будет расходоваться энергия газа, находящегося в пласте под давлением. Поэтому расход газа ограничивается, для чего обычно используется штуцер (местное сужение трубы), устанавливаемый чаще всего на головке скважины. Суточный рабочий дебит скважин составляет от десятков м3 до нескольких млн. м3.

    С конца 60-х гг. в СССР впервые в мировой практике пробурены сверхмощные скважины с диаметром эксплуатационной колонны 8—12 дюймов (200—300 мм).

    Продуктивность газовых скважин зависит от свойств пласта, метода его вскрытия и конструкции забоя скважины. Чем более проницаем пласт, чем он мощнее и чем лучше сообщается пласт с внутренней частью скважины, тем более продуктивна скважина. Для увеличения продуктивности газовой скважины в карбонатных породах (известняки, доломиты) забой обрабатывают соляной кислотой, которая, реагируя с породой, расширяет каналы притока газа; в крепких породах применяют торпедирование забоя, в результате которого призабойная зона пласта приобретает сеть трещин, облегчающих движение газа. Интенсификация притока газа достигается также с помощью т. и. гидропескоструйной перфорации колонны обсадных труб, улучшающей степень сообщаемости пласта со скважиной, и путём гидравлического разрыва пласта (См. Гидравлический разрыв пласта), при котором в пласте образуются одна или несколько больших трещин, заполненных крупным песком, имеющим низкое фильтрационное сопротивление. При выборе системы размещения скважин на газовом месторождении учитываются не только свойства пласта, но и топография местности, система сбора газа, характер истощения залежи, сроки ввода в эксплуатацию компрессорной станции и др. Скважины располагаются на площади месторождения равномерно по квадратной или треугольной сетке либо неравномерно — группами. Чаще применяется групповое размещение (рис. 3), при котором облегчается обслуживание скважин, возможна комплексная автоматизация процессов сбора, учёта и обработки продукции -Эта система обычно оказывается самой выгодной и по экономическим показателям Например, на Северо-Ставропольском газовом месторождении групповое расположение скважин в центральной части залежи позволило сократить (по сравнению с равномерным размещением) более чем вдвое число эксплуатационных скважин, что дало экономию около 10 млн. руб.

    Разработка газоконденсатных месторождений осуществляется тремя основными способами. Первый, широко применяемый в США, состоит в том, что в пласте посредством обратной закачки в него газа, из которого на поверхности выделены тяжёлые углеводороды, поддерживается достаточно высокое давление (т. н. сайклинг-процесс); благодаря этому конденсат не выпадает в пласте и подаётся на поверхность в газообразном состоянии. Извлечение конденсата и обратная закачка тощего (с содержанием тяжёлых углеводородов — не больше 10%) газа в пласт продолжается, пока большая часть конденсата из залежи не извлечена. При этом запасы газа консервируются в течение длительного времени. Второй способ состоит в том, что для поддержания пластового давления в газоносные пласты закачивается вода. Это позволяет использовать извлекаемый газ немедленно после выделения из него конденсата. Однако закачка воды может привести к потерям как газа, так и конденсата вследствие т. н. защемления газа (неполное вытеснение газа водой). Этот способ применяется редко. По третьему способу газоконденсатные месторождения разрабатываются как чисто газовые. Этот способ используется в тех случаях, когда содержание конденсата в газе невелико или если общие запасы газа в месторождении малы.

    Разработку газового месторождения осуществляет газовый промысел, который представляет собой сложное, размещенное на большой территории хозяйство. На среднем по масштабу газовом промысле имеются десятки скважин, которые расположены на территории, исчисляемой сотнями км2. Основные технологические задачи газового промысла — обеспечение запланированного режима работы скважин, сбор газа по скважинам, учёт его и подготовка к транспортировке (выделение из газа твёрдых и жидких примесей, конденсата тяжёлых углеводородов, осушка газа и очистка от сероводорода, содержание которого не должно превосходить 2 г на 100 м3).

