«Варинга проблема»

Варинга проблема в словарях и энциклопедиях

Значение слова «Варинга проблема»

Источники

    Большая Советская энциклопедия

    проблема теории чисел, сформулированная (без доказательства) английским математиком Э. Варингом в 1770; любое целое число Niможет быть представлено в виде суммы:

    N=a1n+...+ank

    некоторого числа k слагаемых, каждое из которых есть n-я степень целого положительного числа, причём число слагаемых k зависит только от n. Частным случаем В. п. является теорема Лагранжа о том, что каждое N есть сумма четырёх квадратов. Первое общее (для любого n) решение В. п. дано Д. Гильбертом (1909) с очень грубой оценкой количества слагаемых k в зависимости от п. Более точные оценки k получены в 20-х гг. 20 в. Г. Харди и Дж. Литлвудом, а в 1934 И. М. Виноградовымс помощью созданного им метода тригонометрических сумм были получены результаты, близкие к окончательным. Элементарное решение В. п. дано в 1942 Ю. В. Линником. Особое значение В. п. состоит в том, что при её исследовании были созданы мощные методы аналитической теории чисел.

    Лит.: Хинчин А. Я., Три жемчужины теории чисел, 2 изд., М. — Л., 1948; Виноградов И. М., Избранные труды, М., 1952.

    А. А. Карацуба.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Математическая энциклопедия

    - проблема теории чисел, сформулированная Э. Варингом (Е. Waring) в 1770 в следующем виде: всякое натуральное число есть сумма четырех квадратов, девяти кубов, девятнадцати четвертых степеней. Другими словами: для любого существует такое , зависящее только от п, что любое натуральное число есть сумма А: п-х степеней неотрицательных целых чисел. Первое общее решение В. п. с очень грубой оценкой величины kв зависимости от пдано в 1909 Д. Гильбертом (D. Hilbert), в связи с чем В. п. иногда наз. проблемой Гильберта- Варннга. Если через обозначить число решений в целых неотрицательных числах уравнения

    то теорема Гильберта утверждает, что существует , для к-рого при любом . В 1928 Г. X. Харди и Дж. И. Литлвуд (G. Н. Hardy, J. Е. Littlewood), применив к В. п. круговой метод, доказали, что при для имеет место асимптотич. формула вида

    где , а н некоторые постоянные. Следовательно, при уравнение (1) имеет решение. В связи с этим результатом возникли три проблемы: установить порядок трех величин ,

    - наименьших целых чисел, для к-рых: а) уравнение (1) разрешимо при и ; б) уравнение (1) разрешимо прп н ; в) для величины при имеет место асимптотнч. формула (2).

    а) Известно, что . В 1934 И. М. Виноградов прп помощи созданного им метода доказал, что

    .

    Кроме того, имеется много результатов относительно G(n).для небольших значений п:(X. Давенпорт, Н. Davenport, 1939), (Ю. В. Линннк, 1942).

    б) В 1936 Л. Диксон н С. Пиллан (L. Dickson, S. Pillai), применив Виноградова метод, доказали, что

    для всех , для к-рых

    Последнее же условие доказано К. Малером (К. Mahler) в 1957 для всех достаточно больших п.

    в) Наилучший результат принадлежит И. М. Виноградову, к-рый доказал, что

    Элементарное доказательство В. п. дано Ю. В. Линником в 1942. Существует много различных обобщений

    В. п. (переменные пробегают нек-рое подмножество множества натуральных чисел; вместо одночленов в представлении числа Nрассматриваются многочлены ; вместо уравнения (1) рассматривается сравнение и т. д.).

    Особое значение В. п. состоит в том, что пря ее решении созданы мощные методы аналитической теории чисел.

    Лит.[1] Виноградов И. М., Избранные труды, М., 1952; [2] его же. Метод тригонометрических сумм в теории чисел, М., 1971; [3] Xуа Ло-ген, Метод тригонометрических сумм и его применение в теории чисел, пер. е нем., М., 1964; [4] Делоне Б Н., Петербургская школа теории чисел, М.- Л., 1947; [5] Xинчин А. Я., Три жемчужины теории чисел, 2 изд., М.-Л., 1948. А. А. Карацуба.

  3. Источник: Математическая энциклопедия