«Верхняя и нижняя грани»

Верхняя и нижняя грани в словарях и энциклопедиях

Значение слова «Верхняя и нижняя грани»

Источники

    Большая Советская энциклопедия

    (математические)

    важные характеристики множеств на числовой прямой. Верхняя грань (В. г.) множества Е действительных чисел — наименьшее из всех чисел А, обладающих тем свойством, что для любого х из Е выполняется неравенство хА. Иными словами, В. г. множества Е — это такое число a, что для любого x из Е выполняется неравенство xaи для любого a' <>а найдётся число x0 из Е, для которого x0 > a'. В этом определении множество Е предполагается не пустым. Для существования В. г. необходимо и достаточно, чтобы множество Е было ограничено сверху, то есть, чтобы существовали такие числа А, что хАдля любого x из Е. Это предложение представляет собой одну из форм принципа непрерывности числовой прямой (так называемый принцип непрерывности Вейерштрасса). Если среди чисел множества Е есть наибольшее, то оно и является В. г. Е. Однако, если среди чисел Е нет наибольшего, то это множество всё же может иметь В. г. Например, В. г. множества всех отрицательных чисел равна 0. Множество всех положительных чисел не ограничено сверху и поэтому не имеет В. г.; иногда говорят, что его В. г. равна + ∞. Аналогично понятию В. г. множества определяется нижняя грань (Н. г.) множества Е как наибольшее из чисел В, обладающих тем свойством, что для любого х из Е выполняется неравенство x ≥ B. В. г. множества Е обозначается sup Е (от латинского supremum — наивысший); Н. г. обозначается inf Е (от латинского infirnum — наинизший). Важность понятий В. г. и Н. г. для математического анализа была выяснена немецким математиком К. Вейерштрассом, они являются основными для строгого изложения начал математического анализа. Аналогично понятию В. г. (Н. г.) для числовых множеств вводятся понятия В. г. (Н. г.) для любых частично упорядоченных множеств.

    Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 6 изд.. т. 1, М., 1966.

    С. Б. Стечкин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Математическая энциклопедия

    характеристики множеств на прямой. Верхняя грань нек-рого множества действительных чисел - наименьшее число, ограничивающее сверху это множеетво. Нижняя грань данного множества - наибольшее число, ограничивающее его снизу. Более подробно: пусть задано нек-рое подмножество Xдействительных чисел. Число b наз. его верхней гранью (в. г.) и обозначается sup X(от латинского слова supremum - наивысшее), если для каждого числа выполняется неравенство , и каково бы ни было существует такое , что . Число наз. нижней гранью (н. г.) множества п обозначается (от латинского слова infimum - наинизшее), если для каждого выполняется неравенство , и каково бы ни было существует такое , что

    Примеры:

    если множество Xсостоит из двух точек то

    Эти примеры показывают, в частности, что в. г. (н. г.) может как принадлежать этому множеству (напр., в случае отрезка ), так и не принадлежать ему (напр., в случае интервала ). Если в нек-ром множестве существует наибольшее (наименьшее) число, то оно, очевидно, и является в. г. (н. г.) этого множества.

    В. г. (н. г.) не ограниченного сверху (снизу) множества наз. символ (соответственно символ ).

    Если N - множество натуральных чисел: то

    Если множество всех целых чисел, положительных и отрицательных, то

    Всякое непустое множество действительных чисел имеет и притом единственную в. г. (н. г.) конечную или бесконечную. При этом всякое ограниченное сверху непустое множество имеет конечную в. г., а всякое ограниченное снизу - конечную н. г.

    Иногда в. г. (н. г.) множества наз. его точной верхней (нижней) гранью, понимая в этом случае под термином в. г. (н. г.) множества любое число, ограничивающее его сверху (снизу). Реже, вместо термина в. г. (н. г.) множества, в том или ином из вышеуказанных смыслов, употребляется термин верхняя (нижняя) граница множества. В. г. (н. г.) функции, принимающей действительные значения, в частности последовательности действительных чисел, называют в. г. (н. г.) множества ее значений.

    Лит.:[1] Ильин В. А., Позняк Э. <Г., Основы математического анализа, 3 изд.. ч. 1, М., 1971; [2] Кудрявцев Л. Д.. Математический анализ, 2 изд., т. 1, М., 1973; [3] Никольский С. М., Куре математического анализа, т. 1, М., 1973. Л. Д. Кудрявцев.

  3. Источник: Математическая энциклопедия