«Магма»

Магма в словарях и энциклопедиях

Значение слова «Магма»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Ожегова
  5. Малый академический словарь
  6. Толковый словарь Ушакова
  7. Толковый словарь Ефремовой
  8. Большой энциклопедический словарь
  9. Современная энциклопедия
  10. Геологические термины
  11. Большой англо-русский и русско-английский словарь
  12. Большой немецко-русский и русско-немецкий словарь
  13. Большой немецко-русский и русско-немецкий словарь
  14. Большой французско-русский и русско-французский словарь
  15. Большой испано-русский и русско-испанский словарь
  16. Большой итальяно-русский и русско-итальянский словарь
  17. Научно-технический энциклопедический словарь
  18. Энциклопедический словарь
  19. Геологическая энциклопедия
  20. Русско-английский политехнический словарь
  21. Dictionnaire technique russo-italien
  22. Естествознание. Энциклопедический словарь
  23. Большой Энциклопедический словарь

    Словарь Брокгауза и Ефрона

    см. Горные породы.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    (от греч. mágma — густая мазь)

    расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли. Обычно М. представляет собой сложный взаимный раствор соединений большого числа химических элементов, среди которых преобладают кислород, Si, AI, Fe, Mg, Ca, Na и К. Иногда в М. растворено до нескольких процентов летучих компонентов, в основном воды, меньше — окислов углерода, сероводорода, водорода, фтора, хлора и пр. Летучие компоненты при кристаллизации М. на глубине частично входят в состав различных минералов (амфиболов, слюд и прочих). В редких случаях отмечаются магматические расплавы несиликатного состава, например щёлочно-карбонатного (вулканы Восточной Африки) или сульфидного.

    В вулканических областях М., достигая земной поверхности, изливается в виде лавы (См. Лава), образует в жерлах вулканов экструзивные тела или выбрасывается с газами в виде раздробленного материала. Последний в смеси с обломками боковых пород и осадочным материалом отлагается в виде разнообразных туфов.

    Магматические массы, застывающие на глубине, образуют разнообразные по форме и размерам интрузивные тела — от мелких, представляющих собой выполненные магмой трещины, до огромных массивов, с площадями в горизонтальном сечении до многих тысяч км2. При внедрении М. в земную кору или при излиянии её на поверхность Земли образуются Магматические горные породы, которые и дают представление о её составе.

    Типы магмы. Изучив распространение различных магматических пород на поверхности Земли и показав преимущественное распространение базальтов и гранитов, советский геолог Ф. Ю. Левинсон-Лессинг предположил, что все известные магматические породы образовались за счёт двух родоначальных М.: основной (базальтовой), богатой Mg, Fe и Ca с содержанием SiO2 от 40 до 55 весовых % и кислой (гранитной), богатой щелочными металлами, содержащей от 65 до 78% SiO2. Английский геолог А. Холмс выдвинул гипотезу о наличии наряду с основной и кислой М. также ультраосновной (перидотитовой) М., исторгаемой непосредственно из подкоровых очагов, содержащей менее 40% SiO2 обогащенной Mg и Fe. Позднее, когда в конце 20-х годов 20 века было установлено, что вулканы изливают главным образом основную М. (лаву), а кислые породы встречаются только в виде интрузивных образований, американский петролог Н. Боуэн высказал гипотезу о существовании лишь одной родоначальной М. — базальтовой, а образование гранитов объяснял как результат кристаллизационной дифференциации базальтовой М. в процессе её застывания. В конце 50-х годов Н. Боуэн доказал возможность существования гранитной М. В условиях высоких давлений, присутствия воды (2—4%), при температуре около 600 °С.

    Первоначально считалось, что М. образует сплошные оболочки в недрах Земли. С помощью геофизических исследований было доказано, что постоянных оболочек жидкой М. нет, что М. периодически образует отдельные очаги в пределах разных по составу и глубинности оболочек Земли.

    В начале 70-х годов на основании результатов большого количества экспериментальных работ было сделано предположение, что гранитная М. образуется в земной коре и верхней мантии, а основная М., вероятно, в области астеносферы (См. Астеносфера)вследствие выделения относительно легкоплавкого материала. Кроме гранитной и базальтовой М., допускается существование и других, более редких, местных М., но природа их пока не ясна. Предполагают, что возникновению М. благоприятствует местный подъём температуры (разогрев недр); допускается привнос плавней (воды, щелочей и т.д.) и падение давления.

    В СССР, США, Японии, Австралии ведутся интенсивные экспериментальные исследования по изучению условий образования расплавов, близких к М. Большое значение для выяснения природы М. имеют данные геофизических исследований о состоянии земной коры и верхней мантии (в частности, о температурах глубин Земли).

    Магматические породы близкого возраста и химического состава, образованные из одного исходного магматического расплава (Комагматические породы), часто распространяются в зонах протяжением в тысячи км. Причём магматические породы каждой такой зоны (или провинции) отличаются повышенным или пониженным содержанием какого-либо окисла (например, Na или К) и характерной металлогенией. На основании этого предполагалось существование магматических бассейнов огромных размеров на протяжении целых геологических эпох в течение десятков миллионов лет. По другим представлениям, причина такой однородности заключается в близости составов исходных пород, а также температур и давлений, при которых происходит выплавка М.

    М. разного состава имеют различные физические свойства, которые зависят также от температуры и содержания летучих компонентов. М. базальтового состава отличается пониженной вязкостью, и образуемые ею лавовые потоки очень подвижны. Скорость перемещения таких потоков достигает иногда 30 км/ч. М. кислого состава обычно более вязкая, особенно после потери летучих. В жерлах вулканов она образует экструзивные купола, реже — потоки. Для кислой М., богатой летучими, характерны взрывные извержения с образованием мощных толщ игнимбритов (см. Игнимбрит). В интрузивных условиях, при сохранении летучих, кислая М. более подвижна и может образовывать тонкие дайки. Температура М. колеблется в широких пределах. Определение температуры лав в современных вулканах показало, что она изменяется от 900 — до 1200 °С. По экспериментальным данным, гранитная (эвтектическая) М. сохраняется жидкой примерно до 600 °С.

    Эволюция магмы. Попадая в иные условия, чем те, в которых она образовалась, М. может эволюционировать, меняя свой состав. Происходит дифференциация М., при которой за счёт одной М. возникает несколько частных М. Дифференциация М. может происходить до её кристаллизации (магматическая дифференциация) или в процессе кристаллизации (кристаллизационная дифференциация). Магматическая дифференциация может быть результатом ликвации (См. Ликвация) М., то есть распадения её на две несмешивающиеся жидкости, или результатом существования в пределах магматического бассейна разности температур или какого-либо другого физического параметра.

    Кристаллизационная дифференциация связана с тем, что выделяющиеся в начальные стадии затвердевания М. минералы по удельному весу отличны от расплава. Это ведёт к всплыванию одной их части (например, кристаллы плагиоклаза в диабазах Кольского полуострова) и опусканию другой (например, оливина и авгита в базальтах Н. Шотландии). В результате в вертикальном разрезе магматические тела образуются породы различного состава. Возможно изменение состава М. при отжимании остаточной жидкости от выделившихся кристаллов и в результате взаимодействия М. с вмещающими породами.

    Первоначально предполагалось, что магматическая дифференциация и взаимодействие с вмещающими породами (ассимиляция, контаминация) ведут к разнообразию М. Теперь этими процессами чаще объясняют детали строения отдельных массивов магматических пород, полосчатое строение интрузивных тел, различия в составе лав, одновременно изливающихся из вулкана на разных гипсометрических уровнях, и смену составов лав, изливающихся из вулкана.

    Для определения хода эволюции М. важное значение имеет последовательность выделения минералов при кристаллизации М. Немецким петрографом К. Г. Розенбушем и американским петрографом Н. Боуэном была разработана схема, согласно которой при кристаллизации М. в первую очередь всегда выделяются редкие (акцессорные) минералы, затем магнезиально-железистые силикаты и основные плагиоклазы, далее следуют роговая обманка и средние плагиоклазы, а в конце процесса образуются биотит, щелочные полевые шпаты и кварц. В основных М. тот же закон определяет обычное выпадение в первую очередь Оливина, позже пироксенов и лишь в конце — амфиболов и слюды. Однако универсальной последовательности кристаллизации М. не существует. Это согласуется с представлениями о М. как сложном растворе, где выпадение твёрдых фаз определяется законом действующих масс и растворимостью компонентов. Поэтому в М., богатой алюмосиликатными и щелочными компонентами, полевые шпаты выделяются раньше темноцветных минералов (в гранитах). В сильно пересыщенных кремнезёмом породах нередко первым выделяется кварц (кварцевые порфиры). Даже в М. одного состава порядок кристаллизации меняется в зависимости от содержания в них летучих компонентов.

    Полезные ископаемые, связанные с магмой. М. является носителем многих полезных компонентов, которые в процессе её кристаллизации концентрируются в отдельных участках, создавая эндогенные месторождения. Некоторые рудные минералы (минералы Сг, Ti, Ni, Pt), а также апатит обосабливаются в процессе кристаллизации М. и образуют магматические месторождения в расслоённых комплексах. Полагают, что на последних стадиях формирования интрузивов (послемагматическая стадия) за счёт летучих компонентов, содержащихся в М., формируются гидротермальные, грейзеновые, скарновые и другие месторождения цветных, редких и драгоценных металлов, а также некоторые месторождения железа.

    Устанавливается связь главных концентраций руд редких щелочных металлов, бора, бериллия, редких земель, вольфрама и других редких элементов с производными гранитной М., руд халькофильных элементов — с базальтовой магмой, а хрома, алмазов и пр. — с ультраосновной М. См. Магматические месторождения.

    Лит.: Заварицкий А. Н., Изверженные горные породы, М., 1955; Левинсон-Лессинг Ф. Ю., Петрография, 5 изд., М. — Л., 1940; Ритман А., Вулканы и их деятельность, пер. с нем., М., 1964; Йодер Г.-С., Тилли К.-Э., Происхождение базальтовых магм, перевод с английского, М., 1965; Менерт К., Магматиты и происхождение гранитов, [перевод с английского, ч. 1], М., 1971; Бейли Б., Введение в петрологию, перевод с английского, М., 1972.

    Ф. К. Шипулин.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. ма́гма;
    2. ма́гмы;
    3. ма́гмы;
    4. ма́гм;
    5. ма́гме;
    6. ма́гмам;
    7. ма́гму;
    8. ма́гмы;
    9. ма́гмой;
    10. ма́гмою;
    11. ма́гмами;
    12. ма́гме;
    13. ма́гмах.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Ожегова

    МА́ГМА, -ы, жен. (спец.). Расплавленная масса в глубинах Земли.

    | прил. магматический, -ая, -ое и магмовый, -ая, -ое. Магматические горные породы. Магмовые столбы (при извержении).

  7. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  8. Малый академический словарь

    , ж. геол.

    Образующаяся в глубинных зонах Земли расплавленная масса (застывая и отвердевая в земной коре, а также при извержении на поверхность образует изверженные горные породы).

    [От греч. μάγμα — густая мазь, тесто]

  9. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  10. Толковый словарь Ушакова

    МА́ГМА, магмы, жен. (греч. magma) (геол.). Расплавленная масса под твердой земной корой.

  11. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  12. Толковый словарь Ефремовой

    ж.

    Расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли.

  13. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  14. Большой энциклопедический словарь

    МАГМА (от греч. magma - густая мазь) - расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли. При внедрении магмы в земную кору или при ее излиянии на поверхность Земли формируются магматические горные породы. Магма периодически образует отдельные очаги в пределах разных по составу и глубинности оболочек Земли. Главные типы магмы - ультраосновная, основная (базальтовая) и кислая (гранитная); в редких случаях магма имеет щелочно-карбонатный и (или) сульфидный состав.

  15. Источник: Большой Энциклопедический словарь. 2000.



  16. Современная энциклопедия

    МАГМА (от греческого magma - густая мазь), расплавленная огненно-жидкая масса преимущественно силикатного состава, формирующаяся в земной коре или верхней мантии и образующая при застывании на глубине или при излиянии на земную поверхность магматические горные породы.

  17. Источник: Современная энциклопедия. 2000.



  18. Геологические термины

    Магма - вязкий расплав сложного силикатного состава, обогащенный парами воды и различными газами, образующийся в глубинных зонах земли.

  19. Источник: Геологические термины



  20. Большой англо-русский и русско-английский словарь

    жен.;
    геол. magmaж. magma.

  21. Источник: Большой англо-русский и русско-английский словарь



  22. Большой немецко-русский и русско-немецкий словарь

    ж геол.

    Magma n, pl -men

  23. Источник: Большой немецко-русский и русско-немецкий словарь



  24. Большой немецко-русский и русско-немецкий словарь

    магма ж геол. Magma n 1, pl -men

  25. Источник: Большой немецко-русский и русско-немецкий словарь



  26. Большой французско-русский и русско-французский словарь

    ж. геол.

    magma m

  27. Источник: Большой французско-русский и русско-французский словарь



  28. Большой испано-русский и русско-испанский словарь

    ж. геол.

    magma f

  29. Источник: Большой испано-русский и русско-испанский словарь



  30. Большой итальяно-русский и русско-итальянский словарь

    ж. спец.

    magma m

  31. Источник: Большой итальяно-русский и русско-итальянский словарь



  32. Научно-технический энциклопедический словарь

    МАГМА, расплавленная горная порода, находящаяся под поверхностью Земли, которая, затвердевая, образует МАГМАТИЧЕСКИЕ ПОРОДЫ. Ниже поверхности земной коры охлаждение происходит медленно, и по мере того, как горная порода затвердевает, образуются большие кристаллы. Большие массы магмы находятся в БАТОЛИТАХ, а тонкие слои магмы образуют СИЛЛЫ и ДАЙКИ. Если магма достигает поверхности, она вытекает как ЛАВА. Различные породы вулканического происхождения, образованные магмой, отличаются по химическому составу, а также по глубине залегания. см. такжеЭКСТРУЗИВНЫЕ ПОРОДЫ.

  33. Источник: Научно-технический энциклопедический словарь



  34. Энциклопедический словарь

    МА́ГМА -ы; ж. [от греч. magma - густая мазь, тесто] Геол. Образующаяся в глубинных зонах Земли расплавленная масса (застывая и отвердевая в земной коре или на поверхности Земли после извержения, образует горные породы). М. Земли. Поток вулканической магмы. Остывшая м.

    * * *

    ма́гма

    (от греч. mágma — густая мазь), расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли. При внедрении магмы в земную кору или при её излиянии на поверхность Земли формируются магматические горные породы. Магма периодически образует отдельные очаги в пределах разных по составу и глубинности оболочек Земли. Главные типы магмы — ультраосновная, основная (базальтовая) и кислая (гранитная); в редких случаях магма имеет щёлочно-карбонатный и (или) сульфидный состав.

    * * *

    МАГМА

    МА́ГМА (от греч. magma — густая мазь), расплавленная масса преимущественно силикатного состава, образующаяся в глубинных зонах Земли. При внедрении магмы в земную кору(см. ЗЕМНАЯ КОРА) или при ее излиянии на поверхность Земли формируются магматические горные породы(см. МАГМАТИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ). Магма периодически образует отдельные очаги в пределах разных по составу и глубинности оболочек Земли. Главные типы магмы — ультраосновная, основная (базальтовая) и кислая (гранитная); в редких случаях магма имеет щелочно-карбонатный и (или) сульфидный состав.

  35. Источник: Энциклопедический словарь



  36. Геологическая энциклопедия

    [μαγμα (μагма) — тесто, густая мазь] — расплавленная огненно-жидкая масса (чаще силикатная, хотя может быть сульфидной и др.), возникающая в земной коре или верхней мантии и дающая при застывании магм. г. п. М. может обладать различным составом; большинство исследователей полагает, что главными типами М. являются: ультраосновная, основная (базальтовая) и кислая (гранитная). Щелочная М. возникает, по-видимому, из основной или кислой в процессе дифференциации или при ассимиляции боковых вмещающих п. Боуэн (1929) считал, что существует единая базальтовая М., из которой в процессе кристаллизационной дифференциации возникают все остальные типы М., а Левинсон-Лессинг признавал самостоятельность двух родоначальных магм — гранитной и базальтовой. Наиболее распространена точка зрения о том, что М. ультраосновного и основного состава возникают при плавлении вещества верхней мантии; гранитные же М. образуются при процессах селективного плавления, анатексиса, палингенеза п. сиалической части коры (т. н. гранитного слоя). В последнее время высказываются предположения о мантийном происхождении гранитов. Ритман (1958) предлагает различать первичную, или прототектическую, М., существующую в глубинах земли с допалеозоя; вторичную, или анатектическую, возникшую при процессах анатексиса, или палингенеза; синтектическую, образующуюся в результате сплавления и ассимиляции; гибридную, возникшую в результате смешения магм.

    На основании экспериментальных данных Грин и Рингвуд (1968) высказали мысль о том, что при давлении свыше 18 кбар наиболее легкоплавкой оказывается М., андезитового состава и именно андезит является наиболее кислой из всех п., возникающих при процессах селективного плавления в верх, части мантии. Причины возникновения М. пока не ясны; обычно в качестве факторов, вызывающих генерацию магм. расплава, рассматриваются: радиогенное тепло, внезапное уменьшение давления вследствие образования глубинных разломов, подъем геоизотерм и т. п. По мнению большинства ученых, М. представляет собой гетерогенный расплав, состоящий из тугоплавких и легколетучих компонентов. Главными составными частями М. являются: SiO2, Al, Fe, Mg, Mn, Ca, Na, K, O2, H, S, Cl, F, В и др. элементы. О форме нахождения их в магм. расплаве судят на основании экспериментальных исследований и изучения силикатных стекол. Еще в 1834 г. Фарадей обнаружил электропроводность силикатных расплавов, т. е. показал, что в них присутствуют ионы. В 1925 г. Ф. Ю. Левинсон-Лессинг высказал предположение о том, что в магм. расплаве существуют не отдельные окислы, как тогда считали многие, а комплексы, соответствующие будущим м-лам. Позднее (1940 г.) это подтвердилось экспериментальными работами Куманика, и комплексы получили название сиботаксических гр. Овчинников (1959) считает, что М. содер. типичные катионы— Na, К, Ca, Mg, Fe и др., анионами служат гл. обр. кремнекислородные тетраэдры, образующие аналогичную кристаллическим силикатам, но более неправильную связь. Наличие Ti, Al и некоторых др. элементов приводит к образованию более сложных комплексных анионов. Все они служат основой сиботаксических гр. Кроме того, магм. расплав содер. сульфиды и соединения типа Fе3О4, обладающие металлическими связями, атомы растворенных металлов и молекулы растворенных газов (по Овчинникову). Т. о. М. представляет собой ионно-электронную микрогетерогенную жидкость. Изучение силикатных стекол показывает, что они (а следовательно, и М.) состоят из анионных гр. или сложных комплексов, сиботакситов, внутри которых существуют прочные ионные и ковалентные связи, в то время как между этими гр. действуют слабые силы типа сил Ван-дер-Ваальса. Т. В. Перекалина.

  37. Источник: Геологическая энциклопедия



  38. Русско-английский политехнический словарь

    ма́гма ж.

    magma

  39. Источник: Русско-английский политехнический словарь



  40. Dictionnaire technique russo-italien

    ж.

    magma m

    - гранитная магма

    - кислая магма

    - основная магма

    - остаточная магма

    - первичная магма

    - производная магма

    - рудная магма

    - ультраосновная магма

  41. Источник: Dictionnaire technique russo-italien



  42. Естествознание. Энциклопедический словарь

    (от греч. magma - густая мазь), расплавленная масса преим. силикатного состава, образующаяся в глубинных зонах Земли. При внедрении М. в земную кору или при её излиянии на поверхность Земли формируются маг-матич. горн. породы. М. периодически образует отд. очаги в пределах разных по составу и глубинности оболочек Земли. Гл. типы М.-ультраосновная, основная (базальтовая) и кислая (гранитная); в редких случаях М. имеет щёлочно-карбонатный и (или) сульфидный состав.

  43. Источник: Естествознание. Энциклопедический словарь



  44. Большой Энциклопедический словарь

  45. Источник: