Большая Советская энциклопедия

    цветное зрение, цветовосприятие, способность глаза человека и многих видов животных с дневной активностью различать цвета, т. е. ощущать отличия в спектральном составе видимых излучений и в окраске предметов. Видимая часть спектра включает излучения с разной длиной волны, воспринимаемые глазом в виде различных цветов. Ц. з. обусловлено совместной работой нескольких светоприёмников, т. е. фоторецепторов (См. Фоторецепторы)сетчатки разных типов, отличающихся спектральной чувствительностью. Фоторецепторы преобразуют энергию излучения в физиологическое возбуждение, которое воспринимается нервной системой как различные цвета, т.к. излучения возбуждают приёмники в неодинаковой степени. Спектральная чувствительность фоторецепторов разного типа различна и определяется спектром поглощения зрительных пигментов (См. Зрительный пигмент). Каждый светоприёмник в отдельности не способен различать цвета: все излучения для него отличаются лишь одним параметром — видимой яркостью, или светлотой, т.к. свет любого спектрального состава оказывает качественно одинаковое физиологическое воздействие на каждый из фотопигментов. В связи с этим любые излучения при определённом соотношении их интенсивностей могут быть полностью неразличимы друг от друга одним приёмником. Если в сетчатке (См. Сетчатка) есть несколько приёмников, то условия равенства для каждого из них будут различными. Поэтому для сочетания нескольких приёмников многие излучения не могут быть уравнены никаким подбором их интенсивностей.

    Основы современных представлений о Ц. з. человека разработаны в 19 в. английским физиком Т. Юнгом и немецким учёным Г. Гельмгольцем в виде т. н. трёхкомпонентной, или трихроматической, теории цветовосприятия. Согласно этой теории, в сетчатке глаза человека имеются три типа фоторецепторов (колбочковых клеток (См. Колбочковые клетки)), чувствительных в разной степени к красному, зелёному и синему свету. Однако физиологический механизм цветовосприятия позволяет различать не все излучения. Так, смеси красного и зелёного в определённых соотношениях неотличимы от жёлто-зелёного, жёлтого и оранжевого излучений; смеси синего с оранжевым могут быть уравнены со смесями красного с голубым или с сине-зелёным. У некоторых людей наследственно отсутствует один (см. Дальтонизм) или два светоприёмника из трёх, в последнем случае Ц. з. отсутствует.

    Ц. з. свойственно многим видам животных. У позвоночных (обезьяны, многие виды рыб, земноводные), а из насекомых у пчёл и шмелей Ц. з. трихроматическое, как и у человека. У сусликов и многих видов насекомых Ц. з. дихроматическое, т. е. основано на работе двух типов светоприёмников, у птиц и черепах, возможно, — четырёх. Для насекомых видимая область спектра смещена в сторону коротковолновых излучений и включает ультрафиолетовый диапазон. Поэтому мир красок насекомого существенно отличается от нашего.

    Основное биологическое значение Ц. з. для человека и животных, существующих в мире несамосветящихся объектов, — правильное узнавание их окраски, а не просто различение излучений. Спектральный состав отражённого света зависит как от окраски предмета, так и от падающего света и поэтому подвержен значительным изменениям при перемене условий освещения. Способность зрительного аппарата правильно узнавать (идентифицировать) окраску предметов по их отражательным свойствам в меняющихся условиях освещения называются константностью восприятия окраски (см. Цвет). Ц. з. — важный компонент зрительной ориентации животных. В ходе эволюции многие животные и растения приобрели разнообразные средства сигнализации, рассчитанные на способность животных-«наблюдателей» воспринимать цвета. Таковы ярко окрашенные венчики цветков растений, привлекающие насекомых и птиц — опылителей; яркая окраска плодов и ягод, привлекающая животных — распространителей семян; предупреждающая и отпугивающая окраска ядовитых животных и видов, им подражающих; «плакатная» раскраска многих тропических рыб и ящериц, имеющая сигнальное значение в территориальных взаимоотношениях; яркий брачный наряд, носящий сезонный или постоянный характер, свойственный множеству видов рыб, птиц, пресмыкающихся, насекомых; наконец, специальные средства сигнализации, облегчающие у рыб и птиц взаимоотношения между родителями и потомством.

    См. также Биооптика, Глаз, Зрение, Зрения органы.

    Лит.: Нюберг Н. Д., Курс цветоведения, М. — Л., 1932; Кравков С. В., Цветовое зрение, М., 1951; Канаев И. И., Очерки из истории проблемы физиологии цветового зрения от античности до XX века, Л., 1971; физиология сенсорных систем, ч. 1, Л., 1971 (Руководство по физиологии); Орлов О. Ю., Об эволюции цветового зрения у позвоночных, в кн.: Проблемы эволюции, т. 2, Новосиб., 1972.

    О. Ю. Орлов.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ЦВЕТОВОЕ ЗРЕНИЕ - способность глаза многих животных и человека различать цветность видимых объектов. Свойственно многим насекомым, ракообразным, рыбам, земноводным, птицам, приматам и др.; отсутствует у животных, ведущих ночной образ жизни. У позвоночных осуществляется колбочковыми клетками сетчатки глаза.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Психологический словарь

    Цветовое зрение - способность различать отдельные поддиапазоны электромагнитного излучения в диапазоне видимого спектра (369 - 760 нм.). Для объяснения этой способности была предложена трехкомпонентная теория цветового зрения, в соответствии с которой предполагается, что в зрительной сетчатке существуют три вида рецепторов (колбочки), избирательно реагирующих соответственно на красный цвет, зеленый и синий. Сигналы, поступающие от периферических отделов зрительного аппарата, в его высших отделах принимаются спектрально чувствительными нервными клетками, которые возбуждаются при действии одного из цветов спектра и тормозятся при действии другого (голубой - желтый, голубой - зеленый, зеленый - красный).

  5. Источник: Психологический словарь



  6. Медицинская энциклопедия

    (синонимы: цветоощущение, цветоразличение, хроматопсия)

    способность человека различать цвет видимых объектов.

    В основе цветового восприятия лежит свойство света вызывать определенное зрительное ощущение в соответствии со спектральным составом отражаемого или испускаемого излучения. Видимая часть спектра светового излучения образована волнами различной длины, которые воспринимаются глазом в виде семи основных цветов, выделяемых в зависимости от длины волны света в три группы. Длинноволновое световое излучение вызывает ощущение красного и оранжевого цвета, средневолновое — желтого и зеленого, коротковолновое — голубого, синего и фиолетового. Цвета разделяют на хроматические и ахроматические. Хроматические цвета обладают тремя основными качествами: цветовым тоном, который зависит от длины волны светового излучения; насыщенностью, зависящей от доли основного цветового тона и примесей других цветовых тонов; яркостью цвета, т.е. степенью близости его к белому цвету. Различное сочетание этих качеств дает большое разнообразие оттенков хроматического цвета. Ахроматические цвета (белый, серый, черный) различаются лишь яркостью. При смешении двух спектральных цветов с разной длиной волны образуется результирующий цвет. Каждый из спектральных цветов имеет дополнительный цвет, при смешении с которым образуется ахроматический цвет — белый или серый. Многообразие цветовых тонов и оттенков может быть получено оптическим смешением всего трех основных цветов — красного, зеленого и синего. Количество цветов и их оттенков, воспринимаемых глазом человека, необычайно велико и составляет несколько тысяч.

    Цвет оказывает воздействие на общее психофизиологическое состояние человека и в известной мере влияет на его трудоспособность. Наиболее благоприятное влияние на зрение оказывают малонасыщенные цвета средней части видимого спектра (желто-зелено-голубые), так называемые оптимальные цвета. Для цветовой сигнализации используют, наоборот, насыщенные (предохранительные) цвета.

    Физиология Ц. з. недостаточно изучена. Из предложенных гипотез и теорий наибольшее распространение получила трехкомпонентная теория, основные положения которой впервые были высказаны М.В. Ломоносовым в 1756 г., а в дальнейшем развиты Юнгом (Т. Young, 1802) и Гельмгольцем (Н. L.F. Helmholtz, 1866) и подтверждены данными современных морфофизиологических и электрофизиологических исследований. Согласно этой теории в сетчатке глаза имеется три вида воспринимающих рецепторов, расположенных в колбочковом аппарате сетчатки, каждый из которых возбуждается преимущественно одним из основных цветов — красным, зеленым или синим, однако в определенной степени реагирует и на другие цвета. Изолированное возбуждение одного вида рецепторов вызывает ощущение основного цвета. При равном раздражении всех трех видов рецепторов возникает ощущение белого цвета. В глазу происходит первичный анализ спектра излучения рассматриваемых предметов с раздельной оценкой участия в них красной, зеленой и синей областей спектра. В коре головного мозга происходит окончательный анализ и синтез светового воздействия. В соответствии с трехкомпонентной теорией Ц. з. нормальное цветоощущение называется нормальной трихромазией, и лица с нормальным Ц. з. — нормальными трихроматами.

    Одной из характеристик цветового зрения является порог цветоощущения — способность глаза воспринимать цветовой раздражитель определенной яркости. На восприятие цвета оказывает влияние сила цветового раздражителя и цветовой контраст. Для цветоразличения имеет значение яркость окружающего фона. Черный фон усиливает яркость цветных полей, но в то же время несколько ослабляет цвет. На цветовосприятие объектов существенно влияет также цветность окружающего фона. Фигуры одного и того же цвета на желтом и синем фоне выглядят по-разному (явление одновременного цветового контраста). Последовательный цветовой контраст проявляется в видении дополнительного цвета после воздействия на глаз основного. Например, после рассматривания зеленого абажура лампы белая бумага вначале кажется красноватой. При длительном воздействии цвета на глаз отмечается снижение цветовой чувствительности сетчатки (цветовое утомление) вплоть до такого состояния, когда два разных цвета воспринимаются как одинаковые. Это явление наблюдается у лиц с нормальным Ц. з. и является физиологическим, однако при поражении желтого пятна сетчатки, невритах и атрофии зрительного нерва явления цветового утомления наступают быстрее.

    Нарушения Ц. з. могут быть врожденными и приобретенными. Врожденные расстройства цветового зрения наблюдаются чаще у мужчин. Они, как правило, стабильны и проявляются понижением чувствительности преимущественно к красному или зеленому цвету. В группу лиц с начальными нарушениями цветового зрения относят и тех, кто различает все главные цвета спектра, но имеет пониженную цветовую чувствительность, т.е. повышенные пороги цветоощущения. Согласно классификации Криса — Нагеля, все врожденные расстройства Ц. з. включают три вида нарушений; аномальную трихромазию, дихромазию и монохромазию. При аномальной трихромазии, которая встречается наиболее часто, наблюдается ослабление восприятия основных цветов: красного — протаномалия, зеленого — дейтераномалия, синего — тританомалия. Дихромазия характеризуется более глубоким нарушением Ц. з., при котором полностью отсутствует восприятие одного из трех цветив: красного (протанопия), зеленого (дейтеранопия) или синего (тританопия). Монохромазия (ахромазия, ахроматопсия) означает отсутствие цветового зрения или цветовую слепоту, при которой сохраняется лишь черно-белое восприятие. Все врожденные расстройства Ц. з. принято называть дальтонизмом, по имени английского ученого Дальтона (J. Dalton), страдавшего нарушением восприятия красного цвета и описавшего это явление. Врожденные нарушения Ц. з. не сопровождаются расстройством других зрительных функций и выявляются лишь при специальном исследовании.

    Приобретенные расстройства Ц. з. встречаются при заболеваниях сетчатки, зрительного нерва или ц.н.с.; они могут наблюдаться в одном или обоих глазах, обычно сопровождаются нарушением восприятия трех основных цветов сочетаются с другими расстройствами зрительных функций. Приобретенные расстройства Ц. з. могут проявляться также в виде ксантопсии (Ксантопсия), эритропсии (Эритропсия) и цианопсии (восприятие предметов в синем цвете, наблюдающееся после удаления хрусталика при катаракте). В отличие от врожденных нарушений, имеющих постоянный характер, приобретенные расстройства Ц. з. исчезают с устранением их причины.

    Исследование Ц. з. проводят преимущественно лицам, профессия которых требует нормального цветоощущения, например занятых на транспорте, в некоторых отраслях промышленности, военнослужащих отдельных родов войск. С этой целью применяют две группы методов — пигментные с использованием цветных (пигментных) таблиц и различных тест-объектов, например кусочков картона разного цвета, и спектральные (с помощью аномалоскопов). Принцип исследования по таблицам основан на различении среди фоновых кружочков одного цвета цифр или фигур, составленных из кружков той же яркости, но другого цвета. Лица с расстройством Ц. з., различающие в отличие от трихроматов, объекты только по яркости, не могут определить предъявляемые им фигурные или цифровые изображения (рис.). Из цветных таблиц наибольшее распространение получили полихроматические таблицы Рабкина, основная группа которых предназначена для дифференциальной диагностики форм и степени врожденных расстройств Ц. з. и отличия их от приобретенных. Существует также контрольная группа таблиц — для уточнения диагноза в сложных случаях.

    При выявлении нарушений Ц. з. используют также стооттеночный тест Фарнсуорта — Мензелла, основанный на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга. От испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении Ц. з. кусочки картона располагаются неправильно, т.е. не в том порядке, в каком они должны следовать друг за другом. Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест, в котором используют всего 15 цветных тест-объектов.

    Более тонким методом диагностики расстройств Ц. з. является аномалоскопия — исследование с помощью специального прибора аномалоскопа. Принцип работы прибора основан на трехкомпонентности Ц. з. Сущность метода заключается в уравнении цвета двухцветных тестовых полей, из которых одно освещается монохроматическим желтым цветом, а второе, освещаемое красным и зеленым, может менять цвет от чисто-красного до чисто-зеленого. Обследуемый должен подобрать путем оптического смешения красного и зеленого желтый цвет, соответствующий контрольному (уравнение Релея). Человек с нормальным Ц. з. правильно подбирает цветовую пару смешением красного и зеленого. Человек с нарушением Ц. з. с этой задачей не справляется. Метод аномалоскопии позволяет определить порог Ц. з. раздельно для красного, зеленого, синего цвета, выявить нарушения Ц. з., диагностировать цветоаномалии. Степень нарушения цветоощущения выражается коэффициентом аномальности, который показывает соотношения зеленого и красного цветов при уравнении контрольного поля прибора с тестовым. У нормальных трихроматов коэффициент аномальности колеблется от 0,7 до 1,3, при протаномалии он меньше 0,7, при дейтераномалии — больше 1,3.

    Библиогр.: Луизов А.В. Цвет и свет, Л., 1989, биолиогр.; Многотомное руководство по глазным болезням под ред. В.Н. Архангельского, т. 1, кн. 1, с. 425, М., 1962; Пэдхем Ч. и Сондерс Дж. Восприятие света и цвета, пер. с англ., М., 1978; Соколов Е.Н. и Измайлов Ч.А. Цветовое зрение, М., 1984, библиогр.

    Рис. б). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах, имеющие различную яркость, различают как лица с нормальным цветоощущением (трихроматы), так и с его нарушением (аномальные трихроматы и дихроматы)

    Рис. б). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах, имеющие различную яркость, различают как лица с нормальным цветоощущением (трихроматы), так и с его нарушением (аномальные трихроматы и дихроматы).

    Рис. а). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах, имеющие различную яркость, различают как лица с нормальным цветоощущением (трихроматы), так и с его нарушением (аномальные трихроматы и дихроматы)

    Рис. а). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах, имеющие различную яркость, различают как лица с нормальным цветоощущением (трихроматы), так и с его нарушением (аномальные трихроматы и дихроматы).

    Рис. г). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах в связи с различной яркостью их изображения воспринимаются трихроматами и дихроматами по-разному (цифру 9 дихроматы воспринимают как 5, треугольник — как круг)

    Рис. г). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах в связи с различной яркостью их изображения воспринимаются трихроматами и дихроматами по-разному (цифру 9 дихроматы воспринимают как 5, треугольник — как круг).

    Рис. в). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах в связи с различной яркостью их изображения воспринимаются трихроматами и дихроматами по-разному (цифру 9 дихроматы воспринимают как 5, треугольник — как круг)

    Рис. в). Ряд таблиц, с помощью которых выявляют расстройства цветоощущения: цифры и фигуры на таблицах в связи с различной яркостью их изображения воспринимаются трихроматами и дихроматами по-разному (цифру 9 дихроматы воспринимают как 5, треугольник — как круг).

  7. Источник: Медицинская энциклопедия



  8. Биологический энциклопедический словарь

    ЦВЕТОВОЕ ЗРЕНИЕ

    цветное зрение, цветовосприятие, способность глаза различать цвета, т. е. ощущать отличия в спектральном составе видимых излучений и в окраске предметов. Ц. з. свойственно мн. видам животных (нек-рым головоногим, ракообразным, насекомым, позвоночным — от рыб до млекопитающих) и человеку. Ц. з.— важный компонент зрительной ориентации, улучшает различимость объектов и обеспечивает дополнит, информацию о них, расширяет возможности животного добывать пищу и избегать врагов. Ц. з. обусловлено наличием в сетчатке разных типов фоторецепторов (двух, трёх, иногда больше), содержащих разл. светочувствит. пигменты и обладающих разл. спектральной чувствительностью. У мн. позвоночных (нек-рые виды рыб, земноводные, обезьяны, человек) три типа цветовых рецепторов (колбочек) обусловливают трихроматическое Ц. з. У сусликов и мн. видов насекомых Ц. з. дихроматическое, т. е. основано на работе двух типов рецепторов, а у птиц и черепах, возможно, четырёх. Для насекомых видимая область спектра смещена в сторону коротковолновых излучений, включая УФ диапазон. У человека все разнообразные цветовые ощущения возникают при возбуждении трёх типов колбочек, воспринимающих синий, зелёный и красный цвета. Имеются данные, свидетельствующие об участии палочек в восприятии цветов человеком. В цветовосприятии участвуют как периферические, так и центр, компоненты зрительной системы.

    .

  9. Источник: Биологический энциклопедический словарь



  10. Энциклопедический словарь

    цветово́е зре́ние

    способность глаза многих животных и человека различать цветность видимых объектов. Свойственно многим насекомым, ракообразным, рыбам, земноводным, птицам, приматам и др.; отсутствует у животных, ведущих ночной образ жизни. У позвоночных осуществляется колбочковыми клетками сетчатки глаза.

    * * *

    ЦВЕТОВОЕ ЗРЕНИЕ

    ЦВЕТОВО́Е ЗРЕ́НИЕ, способность глаза многих животных и человека различать цветность видимых объектов. Свойственно многим насекомым, ракообразным, рыбам, земноводным, птицам, приматам и др.; отсутствует у животных, ведущих ночной образ жизни. У позвоночных осуществляется колбочковыми клетками(см. КОЛБОЧКОВЫЕ КЛЕТКИ) сетчатки глаза.

    * * *

    ЦВЕТОВО́Е ЗРЕ́НИЕ, способность животного различать световые излучения по спектральному составу независимо от их интенсивности. Эта способность обеспечивается наличием в сетчатке двух (и более) типов зрительных рецепторов с разной спектральной чувствительностью (приемников) и специальных нервных клеток (в сетчатке(см. СЕТЧАТКА) и мозговых зрительных центрах), обрабатывающих сигналы от этих приемников. Животное с одним типом рецепторов не может различать цвета (так называемые ахроматы), все излучения для него уравнены по интенсивности. Животных с двумя типами рецепторов (с двумя приемниками) называют дихроматами. Люди (в норме) — трихроматы. В животном мире известны и тетра-, и пентахроматы. «Чемпионом» цветового зрения можно назвать один из видов раков-богомолов — у них 12 приемников!

    Спектральная чувствительность рецептора зависит от наличия в его наружном сегменте светочувствительного пигмента. Молекула зрительного пигмента состоит из белковой части — опсина и связанной с ней хромофорной группы (хромофора) — производного витамина А (ретиналь, альдегидная форма ретинола(см. РЕТИНОЛ)). Кривые спектральной чувствительности зрительных пигментов имеют колоколообразную форму. Положение максимума зависит от типа опсина и типа хромофора. Пигменты с хромофором — производным витамина А1называются родопсины(см. РОДОПСИН), витамина А2 — порфиропсины. Последние чувствительны к более длинноволновым частям спектра. Опсины также различаются по структуре. Структура различных опсинов кодируется специальными генами.

    Цветовое зрение человека

    Люди и обезьяны Старого Света имеют три типа колбочек(см. КОЛБОЧКОВЫЕ КЛЕТКИ) (сине-, красно- и зеленочувствительные) и палочки(см. ПАЛОЧКОВЫЕ КЛЕТКИ). Ген, кодирующий палочковый опсин, расположен в хромосоме 3, синечувствительных колбочек — в хромосоме 7, а красночувствительных и зеленочувствительных колбочек — в X-хромосоме. У 8% людей наблюдаются различные генетические нарушения цветового зрения (см. Дальтонизм(см. ДАЛЬТОНИЗМ)). Чаще всего среди них встречаются дихроматы: протанопы (отсутствие красночувствительного приемника) и дейтеранопы (отсутствие зеленочувствительного приемника). Такие люди часто не подозревают об особенностях своего зрения, и выясняется это или при специальном исследовании на приборе-аномалоскопе, или при тестировании на курсах вождения автомобиля на псевдоизохроматических таблицах, или при сборе земляники (не могут отличить спелые красные ягоды от зеленых), или при назывании цвета одежды или клубков ниток; т. е. в ситуациях, когда нет «подсказок» о цвете (так, все знают, что листья — зеленые, верхний сигнал светофора — красный, а нижний — зеленый и т. д.). Эти цветовые аномалии чаще встречаются у мужчин, так как гены красно- и зеленочувствительных пигментов находятся в X-хромосоме. Очень редки случаи тританопии — отсутствия синего приемника. Бывают и случаи полного отсутствия в сетчатке колбочек, т. н. палочковая ахромазия. Эти люди не только не различают цвета, но у них понижена острота зрения и отмечается светобоязнь(см. СВЕТОБОЯЗНЬ).

    Поскольку при низких освещенностях (в сумерки) все три типа колбочек перестают работать, и им на смену приходят палочки, каждый человек представляет себе, что такое цветовое зрение и его отсутствие. Кроме того, можно и при хорошей освещенности (в условиях колбочкового зрения) создать условия, при которых будет отсутствовать цветоразличение: осветить сцену монохроматическим светом, например, красной лампой в фотокомнате или желтой натриевой лампой(см. НАТРИЕВАЯ ЛАМПА).

    Системы цветового зрения

    У разных животных разные системы цветового зрения. Среди них есть дихроматы — грызуны, многие виды рыб (в то же время среди рыб много видов с тетрахроматическим зрением) и амфибий, самцы обезьян Нового Света, тогда как их самки в большинстве трихроматы. Прекрасное цветовое зрение у дневных рептилий (ящериц, черепах) и птиц. Колбочки этих животных не только содержат разные светочувствительные пигменты, но между их наружными и внутренними сегментами находятся окрашенные каротиноидами(см. КАРОТИНОИДЫ) жировые капли, выполняющие функции красных, оранжевых или желтых фильтров, изменяющих реальную спектральную чувствительность колбочек (см. Зрение(см. ЗРЕНИЕ)). Интересно, что такой дополнительный фильтровый механизм формирования цветовых приемников открыт и у беспозвоночных (раков-богомолов). Некоторые рыбы, рептилии и птицы имеют еще и колбочки, чувствительные к ультрафиолету. В мире насекомых — это обычное явление. Так, многие цветы, кажущиеся людям однородно окрашенными, для насекомых — пестрые, так как разные части венчика по разному отражают (или поглощают) ультрафиолет. Для нас самцы и самки бабочек-лимонниц одинаковы, в то время как бабочки видят, что у самца верхние крылья темные. Точно также для нас скрыты многие рисунки птичьего оперения, различаемого самими птицами благодаря наличию УФ-приемника. Как показано специальными опытами, птицы используют эту способность при выборе брачного партнера. Люди научились выявлять УФ лучи, используя специальные приборы. Так, например, можно отличить работы старых мастеров от современных подделок, сфотографировав картины в ультрафиолетовых лучах: художники прошлого использовали свинцовые белила, отражающие ультрафиолет, а современные цинковые белила, наоборот, не отражают, а поглощают ультрафиолет. Также можно выявить невидимый «простым глазом» рисунок на венчиках многих цветков и в оперении птиц.

    Цветовое зрение в той или иной форме присуще всем животным, живущим в условиях хорошего освещения и, по-видимому, отсутствует только у строго ночных, пещерных или глубоководных животных. Вопреки бытующим представлениям, цветовое зрение есть у кошек, собак и копытных, что доказано специальными исследованиями их сетчаток и поведенческими экспериментами.

    Цветовое зрение очень важно в жизни животных и используется ими в разных формах поведения: при поиске пищи, брачного партнера, при затаивании, для отметки территории, отпугивания хищника или особей своего вида. У фруктоядных обезьян Нового Света, живущих большими группами, вожаками чаще бывают самки (трихроматы), имеющие преимущества при поисках спелых оранжевых плодов в зеленой листве перед самцами-дихроматами. Отмечена корреляция между цветом спелых плодов, поедаемых обезьянами, птицами и грызунами (и соответственно, распространяемых ими) и спектральной чувствительностью колбочковых клеток этих животных, что свидетельствует о коэволюции цветового зрения этих животных и окраски поедаемых ими плодов. Другой классический пример — коэволюция цветковых растений и цветового зрения и окраски их опылителей (бабочек, пчел, шмелей).

    Как показывают новейшие исследования в области молекулярной генетики зрительных пигментов (молекулярные часы), разделение предкового колбочкового пигмента на два разных пигмента произошло примерно 500 млн. лет назад, задолго до отделения палочкового пигмента. Следовательно, уже тогда появилась возможность цветоразличения.

    Константность цветовосприятия

    Условия освещения изменяются не только по времени суток, но и в зависимости от облачности, затенения разными предметами, в лесу под сенью трепещущей зеленой листвы, в море на разной глубине и т. д. Естественно, что при этом изменяется и спектральный состав света, отраженного от рассматриваемых предметов. Измерения показывают, что цветок одуванчика в тени отражает свет того же спектрального состава, что и его лист, освещенный солнцем. Тем не менее мы всегда видим, что цветок желтый, а лист — зеленый, т. е. наши цветовые ощущения определяются не только и не столько светом, который попадает в наш глаз, отражаясь от предмета, а цветом самого предмета — его окраской (коэффициентом спектрального отражения его поверхности). Другим словами, зрительная система «понимает», как освещен предмет, и вычисляет его окраску, делая поправку на освещение. Это свойство зрительной системы правильно узнавать окраску предметов (в данном случае окраска — индивидуальное свойство предмета, полезное для его узнавания) в условиях изменяющегося освещения называется константностью цветовосприятия. Без этого свойства цветовое зрение в реальных условиях жизни было бы во многом бесполезно. Благодаря константности нашего цветового зрения мы не замечаем, как сильно меняются условия освещения в нашей повседневной жизни. Так, при электрическом освещении мы видим цвета предметов такими же, как и днем. Фотоаппараты с цветной пленкой, не имеющие механизма константности, выявляют эти изменения, что мы и обнаруживаем с удивлением на фотографиях. Механизмы константности цветовосприятия, по-видимому, выработались в ходе эволюции и, соответственно, работают в условиях природных (или близких к ним) источников освещения, и не срабатывают, например, в условиях освещения люминесцентными лампами с линейчатыми спектрами. Так, женщины, подобрав ткань (даже имея образец для сравнения) в магазине с искусственным освещением, выйдя на улицу, часто обнаруживают, что она другого цвета. Окраски, одинаковые при одном освещении и различающиеся при другом, называются метамерными. Чем больше приемников в сетчатке с частично перекрывающимися кривыми спектральной чувствительности, тем меньше вероятность неразличения окрасок при разных условиях освещения. Увеличение размерности цветового зрения — способ борьбы с проблемой метамерии окрасок. Возможно, именно поэтому у рака-богомола, живущего на многоцветном коралловом рифе в постоянно меняющихся условиях освещения, появилось 12 типов зрительных рецепторов!

  11. Источник: Энциклопедический словарь



  12. Русско-английский политехнический словарь

    colour vision

  13. Источник: Русско-английский политехнический словарь



  14. Dictionnaire technique russo-italien

    visione dei colori

  15. Источник: Dictionnaire technique russo-italien



  16. Русско-украинский политехнический словарь

    ко́лірний зір

  17. Источник: Русско-украинский политехнический словарь



  18. Русско-украинский политехнический словарь

    ко́лірний зір

  19. Источник: Русско-украинский политехнический словарь



  20. Естествознание. Энциклопедический словарь

    способность глаза мн. животных и человека различать цветность видимых объектов. Свойственно мн. насекомым, ракообразным, рыбам, земноводным, птицам, приматам и др.; отсутствует у ж-ных, ведущих ночной образ жизни. У позвоночных осуществляется колбочковыми клетками сетчатки глаза.

  21. Источник: Естествознание. Энциклопедический словарь



  22. Большой Энциклопедический словарь

    ЦВЕТОВОЕ ЗРЕНИЕ
    ЦВЕТОВОЕ ЗРЕНИЕ - способность глаза многих животных и человека различать цветность видимых объектов. Свойственно многим насекомым, ракообразным, рыбам, земноводным, птицам, приматам и др.; отсутствует у животных, ведущих ночной образ жизни. У позвоночных осуществляется колбочковыми клетками сетчатки глаза.

    Большой Энциклопедический словарь. 2000.

  23. Источник: