«Макромолекула»

Макромолекула в словарях и энциклопедиях

Значение слова «Макромолекула»

Источники

    Большая Советская энциклопедия

    буквально — большая Молекула, молекула полимера (См. Полимеры); построена по принципу повторения идентичных (у М. гомополимера) или различных (у М. сополимера) структурных единиц — мономерных (повторяющихся) звеньев. В линейных М. эти звенья соединены ковалентно в цепочку, длина которой характеризуется степенью полимеризации (См. Полимеризация) (то есть числом повторяющихся звеньев) или молекулярной массой (См. Молекулярная масса). Совокупность М. данного полимера, в отличие от молекул низкомолекулярного вещества, представляет собой набор цепей, в случае, например, гомополимеров, имеющих одинаковую химическую структуру, но разную длину. Для гомополимеров этот набор количественно описывается функцией распределения по степеням полимеризации (или молекулярно-массовым распределением). Для гомологического ряда сополимеров одинакового среднего состава наблюдается также композиционная неоднородность М. (собственно неоднородность состава) и конфигурационная неоднородность (различное чередование звеньев разных типов). Будучи построенной из большого числа (от сотен до миллионов) элементарных звеньев, каждая отдельная М. представляет собой миниатюрный статистический ансамбль, подчиняющийся законам термодинамики малых систем и проявляющий такие свойства макроскопических физических тел, как изменчивость размеров (геометрических) и формы, не связанные с химическими превращениями.

    Последняя особенность связана с одним из главных свойств М. — их гибкостью, то есть способностью полимерных цепей изменять свою конформацию в результате внутримолекулярного, микроброунового теплового движения звеньев (в случае так называемой термодинамической гибкости) или же под влиянием внешних механических, в частности гидродинамических, факторов (кинетическая гибкость). Гибкость обусловлена возможностью вращения атомов цепи и звеньев в целом вокруг простых (одинарных) связей. Гибкость М. следует отличать от подвижности, которую ограничивают внешние факторы — взаимодействие с растворителем или соседними макромолекулярными цепями. Непосредственной мерой гибкости является величина потенциала торможения внутреннего вращения атомов и звеньев, который зависит от структуры повторяющихся звеньев и имеет квантовомеханическую природу.

    Термодинамическая гибкость М. определяется по их геометрическим размерам, стереохимическим и некоторым другим характеристикам. Основной стереохимической характеристикой М. является Конфигурация — полное пространственное распределение атомов, образующих М., которое определяется длинами соответствующих связей и величинами валентных углов и не может быть изменено без разрыва химических связей. Как известно, при одной и той же общей конфигурации М. может принимать несколько конформаций (См. Конформация); таким образом, конформация представляет собой переменную статистическую величину — она характеризует распределение в пространстве атомов и атомных групп при неизменных валентных углах, но переменных ориентациях связей. Изменение ориентации происходит вследствие относительных поворотов этих атомов и групп под действием теплового движения звеньев. В отсутствие взаимодействий с другими М. (например, в разбавленном растворе) вытянутая поначалу гипотетическая полимерная цепь в результате ряда элементарных поворотов приобретает конформацию так называемого статистического клубка. Размеры такого клубка выражаются, например, через среднеквадратичное расстояние между его концами. Сопоставление этих размеров с теми, которые М. приобрела бы при отсутствии торможения внутреннего вращения (они рассчитываются теоретически), позволяет оценить термодинамическую гибкость. Размеры М., необходимые для расчётов гибкости, могут быть найдены дифракционными или гидродинамическими методами, а некоторые конфигурационные характеристики — динамо- или электрооптическими (двойное лучепреломление в потоке, эффект Керра).

    В отличие от термодинамической, или равновесной, гибкости, кинетическая гибкость не является постоянной характеристикой М., а зависит от скорости внешнего деформирующего воздействия.

    Учесть влияние скорости воздействия на кинетическую гибкость М. можно, зная её релаксационный спектр (см. Релаксационные явления в полимерах). Между равновесной и кинетической гибкостью имеется определённая связь, ибо в конечном счёте обе эти характеристики определяются потенциалом торможения.

    С позиций статистической физики способность М. к деформациям можно характеризовать конформационным набором, который называется также статистическим весом (См. Статистический вес)(или конформационной энтропией). С уменьшением степени полимеризации уменьшается и число возможных конформаций. Относительно короткие М. олигомеров (См. Олигомеры), или мультимеров, вообще почти не деформируемы, но лишь потому, что в них мало число звеньев, а потенциал торможения — конечная мера гибкости — тот же, что в длинных цепях. Статистическим весом можно характеризовать и конфигурацию, что становится вполне очевидным в случае сополимеров. Число возможных способов распределения разных звеньев вдоль цепи определяет конфигурационную энтропию М.; отрицательное значение этой величины представляет собой меру информации (См. Информация), которую может содержать М. Способность М. к хранению информации является одной из самых важных их характеристик, значимость которой стала понятна лишь после открытия генетического кода (См. Генетический код).

    С равновесной и кинетической гибкостью М. связаны уникальные механические свойства полимеров, в частности высокоэластичность (см. Высокоэластическое состояние). С конформационной энтропией полиэлектролитов (См. Полиэлектролиты) и сополимеров связана возможность превращения химической энергии в механическую (см. Хемомеханика). С конфигурационной энтропией связана способность М. к образованию устойчивых вторичных молекулярных структур, достигающих высокой степени совершенства и обладающих специфическими свойствами в М. важнейших биополимеров (См. Биополимеры) — белков (См. Белки) и нуклеиновых кислот (См. Нуклеиновые кислоты). Применительно к биополимерам можно вместо конфигурационной энтропии пользоваться термином «конфигурационная информация», которая, в соответствии со сказанным выше, определяет единственность (то есть нестатистичность, в отличие от синтетических М.) конформаций белковых М., предопределяющую их способность быть ферментами (См. Ферменты), переносчиками кислорода и т. п. В синтетических сополимерах вторичные молекулярные структуры возникают вследствие избирательных взаимодействий определённым образом расположенных вдоль цепи звеньев разных типов; эти структуры лишь умеренно специфичны, но могут служить простейшими моделями запоминания на уровне М.

    Лит.: Волькенштейн М. В.. Конфигурационная статистика полимерных цепей, М. — Л., 1959; его же, Молекулы и жизнь, М., 1965; Цветков В. Н., Эскин В. Е., Френкель С. Я., Структура макромолекул в растворах, М., 1964; Моравец Г., Макромолекулы в растворе, перевод с английского, М., 1967; Бирштейн Т. М., Птицын О. Б., Конформации макромолекул, М., 1964; Флори П., Статистическая механика цепных молекул, перевод с английского, М., 1971; Френкель С. Я., Гибкость макромолекул, в книге: Энциклопедия полимеров, т. 1, М., 1972; Макромолекула, там же, т. 2, М., (в печати).

    С. Я. Френкель.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Словарь форм слова

    1. ма́кромоле́кула;
    2. ма́кромоле́кулы;
    3. ма́кромоле́кулы;
    4. ма́кромоле́кул;
    5. ма́кромоле́куле;
    6. ма́кромоле́кулам;
    7. ма́кромоле́кулу;
    8. ма́кромоле́кулы;
    9. ма́кромоле́кулой;
    10. ма́кромоле́кулою;
    11. ма́кромоле́кулами;
    12. ма́кромоле́куле;
    13. ма́кромоле́кулах.
  3. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  4. Большой энциклопедический словарь

    МАКРОМОЛЕКУЛА - молекула полимера. Содержит большое число (от сотен до миллионов) атомов, соединенных химическими связями. Способна изменять форму в результате теплового движения или действия внешних сил (т. н. гибкость макромолекулы).

  5. Источник: Большой Энциклопедический словарь. 2000.



  6. Большой англо-русский и русско-английский словарь

    macromolecule, supermolecule

  7. Источник: Большой англо-русский и русско-английский словарь



  8. Англо-русский словарь технических терминов

    macromolecule, giant molecule

  9. Источник: Англо-русский словарь технических терминов



  10. Большой испано-русский и русско-испанский словарь

    ж. хим.

    macromolécula f

  11. Источник: Большой испано-русский и русско-испанский словарь



  12. Физическая энциклопедия

    МАКРОМОЛЕКУЛА

    (от греч. makros — большой и молекула), совокупность большого числа атомов, соединённых между собой хим. связями. Как правило, М. состоят из повторяющихся единиц — мономеров, объединившихся в М. в результате реакции полимеризации.

    МАКРОМОЛЕКУЛА

    Возможное представление разветвлённой макромолекулы в виде графа. В вершинах графа находятся группы атомов, рёбра соответствуют хим. связям между повторяющимися единицами. Жирная линия — ствол графа.

    М. бывают линейные и разветвлённые. Граф разветвлённой М. (рис.) представляет собой «дерево» с возможными циклами. М. характеризуются мол. массой, а в М. с разным числом повторяющихся единиц — м о л е к у л я р н о-м а с с о в ы м р а с п р е д е л е н и е м. Физ. св-ва М. зависят как от их хим. строения, так и от мол. массы.

    Одна и та же М. обычно может принимать множество к о н ф о р м а ц и й — разл. пространств. структур М. при сохранении длин валентных связей и углов (см. ИЗОМЕРИЯ МОЛЕКУЛ). Наиболее распространённые физ. методы изучения конформаций М. в р-ре основаны на измерении вязкости и скорости седиментации, исследовании светорассеяния. Синтетич. М. в р-ре, а также в аморфном (стеклообразном) состоянии обычно имеют большой набор конформаций. Глобулярные белки, представляющие собой природные линейные М., содержащие в кач-ве повторяющихся единиц аминокислотные остатки, имеют одну, строго фиксированную конформацию, определяющую их функционирование в живой клетке.

    М. с одинаковыми повторяющимися единицами наз. с т е р е о р е г у л я р н ы м и, в тв. состоянии такие М. могут образовывать п а р а к р и с т а л л — состояние, характеризующееся наличием крист. областей с идеально плотной упаковкой М. и аморфных областей с несколько менее плотной упаковкой. Аморфные области включают участки изгиба М. Паракрист. структуру имеют и волокна М., вт. ч. волокна нуклеиновых кислот и полисахаридов. Глобулярные М. кристаллизуются как молекулы низкомол. соединений, однако в большинстве случаев их кристаллы несовершенны.

  13. Источник: Физическая энциклопедия



  14. Научно-технический энциклопедический словарь

    МАКРОМОЛЕКУЛА, МОЛЕКУЛА, тысячикратно превышающая размером молекулы большинства веществ. Многие белки, нуклеиновые кислоты, пластмассы, смолы, резины и натуральные и синтетические волокна состоят из таких гигантских единиц, каждая из которых содержит тысячи атомов.

  15. Источник: Научно-технический энциклопедический словарь



  16. Медицинская энциклопедия

    молекула с молекулярной массой более 1000; М. обладают коллоидными свойствами.

  17. Источник: Медицинская энциклопедия



  18. Химическая энциклопедия

    (от греч. makros - большой и молекула), молекула полимера. М. имеют цепное строение; состоят из одинаковых или разл. структурных единиц - составных звеньев, представляющих собой атомы или группы атомов, соединенные друг с другом ковалентными связями в линейные последовательности. Последовательность соединенных друг с другом атомов, образующих собственно цепь, наз. хребтом цепи, или цепью главных валентностей, а заместители у этих атомов - боковыми группами. М. могут иметь линейное или разветвленное строение; в разветвленных М. различают основную и боковые цепи. См. также Высокомолекулярные соединения. Осн. мол. характеристики М. - хим. строение, длина цепи (степень полимеризации, относит. молекулярная масса) и гибкость. Хим. строение звеньев и их взаимное расположение в цепи характеризуют первичную структуру М. Первичная структура исчерпывающе определяется конфигурацией М. - пространств. расположением атомов в М., к-рое не м. б. изменено без разрыва связей и обусловлено длинами связей и величинами валентных углов. Число разл. способов взаимного расположения (чередования) звеньев в М. характеризуется конфигурационной энтропией и отражает меру информации, к-рую может содержать М. Способность к хранению информации - одна из самых важных характеристик М., значение к-рой стало понятно после открытия генетич. кода и расшифровки структуры основных биол. М. - нуклеиновых кислот и белков. Первичная структура синтетич. М. предопределяет (вместе с молекулярно-массовым распределением, т. к. реальные синтетич. полимеры состоят из М. разной длины) способность полимеров кристаллизоваться, быть каучуками, волокнами, стеклами и т. п., проявлять ионо- или электронообменные св-ва, быть хемомех. системами (т. е. обладать способностью перерабатывать хим. энергию в механическую и наоборот). С первичной структурой связана также способность М. к образованию вторичных структур (см. ниже). В биополимерах, состоящих из строго идентичных М., эти структуры достигают высокой степени совершенства и специфичности, предопределяя способность, напр., белков быть ферментами, переносчиками кислорода и т. п. М. способны к изменению формы и линейных размеров в результате теплового движения, а именно - ограниченного вращения звеньев вокруг валентных связей (внутр. вращение) и связанного с ним изменения конформации М., т. е. взаимного расположения в пространстве атомов и групп атомов, соединенных в цепь, при неизменной конфигурации М. Обычно в результате такого движения М. приобретает наиб. вероятную форму статистич. клубка. Наряду с беспорядочной конформацией статистич. клубка могут существовать упорядоченные (спиральные, складчатые) конформации, к-рые обычно стабилизированы силами внутри-и межмол. взаимодействия (напр., водородными связями). В результате внутримол. взаимодействия м. б. получены М. в предельно свернутой конформации, наз. глобулой. Ограничения внутр. вращения количественно описываются в терминах поворотной изомерии (см. Внутреннее вращение молекул). Для фрагмента М., построенной из атомов углерода, соединенных простыми связями, схема энергетич. барьеров внутр. вращения изображена на рисунке. Степень свободы этого вращения определяет гибкость М., с к-рой связаны каучукоподобная эластичность, способность полимеров к образованию надмолекулярных структур, почти все их физ. и мех. св-ва. Разница энергии Де между минимумами на кривой зависимости внутр. энергии Еот угла вращения j определяет термодинамич. (статич.) гибкость М., т. е. вероятность реализации тех или иных конформации (напр., вытянутых, свернутых), размер и форму М.; величины энергетич. барьеров DE определяют кинетич. (динамич.) гибкость М., т. е. скорость перехода из одной конформации в другую. Величины энергетич. барьеров зависят от размеров и характера боковых радикалов при атомах, образующих хребет цепи. Чем массивнее эти радикалы, тем выше барьеры. Конформация М. может изменяться и под действием внеш. силы (напр., растягивающей); податливость М. к таким деформациям характеризуется кинетич. гибкостью. При очень малых гибкостях, напр. в случаях лестничных полимеров или наличия действующей вдоль цепи системы водородных или координац. связей (см. Координационные полимеры), внутр. вращение сводится к относительно малым крутильным колебаниям мономерных звеньев друг относительно друга, чему соответствует макроскопич. модель упругой плоской лепты или стержня. Число возможных конформации М. возрастает с увеличением степени полимеризации, и термодинамич. гибкость по-разному проявляется на коротких и длинных участках М. Это можно понять с помощью др. макроскопич. модели - металлич. проволоки. Длинную проволоку можно скрутить в клубок, а короткую, у к-рой длина и размер в поперечном направлении соизмеримы, - невозможно, хотя физ. ее св-ва те же. Непосредств. численная мера термодинамич. гибкости (персистентная длина l) определяется выражением: l = l0exp(De/kT), где De > 0, l0 ~ 10-10 м (т. е. порядка длины хим. связи), k - постоянная Больцмана, Т - т-ра. Если контурная длина, т. е. длина полностью вытянутой М. без искажения валентных углов и связей, равна L, то L < l соответствует ситуации с короткой проволокой, и гибкость просто не может проявляться из-за малого числа допустимых конформации. При L >> l М. сворачивается в статистич. клубок, среднеквадратичное расстояние между концами к-рого <h2>1/2 при отсутствии возмущающих факторов пропорционально Р 1/2 (Р - степень полимеризации). Возмущающим фактором м. б. термодинамич. взаимодействие с р-рителем. Суть его удобно понять с помощью третьей модели - осмотической. М. как малая система из Рсвязанных в цепь элементов (мономерных звеньев) в своем поведении примерно эквивалентна системе из тех же Рэлементов, но не связанных между собой, а заключенных в гибкую оболочку, не проницаемую для этих элементов и проницаемую для р-рителя. Такая система по сравнению с системой в идеальном р-рителе увеличит из-за осмотич. набухания свои линейные размеры в a раз. То же происходит и с линейными размерами клубка, в к-рый свернута М. Они становятся равными <h02>1/2a, где индекс "0" соответствует идеальному р-рителю. Для идеального р-рителя (Q - р-ритель) второй вириальный коэф. осмотич. ур-ния равен нулю, а a = 1. Т-ра, при к-рой a = 1, наз. тета (Q)-температурой Флори; a - параметр набухания Флори; он зависит от Р g(g [ 0,1). См. Набухание полимеров, Растворы полимеров. Способность М. к образованию статистич. клубка является непосредств. проявлением термодинамич. гибкости, а размеры клубка <h02>1/2 служат количеств. характеристикой этой гибкости. Иногда вместо l пользуются величиной статистич. сегмента Куна А. При этом моделью М. служит эквивалентная цепь, состоящая из статистич. сегментов длиной А, абсолютно свободно вращающихся друг относительно друга. Величина Апропорциональна числу звеньев в сегменте п, при к-ром полностью утрачивается корреляция между направлениями первого и n-го звеньев сегмента. Величина сегмента Куна также служит мерой гибкости М. и связана с персистентной длиной простым соотношением: А =2l. Для ряда теоретич. выкладок и практич. расчетов удобно пользоваться др. параметром - степенью развернутости клубка: b = <h02>1/2/L. Величина b = 0,25, соответствующая числу статистич. сегментов в М. А~ 13, определяет границу между олигомерами и полимерами. При b < 0,25 М. образует свернутый клубок. Поскольку в реальных полимерах длина (размер) мономерных звеньев может варьировать в широких пределах, степень полимеризации сегмента Куна x является более информативной мерой гибкости, чем длина А(или l). На основании оценок хлинейные полимеры относят к гибкоцепным, полужестким или жесткоцепным. Гибкоцепными полимерами принято считать те, у к-рых x не превышает 15. Условная граница между гибкоцепными и полужесткими М. лежит в области х~ 15-20. По аналогии с персистентной длиной l можно ввести характеристич. время: t = t0exp(DE/kT). Если абс. высота энергетич. потенц. барьеров, разделяющих поворотные изомеры (см. рис.), DE ~ kT, гибкость успевает проявиться за время t0 ~ 10-11 с как в покое, так и при приложении напряжения растяжения к р-ру или расплаву, т. е. т является мерой кинетич. гибкости. При DE>> kT удовлетворяется записанный выше экспоненциальный закон, но t можно значительно сократить приложением сильных мех. или гидродинамич. полей. Если DE > kT, но сопоставимо с kT, то время перехода одной конформации М. в другую определяется фундам. временем релаксации М.: t = B.(Vh0/kT) (В - константа, V - объем М., h0 - вязкость р-рителя).

    622_640-28.jpg

    Зависимость внутр. энергии Еповоротных изомеров от угла вращения j [к определению термодинамич. (равновесной) и кинетич. (динамич.) гибкости].

    Зависимости размеров М. от Р описываются асимптотич. (Р ::) степенными соотношениями, подчиняющимися принципу масштабной инвариантности (скейлингу), и в общем случае имеют вид: <h02>1/2 ~ v(n - скейлинговый показатель). При n = 1/3 М. гибкая и имеет глобулярную конформацию; для М. в Q-р-рителе n = 1/2 ([h] ~ P1/2), в хорошем р-рителе n = 0,6 ([h] ~ P0,8); для полужестких М. ("протекаемых", т. е. р-ритель протекает через клубок) n = 2/3 ([h] ~ P), для жестких М. ("стержней") n = 1 ([h] ~ P1,7). Физ. смысл скейлинговых показателей - характеристика заполненности координационной сферы М. (усредненный по времени и пространств. координатам объем, занимаемый М., претерпевающей внутр. и внеш. тепловое движение) ее собственными звеньями. В набухшем клубке (хороший р-ритель) концентрация собственных звеньев составляет примерно 0,1%, в невозмущенном клубке (т. е. в Q-условиях) - от 1 до 3%, в глобуле - от 10 до 100%. Гибкоцепные полимеры с ростом концентрации полимера в любом р-рителе стремятся к состоянию, когда размер М. пропорционален Р 1/2. Напротив, М. жесткоцепных полимеров (x / 20) разворачиваются (n: 1,7), и возникает лиотропная жидкокристаллич. фаза. Переход в глобулярное состояние можно рассматривать как выпадение М. "на себя" (свертывание) при резком ухудшении качества р-рителя. Для глобул характерен только показатель n = 1/3, хотя степень заполненности клубка звеньями М. может быть намного ниже плотности полимера в блочном состоянии. Достаточным признаком глобулярного состояния является независимость характеристич. вязкости [h] от Р в данном р-рителе. Линейные М. сложного строения способны к образованию вторичных структур (упорядоченное состояние М., возникающее в результате специфич. меж- и внутримолекулярных взаимод.). Это возможно обычно из-за дифильности и способности к избирательным взаимод. отдельных групп, входящих в М., между собой или с р-рителем. Вторичные структуры условно можно подразделить на линейно-кристаллич., жидкокристаллич., конденсац. и вулканизационные. Наиб. хорошо известным примером первых являются a-спирали в полипептидах, двойные спирали в нуклеиновых к-тах, тройные спирали в нек-рых полипептидах или фибриллярных белках. Принято считать, что соответствующие переходы типа спираль - клубок являются не фазовыми, а кооперативными. Жидкокристаллич. структуры возникают в гребнеобразных полимерах с мезогенными группами на концах ветвей (см. Жидкие кристаллы); малая мезофаза претерпевает почти те же фазовые переходы, что и ее низкомол. аналоги. Глобулы относят к категории конденсац. структур, но м. б. и такие случаи, когда в блоксополимерах отдельные блоки термодинамически несовместимы, происходит их сегрегация и в р-ре образуются мол. мицеллы с глобулярным ядром и рыхлой оболочкой типа клубка. Вулканизац. структуры чаще всего возникают в сополимерах, содержащих доноры и акцепторы протонов; при этом внутр. сетка образуется вследствие возникновения водородных связей между далеко (вдоль развернутой цепи) расположенными звеньями. С повышением густоты такой сетки постепенно происходит переход к глобулярному состоянию. Лит.: Френкель С. Я., в сб.: Физика сегодня и завтра, Л., 1973, с. 176-270; его же, в кн.: Энциклопедия полимеров, т. 2, М., 1974, стлб. 100-33; Рафиков С. Р., Будтов В. П., Монаков Ю. Б., Введение в физико-химию растворов полимеров, М., 1978; Жен П. Ж. де, Идеи скейлинга в физике полимеров, пер. с англ., М., 1982; Эфрос А. Л., Физика и геометрия беспорядка, М., 1982; Гросберг А. Ю., Хохлов А. Р., Физика цепных молекул, М., 1984 (Новое в жизни, науке, технике. Сер. Физика, в. 8). В. Г. Баранов. С. Я. Френкель.

  19. Источник: Химическая энциклопедия



  20. Энциклопедический словарь

    МАКРОМОЛЕ́КУЛА -ы; ж. Хим. Молекула полимера, состоящая из большого количества атомов, способная изменять форму в результате внешнего воздействия.

    Макромолекуля́рный, -ая, -ое. М. уровень.

    * * *

    макромоле́кула

    молекула полимера. Построена из одинаковых или различных повторяющихся звеньев (групп атомов), образующих цепь. Содержит большое число (от сотен до миллионов) атомов, соединённых химическими связями. Способна изменять форму в результате теплового движения или действия внешних сил (так называемая гибкость макромолекулы).

    * * *

    МАКРОМОЛЕКУЛА

    МАКРОМОЛЕ́КУЛА (от макро(см. МАКРО... (часть сложных слов))... и молекула(см. МОЛЕКУЛА)), совокупность большого числа атомов(см. АТОМ), соединенных между собой химическими связями(см. ХИМИЧЕСКАЯ СВЯЗЬ). Как правило, макромолекулы состоят из повторяющихся единиц — мономеров(см. МОНОМЕР), объединившихся в макромолекулу. Термин макромолекула введен Г. Штаудингером(см. ШТАУДИНГЕР Герман) в 1922. Макромолекулами являются любые молекулы, молекулярный вес которых превышает несколько тысяч, т. е. молекулы полимеров(см. ПОЛИМЕРЫ), полисахаридов(см. ПОЛИСАХАРИДЫ), белков(см. БЕЛКИ (органические соединения)), нуклеиновых кислот(см. НУКЛЕИНОВЫЕ КИСЛОТЫ).

    Одна и та же макромолекула обычно может принимать множество конформаций молекулы(см. КОНФОРМАЦИИ МОЛЕКУЛЫ) — различающихся пространственных структур макромолекул при сохранении длин валентных связей и углов (см. Изомерия молекул(см. ИЗОМЕРИЯ МОЛЕКУЛ)).

    Макромолекулами являются молекулы полимеров(см. ПОЛИМЕРЫ). Молекула полимера построена по принципу повторения идентичных (у макромолекул гомополимера) или различных (у макромолекул сополимера) структурных единиц — мономерных повторяющихся звеньев. Макромолекулы бывают линейные и разветвленные. В линейных макромолекулах эти звенья соединены ковалентно в цепочку, длина которой характеризуется степенью полимеризации(см. ПОЛИМЕРИЗАЦИЯ) или молекулярной массой(см. МОЛЕКУЛЯРНАЯ МАССА). Молекулярная масса является однозначной характеристикой обычных молекул и макромолекул многих биологических веществ, в том числе макромолекул биополимеров. В этом случае молекулярная масса определяется числом n повторяющихся звеньев, которое называется степенью полимеризации.

    Практически любой синтетический полимер представляет собой набор полимергомологов, макромолекулы которых имеют разную степень полимеризации. Это свойство называется полидисперсностью или полимолекулярностью. Поэтому макромолекулы синтетических полимеров нельзя характеризовать одним определенным значением n или молекулярной массы М. Совокупность макромолекул данного полимера, в отличие от молекул низкомолекулярного вещества, представляет собой набор цепей, в случае, например, гомополимеров, имеющих одинаковую химическую структуру, но разную длину. Синтетические макромолекулы в растворе, а также в аморфном состоянии обычно имеют большой набор конформаций. Глобулярные белки, представляющие собой природные линейные макромолекулы, содержащие в качестве повторяющихся единиц аминокислотные остатки, имеют одну, строго фиксированную конформацию, определяющую их функционирование в живой клетке.

    Для макромолекул характерна изменчивость геометрических размеров и формы, не связанная с химическими превращениями. Благодаря этому одним из главных свойств макромолекул является их гибкость, то есть способность полимерных цепей изменять свою конформацию в результате внутримолекулярного теплового движения звеньев или под влиянием внешних механических факторов. Гибкость обусловлена возможностью вращения атомов цепи и звеньев в целом вокруг простых (одинарных) связей. Гибкость макромолекул следует отличать от подвижности, которую ограничивают внешние факторы — взаимодействие с растворителем или соседними макромолекулярными цепями.

    Макромолекулы с одинаково повторяющимися единицами называются стереорегулярными. Такие макромолекулы в твердом состоянии могут образовывать состояние, характеризующееся наличием кристаллических областей с идеально плотной упаковкой (см. Кристаллические полимеры(см. КРИСТАЛЛИЧЕСКИЕ ПОЛИМЕРЫ)). Аморфные области включают участки изгиба макромолекул. Паракристаллическую структуру имеют и волокна макромолекул, например, волокна нуклеиновых кислот и полисахаридов. Глобулярные макромолекулы кристаллизуются как молекулы низкомолекулярных соединений, однако в большинстве случаев их кристаллы несовершенны.

    Число возможных способов распределения разных звеньев вдоль цепи определяет конфигурационную энтропию макромолекулы; отрицательное значение этой величины представляет собой меру информации, которую может содержать макромолекула. Способность макромолекул к хранению информации является одной из самых важных их характеристик, значимость которой стала понятна лишь после открытия генетического кода(см. КОД ГЕНЕТИЧЕСКИЙ).

  21. Источник: Энциклопедический словарь



  22. Начала современного естествознания

    (от макро + молекула) — молекула полимера, содержащая большое число (от сотен до миллионов) валентно-связанных атомов. Макромолекула представляет собой линейную или разветвленную последовательность мономерных групп. Различают гетероцепные макромолекулы, основная цепь которых состоит из атомов различных элементов (С, N, Si, Р, О и др.), и гомоцеп-ные, у которых основная цепь состоит из одинаковых атомов (например, карбоцепные, из атомов С).

  23. Источник: Начала современного естествознания



  24. Геологическая энциклопедия

    — совокупность элементарных единиц, соединенных между собой хим. связями. Предполагается, что ископаемые угли построены разл. по структуре и величине М., состоящими из полиароматического конденсированного ядра и из неароматической части, включающей гидроароматические и гетероциклические кольца, алифатические цепи и функциональные гр. В состав неароматической части помимо С и Н входят О, S и N.

  25. Источник: Геологическая энциклопедия



  26. Энциклопедический словарь нанотехнологий

    Термин
    макромолекула

  27. Источник: Энциклопедический словарь нанотехнологий



  28. Русско-английский политехнический словарь

    macromolecule, giant molecule

    * * *

    макромоле́кула ж.

    macromolecule

    * * *

    macromolecule

  29. Источник: Русско-английский политехнический словарь



  30. Dictionnaire technique russo-italien

    ж.

    macromolecola f

    - линейная макромолекула

    - нитеобразная макромолекула

  31. Источник: Dictionnaire technique russo-italien



  32. Русско-украинский политехнический словарь

    физ.

    макромоле́кула

  33. Источник: Русско-украинский политехнический словарь



  34. Русско-украинский политехнический словарь

    физ.

    макромоле́кула

  35. Источник: Русско-украинский политехнический словарь



  36. Українсько-російський політехнічний словник

    физ. макромоле́кула

  37. Источник: Українсько-російський політехнічний словник



  38. Естествознание. Энциклопедический словарь

    молекула полимера. Построена из одинаковых или различных повторяющихся звеньев (групп атомов), образующих цепь. Содержит большое число (от сотен до миллионов) атомов, соединённых хим. связями. Способна изменять форму в результате теплового движения или действия внеш. сил (т. н. гибкость М.).

  39. Источник: Естествознание. Энциклопедический словарь



  40. Орфографический словарь-справочник

  41. Источник:



  42. Большой Энциклопедический словарь

  43. Источник: