Большая Советская энциклопедия

    равновесная, раздел статистической физики (См. Статистическая физика), дающий статистическое обоснование законов термодинамики (См. Термодинамика) основе статистической механики Дж. У. Гиббса и посвященный вычислениям термодинамических характеристик системы (Потенциалы термодинамические, Уравнение состояния) на основе законов взаимодействия составляющих систему частиц. Неравновесная С. т. даёт статистическое обоснование термодинамики неравновесных процессов (См. Термодинамика неравновесных процессов) (уравнений переноса энергии, импульса, массы) и позволяет получить выражения для входящих в уравнения коэффициентов (кинетических коэффициентов, или коэффициентов переноса) на основе законов взаимодействия и движения частиц системы.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА - раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА

    (равновесная статистическая термодинамика)- раздел статистической физики, посвящённый обоснованию законов термодинамики равновесных процессов (на основе статистич. механикиДж. У. Гиббса, J. W. Gibbs) и вычислениям термодинамич. характеристик физ. <систем ( потенциалов термодинамических и др.), уравнения состояния на основе законов взаимодействия составляющих эти системы частиц. НеравновеснаяС. т. даёт статистич. обоснование термодинамики неравновесных процессов (ур-ний переноса энергии, импульса, массы) и позволяет получить выражениядля входящих в ур-ния переноса коэффициентов (кинетич. коэф.) на основезаконов взаимодействия и движения частиц системы.

    Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Статистическая физика, <ч. 1, 3 изд., М., 1976; М а и е р Д т., Г е п п е р т -М а й е рМ., Статистическая механика, пер. с англ., 2 изд., М., 1980; Зубарев Д. <Н., Неравновесная статистическая термодинамика, М., 1971; см. также лит. <при ст. Статистическая физика.

  5. Источник: Физическая энциклопедия



  6. Химическая энциклопедия

    ,

    раздел стати-стич. физики, посвященный обоснованию законов термодинамики на основе законов взаимод. и движения составляющих систему частиц. Для систем в равновесном состоянии С. т. позволяет вычислять термодинамические потенциалы, записывать уравнения состояния, условия фазовых и хим. равновесий. Неравновесная С. т. дает обоснование соотношений термодинамики необратимых процессов (ур-ний переноса энергии, импульса, массы и их граничных условий) и позволяет вычислять входящие в ур-ния переноса кинетич. коэффициенты. С. т. устанавливает количеств. связь между микро- и макросвойствами физ. и хим. систем. Расчетные методы С. т. используются во всех направлениях совр. теоретич. химии.

    Основные понятия. Для статистич. описания макроскопич. систем Дж. Гиббсом (1901) предложено использовать понятия статистич. ансамбля и фазового пространства, что позволяет применять к решению задач методы теории вероятности. Статистич. ансамбль-совокупность очень большого числа одинаковых систем мн. частиц (т. е. "копий" рассматриваемой системы), находящихся в одном и том же макросостоянии, к-рое определяется параметрами состояния; микросостояния системы при этом могут различаться. Осн. статистич. ансамбли-микроканонич., канонич., большой канонич. и изобарно-изотермический.

    Микроканонич. ансамбль Гиббса используетя при рассмотрении изолированных систем (не обменивающихся энергией Eс окружающей средой), имеющих постоянный объем V и число одинаковых частиц N (Е, V и N- параметры состояния системы). Канонич. ансамбль Гиббса используется для описания систем постоянного объема, находящихся в тепловом равновесии с окружающей средой (абс. т-ра Т) при постоянном числе частиц N(параметры состояния V, Т, N).Большой канонич. ансамбль Гиббса используется для описания открытых систем, находящихся в тепловом равновесии с окружающей средой (т-ра Т) и материальном равновесии с резервуаром частиц (осуществляется обмен частицами всех сортов через "стенки", окружающие систему объемом V).Параметры состояния такой системы-V, Ти mЧ химический потенциал частиц. Изобарно-изотермич. ансамбль Гиббса используется для описания систем, находящихся в тепловом и мех. равновесии с окружающей средой при постоянном давлении P(параметры состояния Т, P, N).

    Фазовое пространство в статистич. механике-многомерное пространство, осями к-рого служат все обобщенные координаты i и сопряженные им импульсы i(i =1,2,..., М) системы с Мстепенями свободы. Для системы, состоящей из Nатомов, i и i соответствуют декартовой координате 4083-1.jpgи компоненте импульса 4083-2.jpg(a = х, у, z) нек-рого атома jи М = 3N. Совокупность координат и импульсов обозначаются qи pсоответственно. Состояние системы изображается точкой в фазовом пространстве размерности 2М, а изменение состояния системы во времени-движением точки вдоль линии, наз. фазовой траекторией. Для статистич. описания состояния системы вводятся понятия фазового объема (элемента объема фазового пространства) и ф-ции распределения f(p, q),к-рая характеризует плотность вероятности нахождения точки, изображающей состояние системы, в элементе фазового пространства вблизи точки с координатами р, q. В квантовой механике вместо фазового объема используют понятие дискретного энергетич. спектра системы конечного объема, т. к. состояние отдельной частицы определяется не импульсом и координатами, а волновой ф-цией, к-рой в стационарном динамич. состоянии системы соответствует энергетич. спектр квантовых состояний.

    Функция распределения классич. системы f(p, q)характеризует плотность вероятности реализации данного микросостояния ( р, q) в элементе объема dГ фазового пространства. Вероятность пребывания Nчастиц в бесконечно малом объеме фазового пространства равна:

    4083-3.jpg

    где dГ N -> элемент фазового объема системы в единицах h3N, h -постоянная Планка; делитель N! учитывает тот факт, что перестановка тождеств. частиц не меняет состояния системы. Ф-ция распределения удовлетворяет условию нормировки тf(p, q)dГ N=>1, т. к. система достоверно находится в к.-л. состоянии. Для квантовых систем ф-ция распределения определяет вероятность wi,< N нахождения системы из Nчастиц в квантовом состоянии, задаваемом набором квантовых чисел i, с энергией i,N при условии нормировки

    4083-4.jpg

    Среднее значение 4083-5.jpg в момент времени т (т. е. по бесконечно малому интервалу времени от т до т + )любой физ. величины А( р, q), являющейся ф-цией координат и импульсов всех частиц системы, с помощью ф-ции распределения вычисляется по правилу (в т. ч. и для неравновесных процессов):

    4083-6.jpg

    Интегрирование по координатам проводится по всему объему системы, а интегрирование по импульсам от Ч, до +,. Состояние термодинамич. равновесия системы следует рассматривать как предел т:,. Для равновесных состояний ф-ции распределения определяются без решения ур-ния движения составляющих систему частиц. Вид этих ф-ций (одинаковый для классич. и квантовых систем) был установлен Дж. Гиббсом (1901).

    В микроканонич. ансамбле Гиббса все микросостояния с данной энергией Еравновероятны и ф-ция распределения для классич. систем имеет вид:

    f(p,q) = Ad[H(p,q)-E],

    где d-дельта-ф-ция Дирака, Н( р,q )-ф-ция Гамильтона, представляющая собой сумму кинетич. и потенц. энергий всех частиц; постоянная Аопределяется из условия нормировки ф-ции f(p, q).Для квантовых систем при точности задания квантового состояния, равной величине DE, в соответствии с соотношением неопределенностей между энергией и временем (между импульсом и координатой частицы), ф-ция w(k)= [g(E, N, V)]-1, если Е 4083-7.jpgk4083-8.jpgE +DE, и w(k)= 0, если k < Е> и k > E +>DE. Величина g(E, N, V )-т. наз. статистич. вес, равный числу квантовых состояний в энергетич. слое DE. Важное соотношение С. т.-связь энтропии системы со статистич. весом:

    S(E, N, V) = klng(E, N, V),где k-Больцмана постоянная.

    В канонич. ансамбле Гиббса вероятность нахождения системы в микросостоянии, определяемом координатами и импульсами всех Nчастиц или значениями i,N, имеет вид: f(p, q) =exp {[F - H(p, q)]/kT}; wi,N = exp[(F - Ei,N)/kT], где F-своб. энергия (энергия Гельмгольца), зависящая от значений V, Т, N:

    F = -kTlnN,>

    где N-> статистич. сумма (в случае квантовой системы) или статистич. интеграл (в случае классич. системы), определяемые из условия нормировки ф-ций wi,N > или f(p, q):

    4083-9.jpg

    ZN = тexp[-H(р, q)/kT]dpdq/(3N)

    (сумма по г берется по всем квантовым состояниям системы, а интегрирование проводится по всему фазовому пространству).

    В большом канонич. ансамбле Гиббса ф-ция распределения f(p, q) и статистич. сумма X, определяемая из условия нормировки, имеют вид:

    4083-10.jpg

    где W-термодинамич. потенциал, зависящий от переменных V, Т,m (суммирование ведется по всем целым положит. N).В изобарно-изотермич. ансамбле Гиббса ф-ция распределения и статистич. сумма Q, определяемая из условия нормировки, имеют вид:

    4083-11.jpg

    где G- энергия Гиббса системы (изобарно-изотермич. потенциал, своб. энтальпия).

    Для вычисления термодинамич. ф-ции можно использовать любое распределение: они эквивалентны друг другу и соответствуют разным физ. условиям. Микроканонич. распределение Гиббса применяется гл. обр. в теоретич. исследованиях. Для решения конкретных задач рассматривают ансамбли, в к-рых есть обмен энергией со средой (канонич. и изобарно-изотермич.) или обмен энергией и частицами (большой канонич. ансамбль). Последний особенно удобен для изучения фазового и хим. равновесий. Статистич. суммы N > и Qпозволяют определить энергию Гельмгольца F, энергию Гиббса G, а также термодинамич. св-ва системы, получаемые дифференцированием статистич. суммы по соответствующим параметрам (в расчете на 1 моль в-ва): внутр. энергию U = RT2(9lnN/9T>)V, > энтальпию H = RT2(9lnP, энтропию S = RlnN+ RT(9lnN/9T)V = = Rln Q + RT(9ln P, теплоемкость при постоянном объеме С V= 2RT(9lnN/9T)V + RT>2(<92lnN/9T2)V, > теплоемкость при постоянном давлении С Р => 2RT(9lnN/9T)P + + RT>2(92lnN/9T2)P > и т. д. Соотв. все эти величины приобретают и статистич. смысл. Так, внутренняя энергия отождествляется со средней энергией системы, что позволяет рассматривать первое начало термодинамики как закон сохранения энергии при движении составляющих систему частиц; своб. энергия связана со статистич. суммой системы, энтропия-с числом микросостояний gв данном макросостоянии, или статистич. весом макросостояния, и, следовательно, с его вероятностью. Смысл энтропии как меры вероятности состояния сохраняется по отношению к произвольным (неравновесным) состояниям. В состоянии равновесия энтропия изолир. системы имеет максимально возможное значение при заданных внеш. условиях ( Е, V,N), т. е. равновесное состояние является наиб. вероятным состоянием (с макс. статистич. весом). Поэтому переход из неравновесного состояния в равновесное есть процесс перехода из менее вероятных состояний в более вероятное. В этом заключается статистич. смысл закона возрастания энтропии, согласно к-рому энтропия замкнутой системы может только увеличиваться (см. Второе начало термодинамики). При т-ре абс. нуля любая система находится в осн. состоянии, в к-ром w0 = 1 и S = 0. Это утверждение представляет собой третье начало термодинамики (см. Тепловая теорема).Существенно, что для однозначного определения энтропии нужно пользоваться квантовым описанием, т. к. в классич. статистике энтропия м. б. определена только с точностью до произвольного слагаемого.

    Идеальные системы. Расчет статистич. сумм большинства систем представляет сложную задачу. Она существенно упрощается в случае газов, если вкладом потенц. энергии в полную энергию системы можно пренебречь. В этом случае полная ф-ция распределения f(p, q) для Nчастиц идеальной системы выражается через произведение одно-частичных ф-ций распределения f1(p, q):

    4083-12.jpg

    Распределение частиц по микросостояниям зависит от их кинетич. энергии и от квантовых св-в системы, обусловленных тождественностью частиц. В квантовой механике все частицы разделяются на два класса: фермионы и бозоны. Тип статистики, к-рой подчиняются частицы, однозначно связан с их спином.

    Статистика Ферми-Дирака описывает распределение в системе тождеств. частиц с полуцелым спином 1/2, 3/2,... в единицах Р= h/2p. Частица (или квазичастица), подчиняющаяся указанной статистике, наз. фермионом. К фер-мионам относятся электроны в атомах, металлах и полупроводниках, атомные ядра с нечетным атомным номером, атомы с нечетной разностью атомного номера и числа электронов, квазичастицы (напр., электроны и дырки в твердых телах) и т. д. Данная статистика была предложена Э. Ферми в 1926; в том же году П. Дирак выяснил ее квантовомех. смысл. Волновая ф-ция системы фермионов антисимметрична, т. е. меняет свой знак при перестановке координат и спинов любой пары тождеств. частиц. В каждом квантовом состоянии может находиться не более одной частицы (см. Паули принцип). Среднее число частиц i идеального газа фермионов, находящихся в состоянии с энергией i, определяется ф-цией распределения Ферми-Дирака:

    i={1+exp[(i-m)/kT]}-1,

    где i-набор квантовых чисел, характеризующих состояние частицы.

    Статистика Бозе-Эйнштейна описывает системы тождеств. частиц с нулевым или целочисленным спином (0, Р, 2Р,...). Частица или квазичастица, подчиняющаяся указанной статистике, наз. бозоном. Данная статистика была предложена Ш. Бозе (1924) для фотонов и развита А. Эйнштейном (1924) применительно к молекулам идеального газа, рассматриваемым как составные частицы из четного числа фермионов, напр. атомные ядра с четным суммарным числом протонов и нейтронов (дейтрон, ядро 4 Не и т. д.). К бозонам относятся также фононы в твердом теле и жидком 4 Не, экситоны в полупроводниках и диэлектриках. Волновая ф-ция системы симметрична относительно перестановки любой пары тождеств. частиц. Числа заполнения квантовых состояний ничем не ограничены, т. е. в одном состоянии может находиться любое число частиц. Среднее число частиц i идеального газа бозонов, находящихся в состоянии с энергией Е i описывается ф-цией распределения Бозе-Эйнштейна:

    i={exp[(i-m)/kT]-1}-1.

    Статистика Больцмана представляет собой частный случай квантовой статистики, когда можно пренебречь квантовыми эффектами (высокие т-ры). В ней рассматривается распределение частиц идеального газа по импульсам и координатам в фазовом пространстве одной частицы, а не в фазовом пространстве всех частиц, как в распределениях Гиббса. В качестве миним. единицы объема фазового пространства, имеющего шесть измерений (три координаты и три проекции импульса частицы), в соответствии с квантовомех. соотношением неопределенностей, нельзя выбрать объем меньший, чем h3. Среднее число частиц i идеального газа, находящихся в состоянии с энергией i,> описывается ф-цией распределения Больцмана:

    i=exp[(m<-Ei)/kT].

    Для частиц, к-рые движутся по законам классич. механики во внеш. потенц. поле U(r), статистически равновесная ф-ция распределения f1(p,r) по импульсам pи координатам r частиц идеального газа имеет вид: f1(p,r) = Aехр{ - [р 2/2m + U(r)]/kT}. Здесь р 2/2т-кинетич. энергия молекул массой ш, постоянная Аопределяется из условия нормировки. Данное выражение часто наз. распределением Максвелла-Больцмана, а распределением Больцмана наз. ф-цию

    n(r) = n0 ехр[-U(r)]/kT],

    где n(r) = тf1(p, r)dp - плотность числа частиц в точке r(n0 -плотность числа частиц в отсутствие внеш. поля). Распределение Больцмана описывает распределение молекул в поле тяготения (барометрич. ф-ла), молекул и высокодисперсных частиц в поле центробежных сил, электронов в невырожденных полупроводниках, а также используется для расчета распределения ионов в разбавл. р-рах электролитов (в объеме и на границе с электродом) и т. п. При U(r)= 0 из распределения Максвелла - Больц-мана следует распределение Максвелла, описывающее распределение по скоростям частиц, находящихся в ста-тистич. равновесии (Дж. Максвелл, 1859). Согласно этому распределению, вероятное число молекул в единице объема 4083-13.jpg компоненты скоростей к-рых лежат в интервалах от i до i + i(i= x, у, z),определяется ф-цией:

    4083-14.jpg

    Распределение Максвелла не зависит от взаимод. между Частицами и справедливо не только для газов, но и для жидкостей (если для них возможно классич. описание), а также для броуновских частиц, взвешенных в жидкости и газе. Его используют для подсчета числа столкновений молекул газа между собой в ходе хим. р-ции и с атомами пов-сти.

    Сумма по состояниям молекулы. Статистич. сумма идеального газа в канонич. ансамбле Гиббса выражается через сумму по состояниям одной молекулы Q1:

    4083-15.jpg

    где Е i - > энергияi-го квантового уровня молекулы (i = О соответствует нулевому уровню молекулы), i -статистич. вес i-го уровня. В общем случае отдельные виды движения электронов, атомов и групп атомов в молекуле, а также движение молекулы как целого взаимосвязаны, однако приближенно их можно рассматривать как независимые. Тогда сумма по состояниям молекулы м. б. представлена в виде произведения отдельных составляющих, связанных с по-ступат. движением (Q пост) и с внутримол. движениями (Q вн):

    Q1 = Q пост<

  7. Источник: Химическая энциклопедия



  8. Энциклопедический словарь

    статисти́ческая термодина́мика

    раздел статистической физики, посвященный теоретическому определению термодинамических характеристик физических систем (уравнений состояния, термодинамических потенциалов и др.) на основе законов движения и взаимодействия частиц, составляющих эти системы.

    * * *

    СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА

    СТАТИСТИ́ЧЕСКАЯ ТЕРМОДИНА́МИКА, раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ.

  9. Источник: Энциклопедический словарь



  10. Большой энциклопедический политехнический словарь

    раздел статистической физики, посвящённый вычислению термодинамич. хар-к системы (её уравнения состояния, потенциалов термодинамических к т. п.) на основе св-в образующих систему частиц и их взаимодействия.

  11. Источник: Большой энциклопедический политехнический словарь



  12. Русско-украинский политехнический словарь

    статисти́чна термодина́міка

  13. Источник: Русско-украинский политехнический словарь



  14. Русско-украинский политехнический словарь

    статисти́чна термодина́міка

  15. Источник: Русско-украинский политехнический словарь



  16. Естествознание. Энциклопедический словарь

    раздел статистич. физики, посв. теоретич. определению термодинамич. характеристик физ. систем (ур-ний состояния, термодинамич. потенциалов и др.) на основе законов движения и взаимодействия частиц, составляющих эти системы.

  17. Источник: Естествознание. Энциклопедический словарь



  18. Большой Энциклопедический словарь

    СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА
    СТАТИСТИЧЕСКАЯ ТЕРМОДИНАМИКА - раздел статистической физики, посвященный теоретическому определению термодинамических свойств веществ (уравнений состояния, термодинамических потенциалов и др.) на основе данных о строении веществ.

    Большой Энциклопедический словарь. 2000.

  19. Источник: