Большая Советская энциклопедия

    одно из трёх физических состояний аморфных полимеров (см. Аморфное состояние). Оно проявляется в интервале температур между температурами стеклования и текучести у полимеров, макромолекулы которых имеют цепное строение и достаточно гибки. В. с. наблюдается также и у полимеров, макромолекулы которых прочно связаны в пространственную сетку, имеющую достаточно длинные и гибкие отрезки цепного строения между узлами. Полимеры в В. с. отличаются способностью к огромным обратимым деформациям растяжения (до многих сотен процентов), низкими значениями модуля эластичности [0,1—10 Мн/м2(1—100 кгс/см2)], выделением тепла при растяжении, возрастанием равновесного модуля эластичности с температурой и др. особенностями. Наиболее характерные представители высокоэластичных материалов — каучуки и резины.

    В. с. возникает благодаря способности цепных молекул полимеров к изменению формы. Гибкие цепные молекулы под влиянием теплового движения непрерывно меняют свою форму, т. е. принимают ряд различных конформаций. При достаточно большой длине молекул число разрешённых скрученных конформаций подавляюще велико. Воздействие растягивающих сил распрямляет макромолекулы; после прекращения действия сил она вновь скручивается благодаря хаотическому характеру теплового движения. Таким образом, сопротивление изменению формы полимерного тела в основном обусловлено не изменением внутренней энергии, как в кристаллических телах, а увеличением числа более распрямлённых конформаций, являющихся менее вероятными. Поэтому изотермическая деформация идеального высокоэластичного полимера связана с уменьшением энтропии и в этом смысле аналогична изотермическому сжатию идеального газа. Соответственно, для термодинамически равновесной высокоэластической деформации сила, стремящаяся сократить растягиваемое внешними силами полимерное тело, определяется из уравнения:

    где S — энтропия, l — длина растягиваемого образца и Т — абсолютная температура. Согласно статистической теории термодинамически равновесных высокоэластических деформаций полимеров, все особенности В. с. являются следствием теплового движения длинных и гибких цепных молекул. При достаточно быстрых деформациях, когда цепные молекулы уже не успевают изменять свою форму, а также при очень больших деформациях, когда дальнейшее распрямление молекул затруднено, полимеры утрачивают способность к высокоэластической деформации и ведут себя подобно обычным твёрдым телам.

    В. с. отличается своеобразным сочетанием свойств упругих твёрдых тел (способность к восстановлению исходной формы тела), упругих свойств газообразных тел (кинетическая природа эластичности) и общих свойств жидких тел (значения коэффициента теплового расширения, сжимаемости и др.).

    Лит.: Каргин В. А., Слонимский Г. Л., Краткие очерки по физико-химии полимеров, 2 изд., М., 1967; Тагер А. А., Физико-химия полимеров, 2 изд., М., 1969.

    Г. Л. Слонимский.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ВЫСОКОЭЛАСТИЧЕСКОЕ СОСТОЯНИЕ - состояние аморфных полимеров, в котором они способны к огромным (до сотен %) обратимым деформациям. Объясняется тем, что цепные молекулы полимеров могут изменять свою форму. Типичный полимерный материал, эксплуатируемый в высокоэластическом состоянии, - резина.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Химическая энциклопедия

    состояние, в к-ром полимеры обладают способностью к большим обратимым деформациям (до неск. десятков, сотен и более процентов). В В. с. могут переходить все гибкоцепные линейные полимеры с достаточно большой молекулярной массой и пространственно структурированные (сетчатые) полимеры при нагр. их выше т-ры стеклования.

    Верх. температурная граница определяется т-рой разложения для сетчатых полимеров и т-рой текучести для линейных. Полимеры, находящиеся в В. с. в широком интервале т-р, соответствующем условиям их эксплуатации, наз. эластомерами. Типичные представители эластомеров - натуральный и синтетич. каучуки, а также резины на их основе.

    В отличие от твердых кристаллич. тел деформация полимеров в В. с. связана не с изменением межатомных или межмол. расстояний, а с частичным развертыванием хаотически свернутых цепных молекул, что и обусловливает возможность больших деформаций. При этом возвращающая сила f вызывается не силами притяжения между молекулами деформируемого тела, а тепловым движением, к-рое по своей интенсивности такое же, как тепловое движение молекул в жидкостях. Т. обр. упругость полимеров в В. с. имеет энтропийную природу подобно объемной упругости газов. Поэтому модуль упругости полимеров в В. с. пропорционален абс. т-ре Ти имеет низкие значения (0,1-10 МПа), тогда как модуль всестороннего сжатия, определяемый силами межмол. взаимодействия, типичен для кон-денсиров. сред (103 МПа). Вследствие этого деформация эластомеров практически не сопровождается изменением объема, и связанное с этим изменение внутр. энергии Uничтожно. Наблюдаемые на опыте изменения Uпри деформации эластомеров связаны с изменением набора энергетически неравноценных конформац. изомеров (см. Конформационнып анализ )при развертывании цепей. В зависимости от разности энергетич. уровней транс- и гош-конформеров изменение внутр. энергии при деформации 1087-1.jpg и соответствующая ему составляющая возвращающей силы e= (V,T("энергетич. сила") м. б. как положительными, так и отрицательными (l-длина образца, V-его объем). Ниже приведены значения e/f> для нек-рых полимеров:

    1087-2.jpg

    В В. с. напряжение и деформация 1087-3.jpgпри циклич. нагружении сдвинуты по фазе, и наблюдается сильная зависимость деформации, развивающейся в эластомере, от длительности приложения нагрузки или напряжения от времени выдержки образца в деформиров. состоянии. Особенно резко эти зависимости выражены при т-рах, близких к т-рам стеклования и текучести. В сетчатых этастомерах через достаточно длит. время устанавливается упругое равновесие, т. е. / и 1087-4.jpg перестают изменяться со временем.

    В 40-х гг. В. Куном, П. Флори и др. была развита теория (именуемая теперь классической) равновесных упругих св-в сетчатых эластомеров, основывающаяся на модели сетки из бестелесных цепей, способных свободно проходить друг сквозь друга ("теневые", или "фантомные", цепи). Согласно этой теории, / при растяжении образца в 1087-5.jpg раз равно:

    1087-6.jpg

    где A-площадь поперечного сечения образца, v-число цепей (отрезков молекулы между ближайшими поперечными сшивками) в единице объема, k-постоянная Больцмана,1087-7.jpg -средний квадрат расстояний между концами цепей в недеформиров. сетке,1087-8.jpg -средний квадрат расстояний между концами тех же цепей в своб. состоянии. Ур-ние (1) оправдывается на опыте только для сильно набухших резин. В отсутствие р-рителя f при одноосном растяжении хорошо описывается след. ф-лой:

    1087-9.jpg

    где С 1 и С 2 -эмпирич. постоянные.

    Для описания др. типов деформации эта ф-ла непригодна. Зависимости С 1 > и С 2 от разл. факторов являлись предметом мн. исследований. Так, было показано, что 1 м. б. отождествлено с коэф. упругости в ур-нии (1). Тогда, полагая 1087-10.jpg, получаем: C1 = vkT/2. Эта ф-ла - одно из осн. соотношений для расчета v из эксперим. данных. Для эластомеров с редкой сеткой величина С 2/С, больше единицы, для густых сеток - меньше единицы. Обе константы возрастают с т-рой приблизительно пропорционально Т. При равных С 1 сетки из цепей с более массивными боковыми привесками имеют меньшие С 2.

    Предпринимались попытки объяснить наблюдаемые отклонения от классич. теории на основе разл. физ. предпосылок. Но все они, как и разл. феноменологич. теории, не получили широкого распространения. Отклонения от классич. теории, как считает большинство исследователей, связаны с тем, что в ней не учитываются ограничения числа возможных конформаций цепей, возникающие вследствие их взаимной непроницаемости. Многочисл. теории, построенные на этой предпосылке, удовлетворительно описывают деформац. зависимости разл. типов.

    Лит.: Волькснштейн М. В., Конфигурационная статистика полимерных цепей, М.-Л., 1959; Бирштейн Т. М., Птицын О. Б., Конформаций макромолекул, М., 1964; Treloar L.R.Y., The physics of rubber elasticity, 3 ed., Oxf., 1975. Л. С. Лрисе.

  5. Источник: Химическая энциклопедия



  6. Энциклопедический словарь

    высокоэласти́ческое состоя́ние

    состояние аморфных полимеров, в котором они способны к огромным (до сотен %) обратимым деформациям. Объясняется тем, что цепные молекулы полимеров могут изменять свою форму. Типичный полимерный материал, эксплуатируемый в высокоэластическом состоянии — резина.

    * * *

    ВЫСОКОЭЛАСТИЧЕСКОЕ СОСТОЯНИЕ

    ВЫСОКОЭЛАСТИ́ЧЕСКОЕ СОСТОЯ́НИЕ, состояние аморфных полимеров, в котором они способны к огромным (до сотен %) обратимым деформациям. Объясняется тем, что цепные молекулы полимеров могут изменять свою форму. Типичный полимерный материал, эксплуатируемый в высокоэластическом состоянии, — резина.

  7. Источник: Энциклопедический словарь



  8. Большой энциклопедический политехнический словарь

    одно из физ. состояний аморфных полимеров и материалов на их основе, в к-ром они способны к большим (до 1000%) обратимым деформациям растяжения. Обусловлено способностью гибкой макромолекулы изменять под действием внеш. нагрузки свою пространств, форму (конформацию) от свёрнутой до распрямлённой. Проявляется в интервале между темп-рами стеклования и текучести; размер интервала зависит от вида полимера и скорости растяжения. В полимерах с жёсткоцепными макромолекулами может отсутствовать. Пример материала, эксплуатируемого в В. с., - резина.

  9. Источник: Большой энциклопедический политехнический словарь



  10. Большой Энциклопедический словарь

  11. Источник: