Большая Советская энциклопедия

    колебательная система сверхвысоких частот, аналог колебательного контура (См. Колебательный контур); представляет собой объём, заполненный диэлектриком (См. Диэлектрики) (в большинстве случаев воздухом) и ограниченный проводящей поверхностью либо пространством с иными электрическими и магнитными свойствами. Наибольшее распространение имеют полые О. р. — полости, ограниченные металлическими стенками. Форма ограничивающей поверхности О. р. в общем случае может быть произвольной, однако практическое распространение (в силу простоты конфигурации электромагнитного поля, простоты расчёта и изготовления) получили О. р. некоторых простейших форм. К ним относятся круглые цилиндры, прямоугольные параллелепипеды, тороиды, сферы и др. Некоторые типы О. р. удобно рассматривать как отрезки полых или диэлектрических волноводов (см. Радиоволновод), ограниченные двумя параллельными плоскостями.

    Задача о собственных колебаниях электромагнитного поля в О. р. сводится к решению Максвелла уравнений (См. Максвелла уравнения) с соответствующими граничными условиями. Процесс накопления электромагнитной энергии в О. р. можно пояснить на следующем примере: если между двумя параллельными отражающими плоскостями каким-либо образом возбуждается плоская волна, распространяющаяся перпендикулярно к ним, то при достижении одной из плоскостей волна полностью отразится от неё. Многократное отражение от обеих плоскостей приводит к образованию волн, распространяющихся в противоположных направлениях и интерферирующих друг с другом. Если расстояние между плоскостями L = nλ/2 (λ — длина волны, а n — целое число), то интерференция волн приводит к образованию стоячей волны (рис. 1), амплитуда которой при многократном отражении сильно возрастает; в пространстве между плоскостями будет накапливаться электромагнитная энергия, подобно тому, как это происходит при резонансе в колебательном контуре.

    Свободные колебания в О. р. при отсутствии потерь энергии могут существовать неограниченно долгое время. Однако в действительности потери энергии в О. р. неизбежны. Переменное магнитное поле индуцирует на внутренних стенках О. р. электрические токи, которые нагревают стенки, что и приводит к потерям энергии (потери на проводимость). Кроме того, если в стенках О. р. есть отверстия, которые пересекают линии тока, то вне О. р. возбуждается электромагнитное поле, что вызывает потери энергии на излучение. Помимо этого, есть потери энергии в диэлектрике (см. Диэлектрические потери) и потери за счёт связи с внешними цепями. Отношение энергии, запасённой в О. р., к суммарным потерям в нём за период колебаний, называется добротностью О. р. Чем выше добротность, тем лучше качество О. р.

    По аналогии с волноводами типы колебаний в О. р. классифицируются по группам в зависимости от того, имеет ли пространственное распределение электромагнитного поля осевые или радиальные (поперечные) компоненты. Колебания типа Н (или ТЕ) имеют осевую компоненту лишь магнитного поля; колебания типа Е (или ТМ) обладают осевой компонентой только электрического цоля. Наконец, у колебаний типа ТЕМ ни электрическое, ни магнитное поля не имеют осевых компонентов. Примером О. р., в котором могут возбуждаться колебания ТЕМ-типа, может служить полость между двумя коаксиальными проводящими цилиндрами, ограниченная с торцов плоскими проводящими стенками, перпендикулярными оси цилиндров.

    Наиболее распространённым является цилиндрический О. р. Типы колебаний в цилиндрический О. р. характеризуют 3 индексами т, n, р, соответствующими числу полуволн электрического или магнитного поля, укладывающихся по его диаметру, окружности и длине (например, Етприли Нтпр). Тип колебания (Е или Н) и его индексы определяют структуру электрического и магнитного полей в О. р. (рис. 2). Колебание Н011 цилиндрич. О. р. обладает особым свойством: оно безразлично к наличию контакта цилиндрических и торцовых стенок. Магнитные силовые линии этого колебания направлены так (рис. 2, в), что в стенках О. р. возбуждаются только токи, текущие по окружностям цилиндра. Это позволяет делать неизлучающие щели в боковых и торцовых стенках О. р.

    Кроме цилиндрических О. р., применяются О. р. другой формы, например в лабораторных устройствах — прямоугольные О. р. (рис. 3, а). Важен О. р. тороидальной формы с ёмкостным зазором (рис. 3, б), применяемый в качестве колебательной системы Клистрона. Особенностью основного типа колебаний такого О. р. является пространственное разделение электрического и магнитного полей. Электрическое поле локализуется главным образом в ёмкостном зазоре, а магнитное — в тороидальной полости. Распределение поля в диэлектрическом О. р. при существенном различии в диэлектрической проницаемости (См. Диэлектрическая проницаемость) диэлектрика и окружающего пространства близко к распределению поля в металлических полых резонаторах той же формы. В отличие от полых О. р., поле диэлектрических резонаторов проникает в окружающее пространство, однако быстро затухает при удалении от поверхности диэлектрика.

    Металлические полые О. р. изготавливают обычно из металлов с высокой электропроводностью (Ag, Cu и их сплавы) или покрывают полость изнутри слоем Ag или Au. О. р. с чрезвычайно высокой добротностью получают из сверхпроводящих металлов (см. Криоэлектроника). Настройка О. р. на определённую частоту производится изменением его объёма путём перемещения стенок или введения в полость О. р. металлических поршней, пластин и др. настроечных элементов. Связь с внешними цепями осуществляется обычно через отверстия в стенках О. р., с помощью петель, штырей и др. элементов связи. Для диэлектрических О. р. используются диэлектрики с высокой диэлектрической проницаемостью (Рутил, тиганат стронция и др.), имеющие малые диэлектрические потери.

    О. р. широко применяются в технике в качестве колебательных систем генераторов (клистронов, Магнетронов и др.), фильтров, эталонов частоты, измерительных контуров, а также различных устройств для исследования твердых, жидких и газообразных веществ. О. р. применимы для частот 109—1011 гц. Для более высоких частот длина волны возбуждаемых в О. р. колебаний становится сравнимой с размерами неизбежных шероховатостей и отверстий в стенках О. р., что приводит к рассеянию электромагнитной энергии. Эта недостатки устраняются в открытых резонаторах (См. Открытый резонатор), представляющих собой систему зеркал.

    Лит.: Бройль Л., Электромагнитные волны в волноводах и полых резонаторах, пер. с франц., М., 1948; Вайнштейн Л. А., Электромагнитные волны, М., 1957.

    И. В. Иванов, В. И. Зубков.

    Рис. 1. Образование стоячей волны в пространстве между двумя параллельными плоскостями в результате интерференции прямой и отражённых волн.

    Рис. 2. Простейшие виды колебаний в круглом цилиндрическом полом резонаторе: а — E010, б — H111, в — H011. Сплошными линиями обозначены силовые линии электрического поля, пунктиром — силовые линии магнитного поля. Плотность силовых линий характеризует напряжённость поля. Для колебаний E010 и H111 плотность линий у оси цилиндра максимальна (пучность), а у его стенок равна нулю (узел). Силовые линии магнитного поля — замкнутые кривые.

    Рис. 3. а — прямоугольный полый объёмный резонатор, в котором возбуждён основной тип колебаний E110; сплошные линии — силовые линии электрического поля, пунктир — магнитного поля; б — тороидальный резонатор клистрона; в — резонаторная система магнетрона.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ОБЪЕМНЫЙ резонатор - ограниченный объем, внутри которого могут возбуждаться электромагнитные колебания. Обычно объемный резонатор - замкнутая полость с проводящими стенками, форма и размеры которой определяют частоту колебаний и конфигурацию электрического и магнитного полей. Объемные резонаторы бывают прямоугольные, цилиндрические, тороидальные и других форм. Объемным резонатором является также объем, заполненный средой с другими электрическими и магнитными свойствами. Объемные резонаторы широко применяются в технике сверхвысоких частот.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Большой англо-русский и русско-английский словарь

    cavity resonator

  5. Источник: Большой англо-русский и русско-английский словарь



  6. Англо-русский словарь технических терминов

    resonant cavity, cavity, resonance [resonant\] chamber, cavity resonator

  7. Источник: Англо-русский словарь технических терминов



  8. Физическая энциклопедия

    ОБЪЁМНЫЙ РЕЗОНАТОР

    электромагнитный, обычно замкнутая полость с хорошо проводящими стенками, внутри к-рой могут существовать свободные эл.-магн. колебания. Наиболее распространены О. р. цилиндрич., сферич. и тороидальной формы. Период собственных колебаний T=2p/w (w — круговая частота) не превышает времени прохождения волны между наиболее отдалёнными стенками; T?l/c (с — скорость распространения света в заполняющей О. р. среде, обычно в воздухе, в вакууме). Поэтому в ДВ диапазонах О. р. оказываются слишком громоздкими (I =l=сТ), и только начиная с СВЧ диапазона (l?10—20 см) их применение технически оправдано. С другой стороны, именно в этом диапазоне колебат. системы с сосредоточенными параметрами становятся низкодобротными из-за больших омич. потерь или потерь на излучение.

    Отыскание нормальных колебаний (колебат. мод) эл.-магн. поля внутри замкнутой полости состоит в решении Максвелла уравнений при определённых граничных условиях на стенках; в частности, на поверхности идеального проводника должна обращаться в нуль тангенциальная компонента электрич. поля Et. Бесконечное, но счётное множество собств. значений этой задачи образует спектр собств. частот О. р., а соответствующие им решения дают пространств. распределения электрич. Е и магн. Н полей (моды).

    Простейший О. р.— отрезок радиоволновода, закрытый двумя идеально проводящими торцевыми «крышками», перпендикулярными оси Oz. Граничные условия на торцах удовлетворяются, если между стенками укладывается целое число (q) волноводных полуволн, а также если поле Е всюду внутри О. р. направлено вдоль координаты z и не зависит от неё, т. е. при kz=(p/l)q, где kz — продольное волн. число, q=0, 1,2,...,l — длина О. р. Поскольку каждая из волноводных мод характеризуется ещё и спектром поперечных волн. чисел cnm, то полный спектр волноводного О. р. определяется соотношением

    ОБЪЁМНЫЙ РЕЗОНАТОР1

    Норм. колебания волноводного О. р. классифицируются по типам соответствующих волноводных мод. Различают колебания типа TEnmq и колебания типа TMnmq. Индексы п, т, q указывают число полуволн, укладывающихся вдоль трёх измерений О. р. В случае TEnmq-колебаний вектор Е поляризован в поперечной плоскости z=const, в случае TMnmq-колебаний в этой плоскости лежит вектор Н. Иногда их обозначают Hnmq и Enmq, указывая на присутствие в полях продольных составляющих векторов Н и Е (рис. 1).

    ОБЪЁМНЫЙ РЕЗОНАТОР2

    Рис. 1. Простейшие виды колебаний (моды) в цилиндрическом объёмном резонаторе. Стрелки указывают направление силовых линий электрического (сплошные линии) и магнитного (пунктир) полей.

    Одной и той же собств. частоте О. р. могут соответствовать две или более линейно независимых моды. Самым высоким числом вырожденных мод (12) обладают частоты wnmq (n?m?q) в сферич. или кубич. О. р. Внесение небольших неоднородностей в О. р. уменьшает число вырожденных мод, образуя систему, как бы состоящую из n связанных колебат. контуров с близкими частотами.

    ОБЪЁМНЫЙ РЕЗОНАТОР3

    Рис. 2. Переход от цилиндрич. резонатора с модой типа E010 путём плавных деформаций стенок к резонатору, а к-ром магн. и электрич. поля пространственно разделены, почти как в колебательном контуре. Сплошные линии — силовые линии электрич. поля, пунктир — магн. поля.

    Чаще всего О. р. используются в режиме осн. колебания, обладающего наинизшей собств. частотой. В цилиндрич. О. р. длины l и радиуса а при l<2,04а главным явл. колебание E010 (1-й индекс относится к вариации поля по углу а, 2-й — по радиусу r, 3-й — вдоль оси цилиндра oz, рис. 1), имеющее собств. частоту w010=2,04c/a. Поля в нём (Ez?0, Hаlfa?0) распределены, как в колебательном LC-контуре, в к-ром конденсатор С и самоиндукция L составляют единое целое (рис. 2). Небольшими деформациями границ О. р. можно придавать ему технологически различные, но топологически эквивалентные формы. С ростом длины при l>2,04а осн. колебанием становится H111 (Нz?0, Нr?0, Er?0, Ea?0) с частотой

    ОБЪЁМНЫЙ РЕЗОНАТОР4

    несмотря на то что оно имеет более сложную структуру, чем «конкурирующее» с ним колебание Н011 (Hz?0, Нr?0, Еa?0) с частотой

    ОБЪЁМНЫЙ РЕЗОНАТОР5

    Потери энергии в среде, заполняющей полость, и поглощение в экранирующих стенках приводят к затуханию собств. колебаний. Если потери невелики, их можно учесть с помощью метода возмущений. В первом приближении все потери аддитивны. Добротность Q О. р. определяется как отношение запасённой энергии W к потерям энергии Р за период колебаний; напр., добротность Q из-за поглощения в среде равна: Q1=e'/2e" (e' и e" — действительная и мнимая части диэлектрической проницаемости), из-за поглощения в стенках Q2»V/Sd (V — объём полости, S — её поверхность, d — толщина скин-слоя, (см. СКИН-ЭФФЕКТ)). Суммарная добротность QS определяется из соотношения:

    1/QS=Sn1/Qn. (2)

    Добротности О. р. на осн. колебаниях в диапазоне СВЧ достигают 103, а при использовании сверхпроводящих экранов (см. СВЕРХПРОВОДИМОСТЬ) могут достигать 106.

    Возбуждение О. р., как и радиоволноводов, происходит с помощью петель, штырей, щелей, отверстий и т. п. (см. АНТЕННА). О. р. с металлич. стенками широко применяются в технике СВЧ как частотные фильтры и резонансные колебат. системы генераторов, усилителей, приёмных устройств, ускорителей, спектр-анализаторов и др. Но, начиная с частот =1011 Гц, О. р. при работе на осн. моде становятся слишком малыми (l =1 мм), и поскольку толщина скин-слоя 8 пропорц.?l, а размеры О. р. уменьшаются пропорц. А, его добротность ухудшается по закону Q=?l. Применение же больших О. р. с возбуждением высших мод затруднено из-за очень плотного спектра собств. частот. Поэтому в миллиметровом, субмиллиметровом и оптич. диапазонах О. р. вытеснены открытыми резонаторами, в к-рых осуществляется разрежение спектра за счёт высвечивания поперечных мод с большими индексами m и n через открытые участки боковых поверхностей (см. КВАЗИОПТИКА, ОПТИЧЕСКИЙ РЕЗОНАТОР).

  9. Источник: Физическая энциклопедия



  10. Энциклопедический словарь

    объёмный резона́тор

    ограниченный хорошо проводящими поверхностями объём, внутри которого могут возбуждаться электромагнитные колебания. Обычно объёмный резонатор — замкнутая полость, форма и размеры которой определяют частоту колебаний и конфигурацию электрического и магнитного полей. Объёмные резонаторы бывают прямоугольными, цилиндрическими, тороидальными и других форм. Объёмным резонатором является также объём, заполненный средой с другими электрическими и магнитными свойствами. Объёмный резонатор широко применяются в технике СВЧ.

    * * *

    ОБЪЕМНЫЙ РЕЗОНАТОР

    ОБЪЕМНЫЙ РЕЗОНА́ТОР, ограниченный объем, внутри которого могут возбуждаться электромагнитные колебания. Обычно объемный резонатор — замкнутая полость с проводящими стенками, форма и размеры которой определяют частоту колебаний и конфигурацию электрического и магнитного полей. Объемные резонаторы бывают прямоугольные, цилиндрические, тороидальные и других форм. Объемным резонатором является также объем, заполненный средой с другими электрическими и магнитными свойствами. Объемные резонаторы широко применяются в технике сверхвысоких частот.

  11. Источник: Энциклопедический словарь



  12. Русско-английский политехнический словарь

    resonant cavity, cavity, resonance [resonant] chamber, cavity resonator

    * * *

    cavity resonator

  13. Источник: Русско-английский политехнический словарь



  14. Dictionnaire technique russo-italien

    risonatore a cavità, cavità risonante

  15. Источник: Dictionnaire technique russo-italien



  16. Русско-украинский политехнический словарь

    об'є́мний резона́тор

  17. Источник: Русско-украинский политехнический словарь



  18. Русско-украинский политехнический словарь

    об'є́мний резона́тор

  19. Источник: Русско-украинский политехнический словарь



  20. Естествознание. Энциклопедический словарь

    ограниченный хорошо проводящими поверхностями объём, внутри к-рого могут возбуждаться эл.-магн. колебания. Обычно О. р.- замкнутая полость, форма и размеры к-рой определяют частоту колебаний и конфигурацию электрич. и магн. полей. О. р. бывают прямоугольными, цилиндрич., тороидальными и др. форм. О. р. является также объём, заполненный средой с др. электрич. и магн. свойствами. О. р. широко применяются в технике СВЧ.

  21. Источник: Естествознание. Энциклопедический словарь



  22. Большой Энциклопедический словарь

  23. Источник: