Большая Советская энциклопедия

    газонаполненные Пластические массы ячеистой структуры. П. имеют строение отвердевших пен (См. Пены). Они содержат преимущественно замкнутые, не сообщающиеся между собой полости, разделённые прослойками полимера. Этим они отличаются от поропластов, пронизанных системой связанных каналов-пор, то есть имеющих губчатую структуру. Выделение П. среди прочих газонаполненных пластмасс в отдельную классификационную группу по признаку изолированности ячеек-полостей условно, так как во многих пеноматериалах значительная их часть всё же соединена. Правильнее к П. относить любой газонаполненный полимер, полученный путём вспенивания и последующего отверждения первоначально жидкой или пластично-вязкой композиции. В производстве П. газ диспергируют в полимерном полуфабрикате (растворе, расплаве, жидком олигомере, дисперсии) или создают условия для выделения газовой фазы непосредственно в объёме отверждаемого продукта. Используют различные технологические приёмы вспенивания: механическое перемешивание или барботирование в присутствии пенообразователей (См. Пенообразователи);введение газообразователей (веществ, разлагающихся с выделением газа) или веществ, взаимодействующих с образованием газообразных продуктов; насыщение исходной смеси газом под давлением с последующим снижением давления; введение жидкостей, быстро испаряющихся с повышением температуры. В зависимости от состава композиции и условий её отверждения получают материал с преимущественно открытыми или замкнутыми ячейками.

    Пористые материалы можно получать также вымыванием из монолитной полимерной заготовки растворимого наполнителя, спеканием порошкообразных полимерных материалов, путём конденсационного структурообразования в растворах полимеров (см. Дисперсная структура).Близки по свойствам к П. газонаполненные пластмассы, полученные с применением полых наполнителей, например заполненных газом сферических микрокапсул.

    П. можно приготовить из большинства синтетических и многих природных полимеров. Однако П. промышленного назначения выпускают главным образом на основе полистирола, поливинилхлорида, полиуретанов, полиэтилена, фенольных, эпоксидных, карбамидных и кремнийорганических смол. В качестве газообразователей применяют азосоединения, нитросоединения, карбонат аммония и др.; из легкокипящих жидкостей — изопентан, метиленхлорид, фреоны. Промышленность выпускает жёсткие и эластичные П. с размером ячеек 0,02—2 мм (иногда до 3—5 мм). Они обладают чрезвычайно низкой кажущейся плотностью (0,02— 0,5 г/см2) и превосходными тепло- и звукоизоляционными свойствами. Водостойкость, механические и электрические характеристики П. зависят от химической природы и рецептурного состава полимерной композиции, а также от особенностей структуры готового продукта. Основные свойства некоторых П., выпускаемых в СССР, приведены в таблице.

    П. широко применяют в самолёто- и судостроении, в транспортном и химическом машиностроении, в строительстве зданий и технических сооружений как тепло- и звукоизоляционный материал. Их используют при изготовлении многослойных конструкций, различных плавучих средств (понтонов, лёгких лодок, бакенов, спасательных поясов и др.). Прозрачность П. для радиоволн и достаточно высокие диэлектрические и гидроизоляционные свойства обеспечивают этим материалам применение в радио- и электротехнике. Из П. делают амортизирующие и демпфирующие прокладки, разнообразную тару для оптических приборов, электронной аппаратуры и др. изделий. Эластичные П. используют в производстве мягкой мебели и тёплой одежды.

    Свойства пенопластов

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    |      |        |      |   | Прочность, Мн/м2         |      |        | |

    |      |        | Кажу-щаяся  | Макс.        (кгс/см2)        | Тангенс | Электрич.       | Водо-      |

    | Полимерная основа       | Марка     | плотность     | рабочая    |--------------------------------------| угла      | прочность,     | погло-     |

    |      |        кг/м3      | темп-ра,    | при      | при   | диэлектр.     кв/мм      | щение,    |

    |      |        |      | ºС      | растяже-     | сжатии     | потерь         |        | %     |

    |      |        |      |   | нии      |         |      |        | |

    |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

    | Полистирол   | ПС-1       | 60-220    | 65      | 0,7-4,2  | 0,5-3        | 0,0012-  | 3-6          | 0,4-0,6     |

    | Поливинилхлорид  | ПХВ-1     | 70-130    | 60      | (7-42)          | (5-30)       | 0,003     | 3,9          | 2,0-2,5     |

    | Полиуретан   | ПУ-101    | 50-250    | 130-150     | 1,9-2,0  | 0,4-1        | 0,015     | -      | 0,3   |

    | Эпоксидная смола        | ПЭ-1       | 90-220    | 110    | (19-20)  | (4-10)       | 0,0015   | 3,5          | 1,3-2,3     |

    | Феноло-формальдегидная    | ФК-20     | 190-230  | 120-130     | -   | 1-1,9        | 0,0043   | -      | 1,5   |

    | смола           | К-40 | 200-400  | 250-300     | -   | (10-19)     | 0,010     | 2,5          | 10    |

    | Кремнийорганическая          |        |      |   | 2,0(20)  | 1-2,5        | 0,002     |        | |

    | смола           |        |      |   | 0,6(5,8) | (10-25)     |      |        | |

    |      |        |      |   |     | 0,8 (8)      |      |        | |

    |      |        |      |   |     | 0,8-1,4 (8- |      |        | |

    |      |        |      |   |     | 14)    |      |        | |

    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

    Лит.: Романенков И. Г., Физико-механические свойства пенистых пластмасс, М., 1970; Справочник по пластическим массам, под ред. М. И. Гарбара [и др.], т. 2, М., 1969, с. 155; Энциклопедия полимеров, т. 2, М., 1974, с. 549.

    Л. А. Шиц.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ПЕНОПЛАСТЫ - один из видов газонаполненных пластиков.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Современная энциклопедия

    ПЕНОПЛАСТЫ, пластмассы, содержащие в качестве наполнителя газ. Отличаются малой плотностью, тепло-, звуко- и электроизоляционными свойствами. Применяются для заполнения многослойных конструкций, теплоизоляции холодильных установок, электроизоляции кабелей, изготовления плавучих средств, в производстве мебели и др. Наиболее широко используются пенопласты на основе полиуретанов, полистирола, поливинилхлорида.

  5. Источник: Современная энциклопедия. 2000.



  6. Строительный словарь

    Материалы, имеющие пористую структуру состоящую из несообщающихся ячеек. Имеют низкую плотность, высокие тепло- и звукоизоляционные характеристики. К недостаткам можно отнести горючесть.Источник: Словарь архитектурно-строительных терминов

  7. Источник: Строительный словарь



  8. Химическая энциклопедия

    (вспененные или ячеистые пластмассы, газонаполненные полимеры), композиц. материалы с каркасом (матрицей) из полимерных пленок, образующих стенки и ребра ячеек (пор), заполненных газом (преим. воздухом). Последние могут иметь сферич., эллиптич., полиэдрич. или др. форму. По физ. структуре П. аналогичны древесине, искусств. и натуральной коже, туфам, пористым керамич. и т. п. материалам. Объемное соотношение газовой и полимерной фаз в П. составляет обычно от 30: 1 до 1:10.

    Вспененные пластмассы, содержащие преим. автономные (закрытые) ячейки, наз. собственно П. (замкнутоячеистые П.), в отличие от поропластов-материалов, в к-рых преобладают сообщающиеся (открытые) ячейки или тупиковые капилляры-поры (открытопористые П.). Типичные представители замкнутоячеистых П.-пластики с полым сферич. наполнителем, т. наз. синтактные (синтактичные) П., или сферопласты. Полностью открытопористую структуру имеют сетчатые (ретикулированные) П., в к-рых дополнит. вскрытие ячеек достигается в результате разрушения их стенок выщелачиванием, направленным взрывом и др. спец. приемами.

    П. с модулем упругости выше 1000 МПа относят к эластичным, ниже 100 МПа-к жестким (полужесткие П. занимают промежут. положение). В особую категорию выделяют пенопласты интегральные.

    П. получены из большинства известных полимеров. Основу пром, ассортимента П. составляют пенополиуретаны, пе-нополистиролы, пенополивинилхлориды, пенополиолефины, пе-нофенопласты, карбамидо-формальдегидные пенопласты. Освоены также в пром. масштабе П. на основе полиамидов, полиимидов, поликарбонатов, модифицир. полифениленок-сида, поливинилформаля, эфиров целлюлозы, эпоксидных и ненасыщ. полиэфирных смол, полиизоциануратов, поликар-бодиимидов, а также CK (см. Пористая резина).

    В исходный олигомер или полимер вводят обычно неск. добавок, способствующих получению П. заданного качества. Это могут быть жидкий, твердый и (или) газообразный порообразователъ (вспенивающий агент), ПАВ, катализатор, ускоритель или ингибитор протекающих хим. р-ций, сшивающий агент, антиоксидант, светостабилизатор, антиста-тик, наполнитель (усиливающий, токопроводящий или др.), пластификатор, разбавитель, краситель или пигмент, мономерный или полимерный модификатор и др. Создаются комбинированные П. из смесей полимеров, в т. ч. с керамич. порошком, цементом, р-римым стеклом, измельченными отходами древесины.

    Добавки вводят чаще всего в готовый полимер (олигомер), реже-на стадии его синтеза.

    Получение. Независимо от типа и агрегатного состояния исходного олигомера или полимера в процессе произ-ва любого П. выделяют 3 осн. стадии: 1) смешение (в один или неск. приемов) составных компонентов (компаундированяе); 2) газонаполнение с вспениванием или без него (ключевая стадия, определяющая принципиальную технол. схему процесса); 3) фиксация (стабилизация) полученной микро-и макроструктуры П. Формование П. и изделий из них производят преим. в ходе вспенивания, реже-после завершения этой стадии. Возможности техн. реализации упомянутых стадий обширны даже для однотипных полимеров, что обусловило многообразие вариантов технологии и аппаратурного оформления действующих произ-в П.-периодич. или непрерывных, часто оснащенных автоматич. управлением.

    Вспенивают (с увеличением объема в 2-300 раз) р-ры, дисперсии, эмульсии, расплавы олигомеров и (или) линейных и сшитых полимеров, а также термопласты в размягченном состоянии. Процесс ведут в открытой ("свободное" вспенивание) или в замкнутой ("стесненное" вспенивание) формующей полости. В результате газового пересыщения в системе зарождаются "первичные" пузырьки газа, к-рые увеличиваются в объеме и статистически распределяются в полимерной матрице, находящейся в вязкотекучем состоянии и способной к упругопластич. деформациям.

    Фиксация образовавшейся ячеистой структуры достигается быстрым охлаждением (преим. термопластов) и (или) хим. или физ. сшиванием полимера.

    Вспенивание осуществляют твердыми (т. наз. порофора-ми) или жидкими порообразователями (газообразователя-ми), напр. хладонами, пентаном, CH2Cl2 и т. п. При повышении т-ры в результате внеш. подогрева или протекания во вспениваемой системе экзотсрмич. р-ций порробразователи начинают интенсивно испаряться. Этот же эффект достигается и при уменьшении давления в системе. Подобные легкокипящие порообразователи часто вводят уже на стадии синтеза термопластичных полимеров с целью получения полимерных частиц, способных увеличиваться в объеме при т-ре, превышающей т-ру размягчения полимера.

    Полимеры вспенивают и непосредственно газами. При этом р-р или расплав полимера насыщают под давлением N2, CO2, реже др. газом, к-рый при резком понижении давления высвобождается вследствие уменьшения р-римос-ти и вспенивает систему. В присут. подходящего ПАВ возможен непосредственный "захват" воздуха или др. газа жидкой фазой при интенсивном ее мех. перемешивании и (или) пневматич. продавливании через набор сит-сеток. Полученную пластичную пену фиксируют (отверждают) до начала ее разрушения (коалесценции).

    Универсален способ вспенивания газами, образующимися при термич., каталитич. или др. разложении твердых поро-образователей, а также при хим. р-ции их с к.-л. ингредиентом вспениваемой композиции. Так, толуилендиизоцианат и др. орг. изоцианаты, реагируя с водой, выделяют CO2; порошки Al, Zn, Fe при взаимод. с сильными к-тами выделяют H2, и т. п.

    Осн. требование при выборе порообразователя - обеспечение оптим. синхронизации между скоростями вспенивания и стабилизации (фиксации) образующейся ячеистой структуры П. При чрезмерно быстром вспенивании П. дают усадку, а преждеврем. потеря текучести чревата неполным заполнением формы пенистой массой и возникновением в готовом П. внутр. напряжений, проявляющихся в растрескивании П. В обоих случаях неизбежны дефекты ячеистой структуры: каверны, неправильной формы раковины, "рваные" поры, разноплотность по объему. Указанные порообразователи берут обычно в кол-ве 0,5-10% от массы полимера. При выборе порообразователей необходимо учитывать, что т-ра вспенивания термопласта даже при повышении давления не должна превышать его т-ру стеклования более чем на 50 0C.

    Меньшее развитие получило газонаполнение без вспенивания, используемое в осн. для получения поропластоз из порошкообразных композиций, содержащих добавки в-в, впоследствии удаляемых из сформированных материалов-заготовок экстрагированием подходящим р-рителем, вы-плавлснием, сублимацией, селективной деструкцией. Этот длительный и трудоемкий метод применяют при получении пористых структур из фторопластов и термостойких полимеров, а также при формовании микропористых разделит, мембран и искусств. кожи. Без вспенивания получают также синтактичные П., вводя в жидкое полимерное связующее (напр., в эпоксидные или полиэфирные смолы, полиуретаны) полые микро- или макросферич. наполнители, а затем отвсрждая матричный полимер. Твердая фаза в синтактич-ных П. состоит, помимо полимера, из углерода, стекла, керамики или др. неорг. материалов, из к-рых изготовлены сферич. наполнители.

    В целом при формовании П. и изделий из них применяют традиц. методы переработки полимерных материалов (см. Полимерных материалов переработка). Специфич. требование к перерабатывающему оборудованию: высокая герметизация для удержания вспенивающего газа, давление к-рого может достигать нсск. атмосфер.

    П. можно, напр., резать, сверлить обычными деревообрабатывающими инструментами, склеивать клеями, обычно применяемыми для полимеров, соответствующих полимеру матрицы.

    Свойства П. во многом определяются типом полимера-основы, относительным содержанием твердой и газовой фаз, параметрами морфологич. структуры (формой, размером, строением и ориентацией ячеек). Эти же факторы влияют на характер деформации и механизм разрушения П. под действием статич. или динамич. нагрузок. С увеличением степени сшивания полимера возрастают 3528-4.jpg, модуль упругости, формоустойчивость при повыш. т-рах, но уменьшается относит, удлинение и ухудшаются эластич. св-ва П. Для многих П., полученных "свободным" вспениванием, характерна анизотропия св-в; так, 3528-5.jpg и 3528-6.jpg могут быть на 20-40% больше вдоль направления течения композиции при вспенивании, чем в перпендикулярном к нему направлении.

    По уд. мех. прочности и жесткости интегральные П. намного превосходят соответствующие монолитные (невспененные) аналоги, поэтому замена последних на П. может обеспечить экономию до 50% полимера. Прочностные показатели интегральных П. зависят от св-в и толщины поверхностной корки; на ударопрочность заметно влияют жесткость сердцевины и размер ее ячеек.

    По теплоизоляц. св-вам П. превосходят традиц. теплои-золирующие материалы. Миним. коэф. теплопроводности [менее 0,02 Вт/(м

  9. Источник: Химическая энциклопедия



  10. Энциклопедический словарь

    пенопла́сты

    один из видов газонаполненных пластиков.

    * * *

    ПЕНОПЛАСТЫ

    ПЕНОПЛА́СТЫ, один из видов газонаполненных пластиков(см. ГАЗОНАПОЛНЕННЫЕ ПЛАСТИКИ).

  11. Источник: Энциклопедический словарь



  12. Большой энциклопедический политехнический словарь

    то же, что газонаполненные полимеры.

  13. Источник: Большой энциклопедический политехнический словарь



  14. Dictionnaire technique russo-italien

    м. мн. ч.

    materie f pl plastiche espanse, espansi m pl ( см. тж пенопласт)

    - гибкие пенопласты

    - жёсткие пенопласты

    - пенопласты с закрытыми порами

    - пенопласты с открытыми порами

  15. Источник: Dictionnaire technique russo-italien



  16. Большой Энциклопедический словарь

  17. Источник: