Словарь Брокгауза и Ефрона

    "Способность каждого простого тела соединяться с другими элементами и образовывать с ними сложные тела, в большей или меньшей степени склонные давать новые, сложнейшие соединения, составляет основной характер каждого элемента. Так, напр., сера соединяется легко и с металлами, и с кислородом, и с хлором, и с углеродом, серебро же и золото трудно вступают в соединения, и многие происходящие из них соединения непрочны, легко разлагаются при накаливании. Причину, или силу, побуждающую вещество к X. изменениям, должно считать в то же время причиной, удерживающей разнородные элементы в соединении и придающей образовавшимся веществам известную степень прочности. Эту причину, или силу, называют сродством, или X. сродством (affinitas)" (Д. Менделеев, "Основы химии"). Возникновение понятия о X. сродстве относится еще к временам алхимии, и самое это слово обязано своим происхождением тому мнению, что способность тел вступать в соединения обуславливается близостью, сходством соединяющихся тел. Такой взгляд был очень распространен в прежнее время, и мы его встречаем в трудах многих исследователей в различной форме. Так, Бекер приводит слова Гиппократа: όμοίον έρχεται πρός τό όμοίοι, и трактует их в том смысле, что тела подобные более охотно соединяются между собой. Даже Лавуазье, говоря, что металлы должны соединяться между собой, поясняет: quae sunt eadem uni tertio sunt eadem inter se. В противоположность этому взгляду высказывался и другой, по которому, наоборот, несходство является причиной соединения. Так, Боэргаве образование X. соединений уподобляет браку, при котором происходит соединение двух противоположных начал — мужского и женского; соединение тел, — говорит он, — происходит magis ex amore, quam ex odio — свет, блеск и шум, которым сопровождается образование соединения, подобны празднествам, которыми сопровождаются брачные торжества, и поэтому необходимым условием для образования соединения он считает различие, противоположность свойств соединяющихся тел. Эти первые наивные представления о природе X. сродства сменились более научными попытками свести силу X. сродства на другие известные физические силы: сцепление и притяжение. Первую стройную систему в этом роде представил шведский ученый Бергман. По его воззрениям, X. сродство есть притяжение, которое тела оказывают друг на друга на весьма малых расстояниях. Величина этого притяжения у различных тел различна, и ею определяется способность тел вступать в соединение. Чтобы судить о сродстве различных тел, необходимо сравнивать их притяжение к какому-нибудь третьему. Если, напр., нужно сравнить сродства тел А и B, то их нужно привести в соприкосновение с третьим телом С. Тогда с ним соединится то тело, которое оказывает большое притяжение, и оно нацело овладеет телом C. Таким образом, при X. реакции между телами А и В происходит борьба из-за обладания телом C, и победителем из этой борьбы выйдет то тело, которое обладает более сильным сродством. Эта теория избирательного сродства была развита Бергманом на реакциях вытеснения. На основании таких реакций для каждого данного тела можно было определить, путем опыта, в каком порядке изменяется сродство других тел к нему, и составить для него таблицу сродства. Сам Бергман составил 59 таких таблиц, главными образом для различных кислот и оснований. Таким образом, согласно теории Бергмана, направление X. реакции определяется исключительно X. сродством реагирующих тел, причем реакция совершается до конца. Почти одновременно с этой теорией французский ученый Бертолле развивал другую теорию, которая, хотя тоже считала X. сродство притяжением, но приходила к выводам, противоположным теории Бергмана. Бертолле исходил из той мысли, что X. сродство есть особого рода притяжение между частицами, и по аналогии со всемирным тяготением полагал, что величина этого притяжения должна зависеть от массы действующих тел. Поэтому, согласно теории Бертолле, результат X. реакции зависит не только от X. сродства тел, но и от количеств их. Поэтому, если два тела А и В заставить реагировать с третьим телом С, то тело С распределится между телами А и В сообразно их сродствам и массам. Таким образом, в случае взаимодействия этих трех тел, ни реакция между А и С, ни реакция между В и С не дойдет до конца, но всегда наступит равновесие, когда одновременно будут существовать тела АС и ВС и свободные А и В. Коэффициент распределения тела С между А и В может быть изменен, если одно из действующих тел будет браться в избытке, и при большом избытке тело с малым сродством может почти нацело отобрать тело С от своего соперника. Как частный случай теории Бертолле являются те реакции, при которых один из продуктов реакции удаляется из круга действия, в этом случае реакция дойдет до конца, причем нацело произойдет образование того тела, которое уходит из сферы действия. Это положение в применении к двойному соляному обмену известно под именем закона Бертолле.

    Теория Бертолле, хотя и показала несостоятельность взглядов Бергмана, все же не разрешила вопроса о X. сродстве, так как она не дала возможности измерять величину X. сродства. Поэтому возникли новые попытки для решения этого вопроса, основанные на последовавших открытиях в области электричества. Дэви, получивший при помощи гальванического тока натрий и калий, высказал взгляд, что X. сродство обуславливается электричеством. Развитие этой мысли легло в основание электрохимической теории Берцелиуса, который рассматривал атомы, как обладающие полярностью, причем на одном конце атома электричество более сгущено, чем на другом. Сообразно с этим взглядом, он классифицировал все элементы в один ряд, составленный таким образом, что каждый элемент в этом ряду является электроотрицательным по отношению к предшествующему и электроположительным по отношению к последующему. Порядок, в котором он расположил элементы, следующий: O, S, N, Cl, Br, S, Se, P, As, Cr, Во, С, Sb, Te, Si, H, Au, Pt, Ag, Cu, Bi, Sn, Pb, Cd, Со, Ni, Fe, Zn, Μn, Al, Mg, Ca, Sr, Ba, Li, Na, К. Чем дальше отстоят друг от друга элементы в этом ряду, тем больше в них противоположные электрические заряды и тем прочнее они дают соединение. Таким образом, согласно этой теории, всякое X. соединение состоит из двух электрически противоположных частей. Этот взгляд лег в основание так называемого дуализма. Унитарная теория, показавшая несостоятельность такого взгляда, положила конец и электрохимической теории Берцелиуса, которая была господствующей в середине XIX века. Крупные открытия в области физики в середине прошлого столетия, положившие начало учению об энергии, дали повод к новым попыткам для разрешения вопроса о X. сродстве. В этом отношении самое крупное место занимают Бертло и Томсен. Исследования этих ученых положили основание термохимии и химической механике и представили попытку измерять X. сродство при помощи той работы, которую производит химическая реакция. Основной принцип был формулировав следующим образом: работа сродства измеряется количеством теплоты, выделяемой X. превращениями, произведенными во время соединения. Это положение, однако, нельзя считать решением вопроса о X. сродстве, во-первых, потому, что не вся теплота эквивалентна работе (второй принцип термодинамики), а во-вторых, потому, что при химической реакции одновременно столько происходит и физических, и X. превращений, сказывающихся на тепловом эффекте, что выделить из общего количества теплоты, развиваемой реакцией, ту часть, которая отвечает только X. превращениям, возможно, лишь делая целый ряд совершенно произвольных допущений и предположений (см. Термохимия). Многочисленные исследования, произведенные в этой области, раскрыли очень важные стороны, касающиеся химической энергии и ее превращений в другие виды энергии. Они показали, что химическая энергия подчиняется тем же законам, что и другие виды энергии, и что при известных условиях к X. превращениям применимы оба закона термодинамики, с помощью которых может быть установлена количественным образом связь между различными факторами, участвующими в Х. превращениях, но вопрос об сущности и измерении X. сродства остается и до сих пор таким же открытым и загадочным, как и прежде. Рассматривая всю совокупность элементов, известных в настоящее время, мы видим, что X. сродство каждого из них к другим исключительно определяется его индивидуальными свойствами; периодическая система вносит известную правильность и закономерность в эту область и освещает даже такие удивительные тела, как недавно открытые гелий, неон, аргон, криптон и ксенон, которые, как совершенно неспособные к соединениям, совершенно лишенные X. сродства, она относит к нулевой группе, но кроме этого общего наведения мы до сих пор не имеем никакого закона, позволяющего а priori решить, в какую сторону направится действие X. сродства. Таким образом, все попытки свести X. сродство на другие виды энергии: притяжение, теплоту, электричество, движение нельзя считать удовлетворительными, и X. сродство следует считать независимой и основной причиной, обуславливающей существование Х. явлений.

    А. Байков.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    термин, применяющийся для характеристики способности данных веществ к химическому взаимодействию между собой или для характеристики степени устойчивости получающегося при этом соединения к разложению на исходные вещества. В разное время Х. с. пытались оценивать по разным параметрам реакций. В середине 19 в. в качестве меры Х. с. начали использовать количество тепла, выделяющегося при реакции. Однако существование самопроизвольно протекающих эндотермических реакций показало ограниченную применимость этого положения. Я. Вант-Гофф, исходя из второго закона термодинамики, доказал (1883), что направление самопроизвольной реакции определяется не тепловым её эффектом, а максимальной полезной работой. При этом он вывел уравнение, количественно выражающее зависимость указанной величины от концентрации веществ, участвующих в реакции, и зависимость направления реакции от соотношения между этими концентрациями. В настоящее время вместо максимальной работы рассматривают изменения изобарно-изотермического потенциала (Гиббсова энергия) ΔG — для реакций, происходящих при постоянных температуре и давлении, или изменение изохорно-изотермического потенциала (Гельмгольцева энергия) ΔA — для реакций, происходящих при постоянных температуре и объёме. Понятие «Х. с.» при этом уже не применяется.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Большой англо-русский и русско-английский словарь

    chemical affinity

  5. Источник: Большой англо-русский и русско-английский словарь



  6. Химическая энциклопедия

    (сродство р-ции), параметр термодинамич. системы, характеризующий отклонение от состояния хим. равновесия. Если р-цию записать в виде ур-ния:

    5099-25.jpg

    где L1,..., Lk - исходные реагенты, Lk+1,..., Lk+m -> продукты р-ции, v1,..., k и k+1,..., k+m -> стехиометрич. коэф., то X. с. А равно:

    5099-26.jpg

    где 5099-27.jpg5099-28.jpg - хим. потенциалы соотв. исходных реагентов и продуктов. В состоянии равновесия

    5099-29.jpg

    При A > 0 неравновесное состояние системы характеризуется избытком исходных реагентов и для достижения равновесия р-ция должна идти слева направо; при А <0, наоборот, система содержит избыток продуктов и р-ция должна идти в противоположном направлении. X. с. равно макс. полезной работе р-ции, взятой со знаком минус. X. с. определяет собственно хим. процесс, связанный лишь с изменением состава системы и не связанный с работой по преодолению сил внеш. давления (см. Максимальная работа реакции).

    Единица измерения X. с.- Дж/моль.

    Стандартное X. с. А 0 определяется соотношением:

    5099-30.jpg

    где 5099-31.jpg - стандартные хим. потенциалы соотв. реагентов и продуктов (см. Стандартное состояние).Стандартное X. с. связано со стандартным изменением энергии Гиббса 5099-32.jpg и константой равновесия р-ции К:

    5099-33.jpg

    где Т - абс. т-ра; R - газовая постоянная.

    В хим. термодинамике X. с. рассматривается в сочетании с хим. переменной 5099-34.jpg (наз. также степенью полноты р-ции, числом пробегов р-ции). Если в системе изменение чисел молей компонентов i происходит лишь в результате хим. р-ции (закрытая система), то i связаны соотношением:

    5099-35.jpg

    Интегрирование этого соотношения приводит к выражениям:

    5099-36.jpg5099-37.jpg

    где 5099-38.jpg5099-39.jpg - соотв. числа молей исходных компонентов и продуктов в начальный момент времени. Эти выражения являются определяющими для хим. переменной 5099-40.jpg Энергия Гиббса системы

    5099-41.jpg

    С помощью X. с. и хим. переменной можно провести термодинамич. описание закрытой системы, где обратимо протекает хим. р-ция, способом, отличным от традиционного описания Гиббса. Цель подобного описания - уменьшить число переменных i, j благодаря учету стехиометрии р-ции. Полные дифференциалы термодинамических потенциалов такой системы - внутр. энергии U, энтальпии H, энергии Гиббса G, свободной энергии Гельмгольца F - м. б. представлены в виде ф-л:

    5099-42.jpg

    (S - энтропия системы; V - объем; р - давление). Отсюда следует:

    5099-43.jpg

    т. е. X. с. является производной любого термодинамич. потенциала по хим. переменной при постоянстве естеств. переменных каждого из потенциалов. В этих выражениях член 5099-44.jpg заменяет сумму 5099-45.jpg используемую при традиционном (Гиббсовом) описании. При этом вместо числа переменных (k + т )достаточно одной независимой переменной 5099-46.jpg Если в системе протекает r независимых р-ций, для описания системы нужно ввести rхим. переменных и r величин X. с. Л.

    X. с. и хим. переменную 5099-47.jpg обычно относят к т. наз. внутренним параметрам макроскопич. системы. Это означает, что, во-первых, Аи 5099-48.jpg однозначно выражаются через параметры системы (хим. потенциалы, числа молей) и стехиометрич. коэф. и, во-вторых, A и 5099-49.jpg не характеризуют однозначно состояние термодинамич. равновесия (А= 0 для всех состояний равновесия). В термодинамике необратимых процессов величина А/Т рассматривается как обобщенная термодинамич. сила, а скорость хим. р-ции 5099-50.jpg - время) - как обобщенный поток. Произведение (A/T)w обусловливает произ-во энтропии в системе вследствие хим. реакции. Вблизи состояния термодинамич. равновесия постулируется связь между wи А/Т типа:

    5099-51.jpg

    коэф. L хим наз. хим. проводимостью.

    Понятие X. с. введено Т. де Донде в 1922.

    Лит. см. при ст. Термодинамика необратимых процессов, Термодинамические потенциалы.

    М. В. Коробов.

  7. Источник: Химическая энциклопедия



  8. Русско-английский политехнический словарь

    chemical affinity

    * * *

    chemical affinity

  9. Источник: Русско-английский политехнический словарь



  10. Dictionnaire technique russo-italien

    affinità chimica

  11. Источник: Dictionnaire technique russo-italien