«Спектры кристаллов»

Спектры кристаллов в словарях и энциклопедиях

Значение слова «Спектры кристаллов»

Источники

    Большая Советская энциклопедия

    (оптические)

    по структуре разнообразны. Наряду с узкими линиями они содержат широкие полосы (отношение частоты ν к скорости света с от долей до нескольких тыс. см-1) и сплошные области спектра, простирающиеся на десятки тыс. см-1 (см. Спектры оптические). В инфракрасной области спектров поглощения наблюдаются полосы, связанные с квантовыми переходами между энергетическими уровнями, обусловленными колебательными движениями частиц кристалла, которым сопутствуют изменения электрического дипольного момента: поглощается фотон и рождается квант колебаний кристаллической решётки (См. Колебания кристаллической решётки)—Фонон. Процессы, сопровождающиеся рождением нескольких фононов, «размывают» и усложняют наблюдаемый спектр. В реальном кристалле обычно есть дефекты структуры (см. Дефекты в кристаллах), вблизи них могут возникать локальные колебания, например внутренние колебания примесной молекулы. При этом в спектре появляются дополнительные линии с возможными «спутниками», обусловленными связью локального колебания с решёточными. В полупроводниках (См. Полупроводники) некоторые примеси образуют центры, в которых электроны движутся на водородоподобных орбитах. Они дают спектр поглощения в инфракрасной области, состоящий из серии линий, заканчивающихся непрерывной полосой поглощения (ионизация примеси). Поглощение света электронами проводимости и дырками в полупроводниках и металлах (См. Металлы) начинается также в инфракрасной области (см. Металлооптика).В спектрах магнитоупорядоченных кристаллов аналогично фононам проявляют себя магноны (см. Спиновые волны).

    В спектре рассеянного света из-за взаимодействия света с колебаниями решётки, при которых изменяется поляризуемость кристалла, наряду с линией исходной частоты νo появляются линии, сдвинутые по обе стороны от неё на частоту решёточных колебаний, что соответствует рождению или поглощению фононов (см. Комбинационное рассеяние света, рис. 1). Акустические решёточные колебания приводят к тому, что при рассеянии света на тепловых флуктуациях у центральной (не смещенной) релеевской линии также появляются боковые спутники, обусловленные рассеянием на распространяющихся флуктуациях плотности (см. Рассеяние света).

    Большинство неметаллических кристаллов за инфракрасной областью в определённом интервале частот прозрачно. Поглощение возникает снова, когда энергия фотона становится достаточно велика, чтобы вызвать переходы электронов из верхней заполненной валентной зоны в нижнюю часть зоны проводимости кристалла. Спектр этого интенсивного собственного поглощения света отображает структуру электронных энергетических зон кристалла и простирается дальше в видимый диапазон, по мере того как «включаются» переходы между др. энергетическими зонами. Положение края собственного поглощения определяет окраску идеального кристалла (без дефектов). Для полупроводников длинноволновая граница области собственного поглощения лежит в ближней инфракрасной области, для ионных кристаллов (См. Ионные кристаллы)—в ближней ультрафиолетовой области. Вклад в собственное поглощение кристалла наряду с прямыми переходами электронов дают и непрямые переходы, при которых дополнительно рождаются или поглощаются фононы. Переходы электронов из зоны проводимости в валентные зоны могут сопровождаться рекомбинационным излучением.

    Электрон проводимости и дырка благодаря электростатическому притяжению могут образовать связанное состояние — экситон. Спектр экситонов может варьироваться от водородоподобных серий до широких полос. Линии экситонного поглощения лежат у длинноволновой границы собственного поглощения кристалла (рис. 2). Экситоны ответственны за электронные спектры поглощения молекулярных кристаллов. Известна также экситонная Люминесценция.

    Энергии электронных переходов между локальными уровнями дефектных центров попадают обычно в область прозрачности идеального кристалла, благодаря чему они часто обусловливают окраску кристалла. Например, в щёлочно-галоидных кристаллах возбуждение электрона, локализованного в анионной вакансии (См. Вакансия)(F-центр окраски), приводит к характеристической окраске кристалла. Различные примесные ионы (например, Тl в КСl) образуют центры люминесценции в кристаллофосфорах (См. Кристаллофосфоры). Они дают электронно-колебательные (вибронные) спектры. Если электрон-фононное (вибронное) взаимодействие в дефектном центре слабое, то в спектре появляется интенсивная узкая бесфононная линия (оптический аналог линии Мёссбауэра эффекта), к которой примыкает «фононное крыло» со структурой, отражающей особенности динамики кристалла с примесью (рис. 3). С ростом вибронного взаимодействия интенсивность бесфононной линии падает. Сильная вибронная связь приводит к широким бесструктурным полосам. Поскольку часть энергии возбуждения в процессе колебательной релаксации до излучения рассеивается в остальном кристалле, максимум полосы люминесценции лежит по длинноволновую сторону от полосы поглощения (правило Стокса). Иногда к моменту испускания светового кванта в центре не успевает установиться равновесное распределение по колебательным подуровням, при этом возможна «горячая» люминесценция.

    Если кристалл содержит в качестве примесей атомы или ионы переходных или редкоземельных элементов, с недостроенными f- или d-оболочками, то можно наблюдать дискретные спектральные линии, соответствующие переходам между подуровнями, возникающими в результате расщепления атомных уровней внутрикристаллическим электрическим полем (см. Кристаллическое поле, Квантовый усилитель).

    Лит. см. при ст. Спектроскопия кристаллов.

    Н. Н. Кристофель.

    Рис. 1. Спектр комбинационного рассеяния кристалла дигидрофосфата калия (KDP) при разных температурах. По оси абсцисс отложено отношение сдвига частоты (ν - νo) к скорости света.

    Рис. 2. Длинноволновый участок собственного поглощения кристалла КВr при температуре жидкого азота. Первые два интенсивных пика со стороны низких энергий соответствуют экситонам. Область собственного поглощения начинается за вторым пиком.

    Рис. 3. Бесфононная линия и фононное крыло в спектре поглощения примесной молекулы NO2- в KI при температуре жидкого гелия.

    Спектры оптические. Спектр атомарного водорода.

    Спектры оптические. Спектр натрия.

    Спектры оптические. Спектр меди.

    Спектры оптические. Спектр угольной дуги (полосы молекул CN и C2).

    Спектры оптические. Спектр испускания паров молекулы йода.

    Спектры оптические. Сплошной спектр.

    Спектры оптические. Линии поглощения (фраунгоферовы линии) в спектре Солнца.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Физическая энциклопедия

    СПЕКТРЫ КРИСТАЛЛОВ

    оптические, спектры поглощения, люминесценции, фотопроводимости, комбинационного рассеяния света (КРС) и отражения, возникающие при вз-ствии света с в-вом в крист. состоянии и лежащие в оптич. диапазоне длин волн (от далёкой ИК до УФ области). С. к. обусловлены квантовыми переходами между уровнями энергии, принадлежащими как осн. в-ву, так и примесям кристалла. Наряду с узкими спектр. линиями С. к. могут содержать широкие спектр. полосы (ширина в волн. числах изменяется от долей до неск. тыс. см-1) и участки непрерывного спектра, простирающиеся на десятки тыс. см-1. Вид спектра зависит от типа кристалла, хим. состава, несовершенства структуры. Методика получения С. к. аналогична используемой в ат. и мол. спектроскопии (см. СПЕКТРАЛЬНЫЕ ПРИБОРЫ), однако в спектроскопии кристаллов часто применяется глубокое охлаждение образца, а для исследования анизотропных кристаллов применяют поляризованный свет.

    Уровни энергии кристалла группируются в энергетич. зоны (см. ЗОННАЯ ТЕОРИЯ). При переходах между зонами (межзонных переходах) возникают широкие спектр. полосы. Длинноволновой край спектр. полосы межзонного, или фундаментального, поглощения может лежать в ИК (полупроводники), видимой (кристаллофосфоры) и УФ (диэлектрики, мол. кристаллы) областях спектра.

    Поглощение и испускание света при межзонных переходах может происходить без возбуждения колебаний крист. решётки — фононов (прямые переходы) или с участием фононов (непрямые переходы). Показатель поглощения при прямых межзонных переходах может достигать больших значений (=104—105 см-1), поэтому фундам. поглощение исследуется в тонких образцах или по спектрам отражения.

    При межзонном поглощении света эл-н из валентной зоны переходит в зону проводимости, в валентной зоне при этом образуется дырка; при рекомбинации эл-на и дырки возникают спектры рекомбинац. люминесценции. Эти процессы ответственны за фотопроводимость кристалла, спектры возбуждения к-рой, наряду со спектрами поглощения и люминесценции, позволяют изучать структуру энергетич. зон кристалла. Кроме процессов рождения несвязанных между собой эл-на и дырки, возможны переходы, при к-рых рождаются экситон — эл-н и дырка, связанные кулоновскими силами. Экситонные полосы поглощения и люминесценции лежат с длинноволновой стороны края фундам. поглощения и смещены от него на величину, соответствующую энергии кулоновского вз-ствия. При комнатной темп-ре экситонные полосы уширены до величины =102 см-1. При понижении темп-ры в спектрах проявляется структура, связанная с бесфононными переходами и с переходами с участием конечного числа оптич. фононов. В спектрах экситонов большого радиуса проявляется структура, обусловленная разл. энергетич. состояниями экситона, к-рый можно рассматривать как водородоподобную ч-цу. Экситоны с большим дипольным моментом, взаимодействуя со световым полем, образуют светоэкситоны, или поляритоны, и создают поляритонные полосы, к-рые явл. длинноволновыми продолжениями экситонных полос.

    Помимо спектр. полос, связанных с электронными переходами в атомах осн. в-ва, в С. к. существуют полосы и линии, связанные с локальными нарушениями крист. решётки — дефектами (дислокациями, примесями и др.). В энергетич. структуре кристалла могут появляться локализованные уровни энергии внутри запрещённой зоны, принадлежащие дефектам крист. решётки. В зависимости от хар-ра проявления дефекта в С. к. их наз. центрами окраски, центрами люминесценции или просто примесными центрами.

    Все атомы кристалла находятся в поле колеблющихся соседних атомов, поэтому уровни энергии кристалла вследствие динамич. Штарка эффекта уширены (т. н. электрон-фононное уширение). Это уширение уровней (и, следовательно, спектр. полос) однородно, время его релаксации =10-12 с, а величина при комнатной темп-ре составляет =102—103 см-1. Только спектры примесных атомов переходных и редкоземельных групп имеют узкие (=10 см-1) линии поглощения и люминесценции, т. к. оптич. переходы в этих элементах осуществляются эл-нами внутр. оболочек, экранированных от влияния поля соседних атомов. В крист. поле уровни энергии примесного атома расщепляются. По хар-ру расщепления можно судить о симметрии крист. поля. При понижении темп-ры линии люминесценции сужаются, увеличивается относит. вероятность чисто электронных переходов (бесфононных; см. ШПОЛЬСКОГО ЭФФЕКТ)). В спектрах поглощения проявляется структура, связанная с неодинаковостью положения примесных атомов в разных точках кристалла, т. н. неоднородное уширение, составляющее от долей до сотен см-1 в зависимости от степени упорядоченности кристалла. Возбуждение колебаний ядер решётки также приводит к уширению линий электронных переходов. Если при колебаниях решётки наводится дипольный момент, то эти колебания проявляются в спектрах ИК поглощения. Колебания, меняющие поляризуемость молекул, проявляются в спектрах КРС. В мол. кристаллах колебат. спектр сохраняет черты колебат. спектра молекул, образующих кристалл, в ионных кристаллах спектр определяется св-вами всей решётки.

    В спектрах поглощения или рассеяния кристаллов, обладающих упорядоченной спиновой подрешёткой (напр., антиферромагнетиков), могут проявляться возбуждения магн. дипольного момента (магноны, спиновые волны).

    Симметрия крист. поля определяет выделенные направления дипольного момента переходов. Наличие таких направлений проявляется в разл. степени поляризации люминесценции кристаллов и в разл. коэфф. поглощения света, поляризованного вдоль и перпендикулярно оптич. оси кристалла (см. ДИХРОИЗМ). Изучение С. к. необходимо для установления энергетич. структуры кристалла, изучения его строения, наличия примесей и дефектов и т. д. Кристаллофосфоры используются в люминесцентных источниках света, экранах электронных приборов и т. д. Нек-рые из люминесцирующих кристаллов явл. активной средой лазеров.

  3. Источник: Физическая энциклопедия