Большая Советская энциклопедия

    явление, наблюдаемое во многих течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри различных размеров, вследствие чего их гидродинамические и термодинамические характеристики (скорость, температура, давление, плотность) испытывают хаотические флуктуации и потому изменяются от точки к точке и во времени нерегулярно. Этим турбулентные течения (См. Турбулентное течение) отличаются от так называемых ламинарных течений (См. Ламинарное течение). Большинство течений жидкостей и газов в природе (движение воздуха в земной атмосфере, воды в реках и морях, газа в атмосферах Солнца и звёзд и в межзвёздных туманностях и т.п.) и в технических устройствах (в трубах, каналах, струях, в пограничных слоях около движущихся в жидкости или газе твёрдых тел, в следах за такими телами и т.п.) оказываются турбулентными.

    Благодаря большой интенсивности турбулентного перемешивания турбулентные течения обладают повышенной способностью к передаче количества движения (См. Количество движения) (и потому к повышенному силовому воздействию на обтекаемые твёрдые тела), передаче тепла, ускоренному распространению химических реакций (в частности, горения), способностью нести и передавать взвешенные частицы, рассеивать звуковые и электромагнитные волны и создавать флуктуации их амплитуд и фаз, а в случае электропроводной жидкости — генерировать флуктуирующее магнитное поле и т.д.

    Т. возникает вследствие гидродинамической неустойчивости ламинарного течения, которое теряет устойчивость и превращается в турбулентное, когда так называемое Рейнольдса числоRe = lυ превзойдёт некоторое критическое значение Rekp(l и υ— характерные длина и скорость в рассматриваемом течении, ν — кинематический коэффициент вязкости). По экспериментальным данным, в прямых круглых трубах при наибольшей возможной степени возмущённости течения у входа в трубу Rekp 2300 (здесь l — диаметр трубы, υ— средняя по сечению скорость). Уменьшая степень начальной возмущённости течения, можно добиться затягивания ламинарного режима до значительно больших Rekp, например в трубах до Rekp 50 000. Аналогичные результаты получены для возникновения Т. в пограничном слое (См. Пограничный слой).

    Возникновение Т. при обтекании твёрдых тел может проявляться не только в виде турбулизации пограничного слоя, но и в виде образования турбулентного следа за телом в результате отрыва пограничного слоя от его поверхности. Турбулизация пограничного слоя до точки отрыва приводит к резкому уменьшению полного коэффициента сопротивления тела. Т. может возникнуть и вдали от твёрдых стенок, как при потере устойчивости поверхности разрыва скорости (например, образующейся при отрыве пограничного слоя или являющейся границей затопленной струи или поверхностью разрыва плотности), так и при потере устойчивости распределения плотностей слоев жидкости в поле тяжести, то есть при возникновении конвекции (См. Конвекция). Дж. У. Рэлей установил, что критерий возникновения конвекции в слое жидкости толщиной h между двумя плоскостями с разностью температур δT имеет вид Ra = gβh3δΤ/νχ, где g —ускорение силы тяжести, β — коэффициент теплового расширения жидкости, χ —коэффициент её температуропроводности. Критическое число Рэлея Rakpимеет значение около 1100—1700.

    Вследствие чрезвычайной нерегулярности гидродинамических полей турбулентных течений применяется статистическое описание Т.: гидродинамические поля трактуются как случайные функции от точек пространства и времени, и изучаются распределения вероятностей для значений этих функций на конечных наборах таких точек. Наибольший практический интерес представляют простейшие характеристики этих распределений: средние значения и вторые моменты гидродинамических полей, в том числе дисперсии компонент скорости (ρ— плотность, с — удельная теплоёмкость, Т — температура). Статистические моменты гидродинамических полей турбулентного потока должны удовлетворять некоторым уравнениям (вытекающим из уравнений гидродинамики), простейшие из которых — так называемые уравнения Рейнольдса, получаются непосредственным осреднением уравнений гидродинамики. Однако точного решения их до сих пор не найдено, поэтому используются различные приближённые методы.

    Основной вклад в передачу через турбулентную среду количества движения и тепла вносят крупномасштабные компоненты Т. (масштабы которых сравнимы с масштабами течения в целом); поэтому их описание — основа расчётов сопротивления и теплообмена при обтекании твёрдых тел жидкостью или газом. Для этой цели построен ряд так называемых полуэмпирических теорий Т., в которых используется аналогия между турбулентным и молекулярным переносом, вводятся понятия пути перемешивания, интенсивности Т., коэффициента турбулентной вязкости и теплопроводности и принимаются гипотезы о наличии линейных соотношений между напряжениями Рейнольдса и средними скоростями деформации, турбулентным потоком тепла и средним градиентом температуры. Такова, например, применяемая для плоскопараллельного осреднённого движения формула Буссинеска τ = Adυ/dy с коэффициентом турбулентного перемешивания (турбулентной вязкости) А,который, в отличие от коэффициента молекулярной вязкости, уже не является физической постоянной жидкости, а зависит от характера осреднённого движения. На основании полуэмпирической теории Прандтля можно принять , где путь перемешивания l — турбулентный аналог длины свободного пробега молекул.

    Большую роль в полуэмпирических теориях играют гипотезы подобия (см. Подобия теория). В частности, они служат основой полуэмпирической теории Кармана, по которой путь перемешивания в плоскопараллельном потоке имеет вид l = — χυ’/υ’’, где υ=υ(у)— скорость течения, а χ — постоянная. А. Н. Колмогоров предложил использовать в полуэмпирических теориях гипотезу подобия, по которой характеристики Т. выражаются через её интенсивность b и масштаб l (например, скорость диссипации энергии ε Турбулентность b3/ l). Одним из важнейших достижений полуэмпирической теории Т. является установление универсального (по числу Рейнольдса, при больших Re)логарифмического закона для профиля скорости в трубах, каналах и пограничном слое: ,

    справедливого на не слишком малых расстояниях y от стенки; здесь ω, — напряжение трения на стенке), А и В— постоянные, а , в случае гладкой стенки и пропорционально геометрической высоте бугорков шероховатости в случае шероховатой.

    Мелкомасштабные компоненты Т. (масштабы которых малы по сравнению с масштабами течения в целом) вносят существенный вклад в ускорения жидких частиц и в определяемую ими способность турбулентного потока нести взвешенные частицы, в относительное рассеяние частиц и дробление капель в потоке, в перемешивание турбулентных жидкостей, в генерацию магнитного поля в электропроводной жидкости, в спектр неоднородностей электронной плотности в ионосфере, в флуктуации параметров электромагнитных волн, в болтанку летательных аппаратов и т.д.

    Описание мелкомасштабных компонент Т. базируется на гипотезах Колмогорова, основанных на представлении о каскадном процессе передачи энергии от крупномасштабных ко всё более и более мелкомасштабным компонентам Т. Вследствие хаотичности и многокаскадности этого процесса при очень больших Re режим мелкомасштабных компонент оказывается пространственно-однородным, изотропным и квазистационарным и определяется наличием среднего притока энергии ε̅ от крупномасштабных компонент и равной ему средней диссипации энергии в области минимальных масштабов. По первой гипотезе Колмогорова, статистические характеристики мелкомасштабных компонент определяются только двумя параметрами: ε̅ и ν; в частности, минимальный масштаб турбулентных неоднородностей -1 см).По второй гипотезе, при очень больших Re в мелкомасштабной области существует такой (так называемый инерционный) интервал масштабов, больших по сравнению с λ, в котором параметр ν оказывается несущественным, так что в этом интервале характеристики Т. определяются только одним параметром ε̅.

    Теория подобия мелкомасштабных компонент Т. была использована для описания локальной структуры полей температуры, давления, ускорения, пассивных примесей. Выводы теории нашли подтверждение при измерениях характеристик различных турбулентных течений. В 1962 А. Н. Колмогоров и А. М. Обухов предложили уточнение теории путём учёта флуктуаций поля диссипации энергии, статистические свойства которых не универсальны: они могут быть разными в различных типах течений (и, в частности, могут зависеть от Re).

    Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Хинце И. О., Турбулентность, пер. с англ., М., 1963; Таунсенд А. А., Структура турбулентного потока с поперечным сдвигом, пер. с англ., М., 1959; Бэтчелор Дж. К., Теория однородной турбулентности, пер. с англ., М., 1955; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954 (Теоретическая физика); Линь Цзя-цзяо, Теория гидродинамической устойчивости, пер. с англ., М., 1958; Лойцянский Л. Г., Механика жидкости и газа, 3 изд., М., 1970; Шлихтинг Г., Возникновение турбулентности, пер. с нем., М., 1962; Гидродинамическая неустойчивость. Сб. статей, пер. с англ., М., 1964; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967.

    А. С. Монин.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Словарь форм слова

    1. турбуле́нтность;
    2. турбуле́нтности;
    3. турбуле́нтности;
    4. турбуле́нтностей;
    5. турбуле́нтности;
    6. турбуле́нтностям;
    7. турбуле́нтность;
    8. турбуле́нтности;
    9. турбуле́нтностью;
    10. турбуле́нтностями;
    11. турбуле́нтности;
    12. турбуле́нтностях.
  3. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  4. Малый академический словарь

    , ж. спец.

    Явление, характерное для такого течения жидкости или газа, при котором в потоке образуются многочисленные вихри различных размеров.

    Турбулентность воды. Турбулентность воздушных потоков.

  5. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  6. Толковый словарь Ефремовой

    ж.

    отвлеч. сущ. по прил. турбулентный

  7. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  8. Большой англо-русский и русско-английский словарь

    turbulenceturbulence

  9. Источник: Большой англо-русский и русско-английский словарь



  10. Англо-русский словарь технических терминов

    turbulence, vorticity

  11. Источник: Англо-русский словарь технических терминов



  12. Русско-английский словарь математических терминов

    f.turbulence

  13. Источник: Русско-английский словарь математических терминов



  14. Большой итальяно-русский и русско-итальянский словарь

    ж. спец.

    turbolenza

  15. Источник: Большой итальяно-русский и русско-итальянский словарь



  16. Физическая энциклопедия

    ТУРБУЛЕНТНОСТЬ

    явление, наблюдаемое во мн. течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри разл, размеров, вследствие чего их гидродинамич. и термодинамич. хар-ки (скорость, темп-ра, давление, плотность) испытывают хаотич. флуктуации и потому изменяются от точки к точке и во времени нерегулярно. Этим турбулентные течения отличаются от т. н. ламинарных течений. Большинство течений жидкостей и газов турбулентно как в природе (движение воздуха в земной атмосфере, воды в реках и морях, газа в атмосферах Солнца и звёзд и в межзвёздных туманностях и т. п.), так и в техн. устройствах (в трубах, каналах, струях, в пограничных слоях около тв. тел, в следах за такими телами и т. п.).

    Благодаря большой интенсивности турбулентного перемешивания турбулентные течения обладают повышенной способностью к передаче кол-ва движения (и потому к повышенному силовому воздействию на обтекаемые тв. тела), передаче теплоты, ускоренному распространению хим. реакций (в частности, горения), способностью нести взвешенные ч-цы, рассеивать звуковые и эл.-магн. волны и создавать флуктуации их амплитуд и фаз, а в электропроводящей жидкости -генерировать флуктуирующее магн. поле и т. д.

    Т. возникает вследствие гидродинамич. неустойчивости ламинарного течения, к-рое теряет устойчивость и превращается в турбулентное, когда т. н. Рейнольдса число Re=lv/v превзойдёт нек-рое критич. значение Reкр (l и v — характерные длина и скорость в рассматриваемом течении, v — коэфф. кинематич. вязкости). По эксперим. данным, в прямых круглых трубах при наибольшей возможной степени возмущённости течения у входа в трубу Reкр»2300 (здесь l — диаметр трубы, v —средняя по сечению скорость). Уменьшая степень начальной возмущённости течения, можно добиться сохранения ламинарного режима до значительно больших Reкр, напр. в трубах до Reкр»50 000. Аналогичные результаты получены для возникновения Т. в пограничном слое.

    Возникновение Т. при обтекании тв. тел может проявляться не только в виде турбулизации пограничного слоя, но и в виде образования турбулентного следа за телом в результате отрыва пограничного слоя от его поверхности. Турбулизация пограничного слоя до точки отрыва приводит к резкому уменьшению полного коэфф. сопротивления тела. Т. может возникнуть и вдали от тв. стенок при потере устойчивости поверхности разрыва скорости (напр., образующейся при отрыве пограничного слоя или являющейся границей затопленной струи или поверхностью разрыва плотности) или при потере устойчивости распределения плотности жидкости в поле тяжести, т. е. при возникновении конвекции. Англ. учёный Дж. У. Рэлей установил, что критерий возникновения конвекции в слое жидкости толщиной h между двумя плоскостями с разностью темп-р dT имеет вид: Ra=gbh3dT/vc, где g — ускорение свободного падения, b — коэфф. теплового расширения жидкости, c — коэфф. её температуропроводности. Критич. число Рэлея Raкр имеет значение »1100—1700.

    Вследствие чрезвычайной нерегулярности гидродинамич. полей турбулентных течений применяется статистич. описание Т.: гидродинамич. поля трактуются как случайные ф-ции от точек пр-ва и времени, и изучаются распределения вероятностей для значений этих ф-ций на конечных наборах точек. Наибольший практич. интерес представляют простейшие хар-ки этих распределений: ср. значения и вторые моменты гидродинамич. полей, в т. ч. дисперсии компонент скорости v'j2 (где v'j=vj-v=j — пульсации скорости, а чёрточка наверху — символ осреднения); компоненты турбулентного потока кол-ва движения tjl=-rv'jv'l (т. н. напряжения Рейнольдса) и турбулентного потока теплоты qj=crv'jT' (r — плотность, с — уд. теплоёмкость, Т' — пульсация темп-р). Статистич. моменты гидродинамич. полей турбулентного потока должны удовлетворять нек-рым ур-ниям (вытекающим из ур-ния гидродинамики), простейшие из к-рых — т. н. ур-ния Рейнольдса, получаются непосредственным осреднением ур-ний гидродинамики. Однако точного решения их до сих пор не найдено, поэтому используются разл. приближённые методы.

    Осн. вклад в передачу через турбулентную среду кол-ва движения и теплоты вносят крупномасштабные компоненты Т. (масштабы к-рых сравнимы с масштабами течения в целом); поэтому их описание — основа расчётов сопротивления и теплообмена при обтекании тв. тел жидкостью или газом. Для этой цели построен ряд т. н. полуэмпирич. теорий Т., в к-рых используется аналогия между турбулентным и мол. переносом, вводятся понятия пути перемешивания, интенсивности Т., коэфф. турбулентной вязкости и теплопроводности и принимаются гипотезы о наличии линейных соотношений между напряжениями Рейнольдса и ср. скоростями деформации, турбулентным потоком теплоты и ср. градиентом темп-ры. Такова, напр., применяемая для плоскопараллельного осреднённого движения ф-ла Буссинеска t=Adv/dy с коэфф. турбулентного перемешивания (турбулентной вязкости) А, к-рый, в отличие от коэфф. мол. вязкости, уже не является физ. постоянной жидкости, а зависит от хар-ра осреднённого движения (у — расстояние от стенки). На основании полуэмпирич. теории Прандтля можно принять

    A=rl2?dv=/dy?,

    где путь перемешивания l — турбулентный аналог длины свободного пробега молекул.

    Большую роль в полуэмпирич. теориях играют гипотезы подобия (см. ПОДОБИЯ ТЕОРИЯ). В частности, они служат основой полуэмпирич. теории Кармана, согласно к-рой в плоскопараллельном потоке путь перемешивания l==cv'/v", где v=v(y) — скорость течения, а к — постоянная. А. Н. Колмогоров предложил использовать в полуэмпирич. теориях гипотезу подобия, по к-рой хар-ки Т. выражаются через её интенсивность 6 и масштаб l (напр., скорость диссипации энергии e= b3/l). Одно из важнейших достижений полуэмпирич. теории Т.— установление универсального по числу Рейнольдса (при больших Re) логарифмич. закона для профиля скорости в трубах, каналах и пограничном слое на не слишком малых расстояниях у от стенки:

    v(y)/v*=A log(y/y0)+B,

    здесь v=?(tw/r) (tw— напряжение трения на стенке), А и В — постоянные, a y0=v/v* в случае гладкой стенки и пропорционально геом. высоте бугорков шероховатости в случае шероховатой.

    Мелкомасштабные компоненты Т. (масштабы к-рых малы по сравнению с масштабами течения в целом) вносят существенный вклад в ускорения жидких ч-ц и в определяемую ими способность турбулентного потока нести взвешенные ч-цы, в относит. рассеяние ч-ц и дробление капель в потоке, перемешивание турбулентных жидкостей, генерацию магн. поля в электропроводящей жидкости, спектр неоднородностей электронной плотности в ионосфере, флуктуации параметров эл.-магн. волн, болтанку летат. аппаратов и т. д.

    Описание мелкомасштабных компонент Т. базируется на гипотезах Колмогорова, основанных на представлении о каскадном процессе передачи энергии от крупномасштабных ко всё более и более мелкомасштабным компонентам Т. Вследствие хаотичности и многокаскадности этого процесса при очень больших Re распределение мелкомасштабных компонент оказывается пространственно-однородным, изотропным и квазистационарным и определяется наличием ср. притока энергии e= от крупномасштабных компонент и равной ему ср. диссипации энергии в области миним. масштабов. По первой гипотезе Колмогорова, статистич. хар-ки мелкомасштабных компонент определяются только двумя параметрами e= и v; в частности, миним. масштаб турбулентных неоднородностей l=(v3/e=)1/4 (в атмосфере l= 10-1 см). По второй гипотезе, при очень больших Re в мелкомасштабной области существует такой (т. н. инерционный) интервал масштабов, больших по сравнению с Я, в к-ром параметр v оказывается несущественным, так что в этом интервале хар-ки Т. определяются только одним параметром г.

    Теория подобия мелкомасштабных компонент Т. была использована для описания локальной структуры полей темп-ры, давления, ускорения, пассивных примесей. Выводы теории нашли подтверждение при измерениях хар-к разл. турбулентных течений.

  17. Источник: Физическая энциклопедия



  18. Геологическая энциклопедия

    — неупорядоченное движение жидкости, в котором скорости и давления претерпевают хаотические изменения, но так, что при этом могут быть определены их статистически точные средние значения.

  19. Источник: Геологическая энциклопедия



  20. Большая политехническая энциклопедия

    ТУРБУЛЕНТНОСТЬ — физ. явление, возникающее во многих видах течений жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри различных размеров, характер движения которых приводит к их перемешиванию и пульсациям скоростей, температуры и давлений во времени. Поэтому возникают силы, препятствующие течению, — этим турбулентное течение (см.) отличается от ламинарного течения (см.). При турбулентных течениях движущиеся тела испытывают значительно большее сопротивление, что приводит к значительным потерям энергии. Если при ламинарном течении сопротивление пропорционально скорости потока, то при турбулентном оно приблизительно пропорционально квадрату скорости. Сопротивление потоку, т. е. сила, действующая на помещённое в поток твёрдое тело (самолёт, птица, корабль, дельфин и т.д.), складывается из разности давлений перед телом и за ним и силы трения на поверхности тела. Большинство видов течения жидкостей и газов турбулентно как в природе (движение воздуха в земной атмосфере, воды в реках, морях и океанах, плазмы в атмосферах Солнца и др. звёзд, в космических туманностях и т. п.), так и в технических устройствах (трубах, каналах), в пограничных слоях около твёрдых тел — летательных аппаратов, подводных и надводных судов и др., а также в следах за такими телами и т. п. Т. в значительной мере определяются электрическое состояние атмосферы, затухание звуков, мерцание звёзд и др.

  21. Источник: Большая политехническая энциклопедия



  22. Русско-английский политехнический словарь

    turbulence, vorticity

    * * *

    турбуле́нтность ж.

    turbulence

    * * *

    turbulence

  23. Источник: Русско-английский политехнический словарь



  24. Dictionnaire technique russo-italien

    ж.

    turbolenza f

    - анизотропная турбулентность

    - атмосферная турбулентность

    - динамическая турбулентность

    - изотропная турбулентность

    - локальная турбулентность

    - магнитогидродинамическая турбулентность

    - местная турбулентность

    - однородная турбулентность

    - термическая турбулентность

  25. Источник: Dictionnaire technique russo-italien



  26. Русско-украинский политехнический словарь

    астр., техн., физ.

    турбуле́нтність, -ності

    - гидромагнитная турбулентность

  27. Источник: Русско-украинский политехнический словарь



  28. Русско-украинский политехнический словарь

    астр., техн., физ.

    турбуле́нтність, -ності

    - гидромагнитная турбулентность

  29. Источник: Русско-украинский политехнический словарь