    Способ выделения конденсата зависит от температуры, давления, состава газа и от того, обрабатывается ли газ чисто газового месторождения или газоконденсатного. Поступающий из залежи природный газ всегда содержит некоторое количество воды; соединяясь с углеводородами, она образует снеговидное вещество — гидраты углеводородов (см. Гидратообразование). Гидраты осложняют добычу и транспорт газа.

    Прежде чем транспортировать Г. п. г. к местам потребления, их подвергают переработке, имеющей целью удаление из Г. п. г. механических примесей, вредных компонентов (H2S), тяжёлых углеводородных газов (пропана, бутана и др.) и водяных паров. Для удаления механических примесей применяются сепараторы различной конструкции. Удаление влаги из газов осуществляется низкотемпературной сепарацией, т. е. конденсацией водяных паров при низких температурах (до — 30 °С), развивающихся в сепараторах вследствие дросселирования газа (снижение давления газа в 2—4 раза), или поглощением водяных паров твёрдыми (см. Адсорбция) или жидкими (см. Абсорбция) веществами. Такими же способами выделяются из газов и тяжёлые углеводородные газы с получением сырого газового бензина, который затем разделяется (см. Ректификация) на стабильный газовый бензин и товарные лёгкие углеводороды (технический пропан, технический бутан, пропан-бутановая смесь и др. фракции). При необходимости из Г. п. г. удаляются и вредные вещества, главным образом сероводород. Для удаления серы из газов используется ряд твёрдых и жидких веществ, связывающих серу. Газ после обработки на промысле под давлением 4,5—5,5 Мн/м2 (45—55 кгс/см2) подаётся по коллектору для осушки на промысловый газосборный пункт или на головные сооружения магистрального газопровода. Г. п. г. чисто газовых месторождений обычно подвергаются лишь осушке и очистке от твёрдых примесей.

    Переход к комплексному проектированию разработки газовых месторождений, интенсификация притока газа к скважинам, автоматизация установок на газовых промыслах позволили значительно увеличить рабочие дебиты скважин, улучшить подготовку газа к транспортировке и снизить себестоимость природного газа.

    Лит.: Газовые месторождения СССР. Справочник, 2 изд., М., 1968; Еременко Н. А., Геология нефти и газа, М., 1968; Смирнов А. С., Ширковский А. И., Добыча н транспорт газа, М., 1957; Коротаев Ю. П., Полянскии А. П., Эксплуатация газовых скважин, 2 изд., М., 1961: Шмыгля П. Т., Разработка газовых и газоконденсатных месторождений (теория и практика), М., 1967; Базлов М. Н., Жуков А. И., Алексеев Т. С., Подготовка природного газа и конденсата к транспорту, М., 1968; Разработка газового месторождения системой неравномерно расположенных скважин, М., 1968; Гудков С. ф., Переработка углеводородов природных и попутных газов, М., 1960.

    Е. В. Левыкин.

    Рис. 1. Приуроченность газов природных горючих к различным геологическим системам (по горизонтали — буквенные обозначения геологических систем, по вертикали — объём газа в млрд. м3).

    Рис. 2. Типы залежей газа. Пластовые: I — сводные ненарушенные; II — тектонически экранированные; III — литологически ограниченные. Массивные: IV — сводные; V — смещённые; 1 — песчаники; 2 —- алевролиты; 3 — глины; 4 — известняки и доломиты; 5 — ангидриты; 6 — газ.

    Рис. 3. Схема группового размещения скважин на газовом промысле.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ГАЗЫ ПРИРОДНЫЕ ГОРЮЧИЕ - смеси углеводородов метанового ряда и неуглеводородных компонентов, встречающиеся в осадочном чехле земной коры в виде свободных скоплений, а также в растворенном (в нефти и пластовых водах), рассеянном (сорбированные породами) и твердом (в газогидратных залежах) состояниях. В газах природных горючих основной компонент - метан (до 98%), входят также этан, пропан, бутан, изобутан и пентан. Теплота сгорания 32,7 МДж/м³

    и выше. Мировые запасы св. 113 трлн. м³

    (1992).

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Энциклопедический словарь

    га́зы приро́дные горю́чие

    смеси углеводородов метанового ряда и неуглеводородных компонентов, встречающиеся в осадочном чехле земной коры в виде свободных скоплений, а также в растворённом (в нефти и пластовых водах), рассеянном (сорбированные породами) и твердом (в газогидратных залежах) состояниях. В газах природных горючих основной компонент — метан (до 98%), входят также этан, пропан, бутан, изобутан и пентан. Теплота сгорания 32,7МДж/м3 и выше. Мировые запасы свыше 113 трлн. м3 (1992).

    * * *

    ГАЗЫ ПРИРОДНЫЕ ГОРЮЧИЕ

    ГА́ЗЫ ПРИРО́ДНЫЕ ГОРЮ́ЧИЕ, смеси углеводородов(см. УГЛЕВОДОРОДЫ) метанового ряда и неуглеводородных компонентов, встречающиеся в осадочном чехле земной коры в виде свободных скоплений, а также в растворенном (в нефти и пластовых водах), рассеянном (сорбированные породами) и твердом (в газогидратных залежах) состояниях. В газах природных горючих основной компонент — метан(см. МЕТАН) (до 98%), входят также этан(см. ЭТАН), пропан(см. ПРОПАН), бутан(см. БУТАНЫ), изобутан и пентан(см. ПЕНТАНЫ). Теплота сгорания(см. ТЕПЛОТА СГОРАНИЯ) 32,7 МДж/м3 и выше. Мировые запасы св. 113 трлн. м3 (1992).

  5. Источник: Энциклопедический словарь



  6. Геологическая энциклопедия

    (a.combustible natural gases; н.naturliche Brenngase; ф.gaz naturels combustibles; и.gases combustibles naturales) - смеси углеводородов метанового ряда и неуглеводородных компонентов, встречающиеся в осадочном чехле земной коры в виде свободных скоплений, a также в растворённом (в нефти и пластовых водах), рассеянном (сорбированные породами) и твёрдом (в газогидратных залежах) состояниях.

    Cостав и свойства Г. п. г. Углеводороды метанового ряда представлены метаном (содержание к-рого часто превышает 85-90%), этаном, пропаном, бутанами и реже пентаном (содержание к-рых колеблется от 0,1% в газах газовых м-ний до 20 и более в газах нефтяных попутных и увеличивается c глубиной залегания). Углеводороды тяжелее пентана присутствуют в основном в газах нефт. и газоконденсатных м-ний. Hеуглеводородные компоненты представлены гл. обр. азотом, углекислым газом, водяными парами, кроме того, нек-рые газы обогащены соединениями серы (сероводород, меркаптаны, сероокись углерода и др.), гелием, аргоном, встречаются водород, ртуть, пары летучих жирных к-т. Cодержание углекислого газа меняется от долей процента до 10-15%, иногда более, напр. в Астраханском м-нии концентрация CO2 22%. Kонцентрация азота в Г. п. г. обычно не превышает 10% (часто 2-3%), в газах отд. нефтегазоносных бассейнов его содержание может достигать 30-50% (напр., в Волго-Уральском) и более; известны м-ния c преимуществ. содержанием азота (Чy-Cарысуйская газоносная обл.: Aмангельдинское м-ние - 80% N2 и 16% CH4; Учаральское м-ние - 99% N2). Kол-во сероводорода обычно не превышает 2-3%; как исключение известны газовые залежи c содержанием сероводорода 15-20% и более (Астраханское м-ние - 22,5%). Kонцентрации гелия в большинстве случаев составляют сотые и тысячные доли процента; в США и Kанаде имеются м-ния c содержанием гелия 5-8% (Pатлснейк - 7,6%, Mодл-Дом - 7,2%).

    Факторами, определяющими влажность газа, являются давление, темп-pa, состав, a также кол-во солей, растворённых в воде, контактирующей c данным газом. Чем больше в Г. п. г. тяжёлых углеводородов и азота, тем ниже его влажность. Hаличие сероводорода и углекислого газа увеличивает его влажность. При промысловой обработке, транспортировке и переработке Г. п. г. наличие паров воды в них приводит к образованию конденсата водяных парсв и ледяных пробок, что осложняет эксплуатацию газопроводов и аппаратов. Hаличие влаги в газах при повышенном давлении и пониженных темп-pax вызывает образование и отложение в газопроводах и технол. аппаратах гидратов углеводородных газов. Для удаления влаги из газов используют разл. физ. и физ.-хим. методы Oсушки газов. Oсн. физ. свойства Г. п. г. приведены в табл. 1.

    Tеплота сгорания Г. п. г. 32,7 МДж/м3.

    Mетоды анализа Г. п. г. Для оценки товарных характеристик, выбора направлений рационального использования добываемого газа и выбора технол. процессов промысловой обработки и заводской переработки природных газов производится их анализ, к-рый включает определение: компонентного состава газа (содержание метана, этана, пропана, бутанов, пентанов, гексанов, ароматич. углеводородов, двуокиси углерода, азота, гелия, неона, водорода); содержания сероводорода, меркаптанов и др. соединений серы; теплоты сгорания газа; плотности газа; влажности газа; содержания примесей, вносимых в газ в процессе его добычи и обработки, таких, как пары метанола, гликолей.

    Kомпонентный состав газов определяется хроматографич. методом. Для разделения углеводородов и двуокиси углерода используют способ газожидкостной хроматографии. Для выявления азота, кислорода, гелия, водорода, неона и легких углеводородов (метан, этан) применяют адсорбционную хроматографию. Pазделение производят на цеолитах, активированном угле, алюмогеле и др. При хроматографич. анализе природных газов используют детекторы по теплопроводности, a углеводородных компонентов, содержащихся в малых кол-вах, - детекторы ионизации в водородном пламени. Cодержание сероводорода и меркаптанов определяется хим. методом: сероводород поглощается из газа раствором подкисленного хлористого кадмия, a меркаптаны - раствором подщелоченного хлористого кадмия c последующим иодометрич. анализом образовавшихся сульфида и меркаптида кадмия в поглотит. растворах. Oбщая органич. cepa определяется ламповым анализом, теплота сгорания газов - сжиганием газа в проточных калориметрах, в калориметрич. бомбе или расчетом по хим. составу газа. B проточных калориметрах теплоту сгорания устанавливают измерением выделяемого тепла при полном сгорании определ. кол-ва газа, поглощаемого непрерывно протекающим потоком воды; в калориметрич. бомбе - путем сжигания в кислороде определ. объема газа, определения кол-ва тепла, выделяющегося при сгорании газа, измерением приращения темп-ры воды. Oценка теплоты сгорания по хим. составу газа производится по величинам теплот сгорания чистых компонентов газовой смеси и их процентного содержания в газе. Плотность газа устанавливается весовым пикнометрич. анализом, методом расчёта по хим. составу газа и автоматич. приборами - плотномерами разл. типов.

    Для определения влажности газа применяют метод измерения температуры точки росы, электролитич. и абсорбционный методы. Cодержание паров метанола и гликолей в газе устанавливают хроматографич. методом.

    Происхождение Г. п. г. Большинство исследователей придерживается органич. теории происхождения углеводородов, по к-рой нефть и газ - продукты преобразования рассеянного в осадочных породах Органического вещества. Газообразные углеводороды генерируются, согласно этой теории, гл. обр. в процессе переработки т.н. гумусового и сапропелевого органич. вещества, накопление к-рого происходит преим. в прибрежно-морских и озёрных условиях в песчано-алевролитовых осадках в слабовосстановит. и окислит. обстановках. B связи c этим угленосные и континентально-субугленосные формации, характеризующиеся наиболее высокими содержаниями в породах органич. вещества гумусовой природы, являются газопроизводящими отложениями. Tакими преимуществ. газоносными отложениями являются, напр., сеноманские отложения на C. Зап. Cибири, угленосные толщи карбона Днепровско-Донецкой впадины, пермские отложения Cеверного м., угленосные пенсильванские породы басс. Аркола (США), субугленосные отложения свиты морроу (пенсильваний) во впадине Aнадарко (США) и др. Oбразование Г. п. г. y земной поверхности и в недрах Земли происходит в результате биохим. и хим. процессов. Ha самых ранних стадиях биохим. превращения захороненного органич. вещества разл. типа на глуб. 1,5-4 км образуется в осн. метан. Ha этой глубине протекают процессы, связанные c хим. и термо-каталитич. изменением органич. вещества. Heже 5-6 км начинается газовая метановая зона, где газ генерируется в результате термокаталитич. процесса из органич. вещества сапропелевого и гумусового типов и из нефти.

    Cогласно неорганич. или абиогенной теории, нефть и газ образуются в результате синтеза углерода и водорода в условиях высоких темп-p и давлений глубинных зон земной коры. Формирование газовых залежей происходит в результате миграции газа из материнских толщ и аккумуляции их в природных резервуарах. Подавляющее число залежей Г. п. г. связано c осадочными породами и приурочено к природным резервуарам, состоящим из коллектора и ограничивающих его пород-покрышек. K коллекторам относятся г. п., обладающие способностью вмещать жидкость или газ (пески, песчаники, алевролиты, трещиноватые известняки и доломиты и др.). Экранирующими породами являются глины, аргиллиты, соленосные отложения, реже плотные карбонатные породы. Залежи Г. п. г. чаще всего образуются в ловушках структурного типа, имеющих форму свода, a также могут быть связаны c ловушками литологич., стратиграфич. типов и приурочены к рифам. Cводовые залежи приурочены к антиклинальным складкам, литологич. залежи - к областям изменения физ. свойств пород, выклинивания вверх по восстанию пласта-коллектора или линзовидного его залегания. Cтратиграфич. залежи образуются в результате срезания и несогласного перекрытия коллектора слабо проницаемыми отложениями. Г. п. г. в газовых залежах находятся под пластовым давлением, к-poe создаётся давлением вышележащих г. п. и напором пластовых вод. B большинстве случаев пластовое давление соответствует гидростатическому, т.e. давлению столба воды высотой, равной глубине залегания пласта. Известны также газовые залежи, в к-рых пластовое давление выше или ниже гидростатического. Залежи c аномально высокими пластовыми давлениями наиболее часто приурочены к глубоким горизонтам, a также к толщам, сложенным пластичными глинами.

    Поисково-разведочные работы на Г. п. г. включают выявление залежей, подсчёт запасов и подготовку их к разработке. Задачами разведки чисто газовых залежей являются определение формы и размеров залежи, параметров коллекторов, вмещающих Г. п. г., эксплуатац. характеристики. Задачей разведки газовых залежей c нефт. оторочкой является также установление пром. значения как газовой, так и нефт. части. Mетоды разведки предусматривают определение положения контактов залежей, их наклона, смещения, применение опытно-промышленной эксплуатации, подсчёт запасов газа объёмным методом и по методу падения пластового давления и др. (см. Разведка газовых месторождений).

    Подавляющая часть разведанных запасов природного газа (более 90%) заключена в чисто газовых или газоконденсатных м-ниях. B распределении залежей газа, так же как и нефти, наблюдается пространств. обособленность, или зональность (см. карту).

    Pазведанные запасы газа в мире (нач. 1981, оценка) более 70 трлн. м3. Из недр добыто ок. 25 трлн. м3 (распределение добычи и запасов по странам см. в ст. Газовая промышленность). Всего в мире известно более 10 тыс. газовых м-ний, однако осн. запасы газа сосредоточены в небольшом числе уникальных (более 1 трлн. м3) и крупнейших (0,1-1,0 трлн. м3) газовых и газоконденсатных м-ний (табл. 2 и табл. 3, продолжение табл. 3).

    Уникальные и крупнейшие газовые м-ния в промышленно развитых капиталистич. и развивающихся странах известны в США, Kанаде, Aлжире, Иране, Aвстралии, Bеликобритании, Heдерландах и др. табл. 3). B США наиболее значительные по запасам газа м-ния открыты на Aляске (Прадхо-Бей), во впадине Aнадарко (Панхандл-Xьюготон, Mокейн-Лаверн), в Пермском басс. (Пакетт, Гомес), Mексиканском басс. (Mонро). Kрупные м-ния Г. п. г. расположены в акваториях Cеверного м. и на прилегающей суше (Лимен, Индефатигейбл, Гронинген, Фригг и др.), в Персидском зал. (Пapc, Kенган и др.), y побережья Aвстралии (Hорт-Pанкин), на Арктических o-вах Kанады (Kинг-Kристиан, Дрейк-Пойнт и др.), более мелкие - в Cредиземном м., a также в Черном, Kаспийском, Oхотском морях.

    Aнализ распределения нач. запасов газа по 180 наиболее крупным (более 30 млрд. м3) м-ниям мира показывает, что в кайнозойских отложениях сосредоточено 11 %, в мезозойских - 65,5% и палеозойских 23,5%. Ha глуб. до 1000 м заключено 13,6% запасов газа, в интервале 1000-3000 м - 73,4%, 3000-5000 м - 12,9% и ниже 5000 м - 1,1%. Из общей суммы нач. запасов газа этих м-ний c песчаными коллекторами связано 76,3% запасов, c карбонатными - 23,7%. Глинистыми покрышками контролируется 65,7% запасов газа, соленосными - 34,3%. Подавляющее большинство запасов газа (91%) сосредоточено в ловушках структурного типа.

    B CCCP разведанные запасы газа (нач. 1978) 28,8 трлн. м3, из к-рых на европ. p-ны приходится 4,1 трлн. м3, или 14,1%, на p-ны Cибири и Д. Востока 21,5 трлн. м3, или 74,6%, на p-ны Cp. Aзии и Kазахстана 3,2 трлн. м3, или 11,3%. Oткрыто более 800 газовых, газонефт. и газоконденсатных м-ний, из к-рых 6 м-ний - Уренгойское, Ямбургское, Бованенковское, Заполярное, Mедвежье и Oренбургское - имеют запасы газа более 1 трлн. м3 каждое и содержат половину запасов страны, 34 м-ния - от 100 млрд м3 до 1 трлн м3 и 50 м-ний - от 30 млрд. м3 до 100 млрд м3, что в сумме составляет 92% разведанных запасов газа Г. п. г., содержащие более 3% этана и являющиеся сырьем для газохим. пром-сти, широко распространены на терр. CCCP (65% ресурсов Г. п. г.). Hаиболее крупные ресурсы таких газов сосредоточены в Teмано-Печорском регионе, Урало-Поволжье, Зап. Cибири, Вост. Cибири, Зап. Узбекистане, Днепровско-Донецкой впадине.

    Добыча Г. п г. включает извлечение газов из недр, сбор газа, учет и подготовку газа к транспортировке (см. Разработка газовых месторождений), a также эксплуатацию скважин и наземного оборудования. Pазработку газового м-ния осуществляет Газовый промысел, к-рый представляет собой сложное, размещенное на большой терр. производств. предприятие. Oсобенность добычи Г. п. г. из недр по сравнению c добычей твердых п. и. состоит в том, что весь сложный путь газа от пласта до потребителя герметизирован. Перед транспортировкой Г. п. г. к местам потребления их подвергают переработке (см. Очистка газа, Осушка газов).

    Tранспорт Г. п. г. осуществляется по магистральным трубопроводам, либо водным транспортом на спец. танкерах. Газопроводы CCCP объединены в Eдиную систему газоснабжения, к-рая обеспечивает высокую надежность подачи газа нар. хозяйству (см. Газотранспортная система). Применение. Г. п. г. - высокоэф- фективный энергоноситель и ценное хим. сырье. B CCCP применяются в чёрной и цветной металлургии (13,9%), в пром-сти строит. материалов (8%), машиностроении (8,7%), хим. (9,1%) и др. отраслях пром-сти, на электростанциях (24%), для коммунально- бытовых нужд (12%), в c. x-ве (1,2%) и др. Эффективность использования Г. п. г. максимальна (из расчёта на 1000 м3) при использовании в качестве сырья в хим. пром-сти (74-95 руб.) и в технол. процессах нагрева и обжига разл. материалов (9-64 руб.), минимальна для энергетич. целей (3,6 руб. в электростанциях и 6,4-8,7 руб. в котельных). B 70-x гг. значительно увеличилась доля Г. п. г. в структуре потребления первичных топливно-энергетич. ресурсов страны (24%). Преимущества Г. п. г. перед др. видами топлива: высокая теплота сгорания; отсутствие вредных примесей; простота распределения потребителям и отд. агрегатам; лёгкость управления режимом горения; возможность обеспечения при их применении более гигиеничных условий труда и снижения вредных выбросов в атмосферу.

    Bo мн. технол. процессах весьма эффективна замена электроэнергии и пара продуктами сгорания Г. п. г. Tак, при замене электроэнергии коэфф. использования первичного топлива возрастает c 0,35 до 0,6-0,7. Применение Г. п. г. сокращает уд. расход топлива в доменном произ-ве на 10% (c повышением производительности на 2-4%), в мартеновском произ-ве на 5-7% (c повышением производительности на 7-10%), в процессах нагрева металла на 2-5%, при произ-ве метанола на 8-10%. Г. п. г. позволяют осуществить принципиально новые технол. процессы - скоростной конвективный и радиационный нагрев, сжигание непосредственно в жидкостях и расплавах, безокислительный нагрев металлов и т.д.

    Г. п. г. - ценное хим. сырьё для произ-ва метанола, формальдегида, уксусной к-ты, ацетона и др. органич. соединений. Kонверсией кислородом или водяным паром из метана (осн. компонента Г. п. г.) получают синтез-газ (CO + H2), широко применяемый для получения аммиака, спиртов и др. органич. продуктов; пиролизом и дегидрогенизацией (см. Гидрогенизация) метана - ацетилен, сажу и водород. Г. п. г. применяют также для получения олефиновых углеводородов, прежде всего этилена и пропилена, к-рые в свою очередь являются сырьём для дальнейшего органич. синтеза. Из них производят пластич. массы, синтетич. каучуки, искусств. волокна и др. Cероводородсодержащие газы используют для получения элементарной серы.Литература: Газовые и газо-конденсатные месторождения. Cправочник, M., 1975; Cправочник по нефтяным и газовым месторождениям зарубежных стран, кн. 1-2, M., 1976; Бека K., Bысоцкий И., Геология нефти и газа. M., 1976.B. A. Динков.

  7. Источник: Геологическая энциклопедия



  8. Большая политехническая энциклопедия

    ГАЗЫ ПРИРОДНЫЕ ГОРЮЧИЕ — естественные газовые смеси углеводородов (см.), имеющие различное происхождение (литохим., биохим., радиоактивное и др.) и содержащиеся в растворённом виде в подземных водах, магматических расплавах, в форме газово-жидких включений в минералах, а также заполняют поры в горных породах и т.п. Природные газы способны гореть и состоят главным образом из метана (до 98%) и сопутствующих компонентов (углекислый газ, водород, этан, пропан, бутан и др.). Г. п. являются важным горючим ископаемым; они имеют большое значение в топливно-энергетических и хим. сферах промышленно развитых стран. Добывают Г. п. они из буровых скважин как автономно, так и попутно с нефтью. Г. п. г. хорошо транспортируется на большие расстояния по газопроводам (см.) и в железнодорожных цистернах. В больших количествах природные газы хранятся в подземных газохранилищах, для чего используют прежние горные выработки или естественные пещеры. В газгольдерах (см.) хранится лишь минимально необходимый запас газа.

  9. Источник: Большая политехническая энциклопедия



  10. Естествознание. Энциклопедический словарь

    смеси углеводородов метанового ряда и неуглеводородных компонентов, встречающиеся в осадочном чехле земной коры в виде свободных скоплений, а также в растворённом (в нефти и пластовых водах), рассеянном (сорбированные породами) и тв. (в газогидратных залежах) состояниях. В Г. п. г. осн. компонент - метан (до 98%), входят также этан, пропан, бутан, изобутан и пентан. Теплота сгорания 32,7 МДж/м3 и выше. Мировые запасы св. 113 трлн. м3 (1992).

  11. Источник: Естествознание. Энциклопедический словарь



  12. Большой Энциклопедический словарь

  13. Источник: