«Кинематика»

Кинематика в словарях и энциклопедиях

Значение слова «Кинематика»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Ожегова
  5. Малый академический словарь
  6. Толковый словарь Ушакова
  7. Толковый словарь Ефремовой
  8. Большой энциклопедический словарь
  9. Современная энциклопедия
  10. Энциклопедия Брокгауза и Ефрона
  11. Большой англо-русский и русско-английский словарь
  12. Англо-русский словарь технических терминов
  13. Русско-английский словарь математических терминов
  14. Большой немецко-русский и русско-немецкий словарь
  15. Большой немецко-русский и русско-немецкий словарь
  16. Большой французско-русский и русско-французский словарь
  17. Большой испано-русский и русско-испанский словарь
  18. Большой итальяно-русский и русско-итальянский словарь
  19. Физическая энциклопедия
  20. Энциклопедический словарь
  21. Начала современного естествознания
  22. Большой энциклопедический политехнический словарь
  23. Большая политехническая энциклопедия
  24. Русско-английский политехнический словарь
  25. Dictionnaire technique russo-italien
  26. Русско-украинский политехнический словарь
  27. Русско-украинский политехнический словарь
  28. Естествознание. Энциклопедический словарь
  29. Большой Энциклопедический словарь

    Словарь Брокгауза и Ефрона

    наука, изучающая состояние движения независимо от вызывающих его сил и получившая название от греческого слова κίνημα — состояние движения и составляющая часть общей науки о движении — механики. Цель ее состоит в изучении геометрических свойств движения, скоростей и ускорений: для достижения этой цели пользуются анализом и геометрией. К. называют геометрией четырех измерений, так как она имеет дело с тремя координатами пространства и еще с четвертым переменным, представляющим собой время. Скорости представляются первыми производными от координат по времени, ускорение — вторыми производными и еще, кроме того, рассматриваются производные от координат по времени высших порядков, называемые ускорениями высших порядков. С аналитической точки зрения вся К. сводится к изучению соотношений, существующих между этими величинами. В последнее время появилось стремление к изучению К. чисто геометрическими способами. Первые, весьма общие кинематические теоремы, чисто геометрического характера даны были знаменитым Пуансо (Poinsot) в его "Théorie nouvelle de rotation des corps" в 1834 году. Если рассматривать движение таких систем, все точки которых движутся в плоскостях, параллельных между собой, то дело приводится к рассмотрению движения плоских фигур в плоскости (К. на плоскости). Перемещение неизменяемой фигуры в плоскости вполне определяется перемещением неизменяемо соединенного с той фигурой прямолинейного отрезка. Всякое же перемещение в плоскости прямолинейного отрезка из одного положения в другое может быть произведено вращением отрезка около некоторой точки, называемой центром перемещения.

    Действительно: пусть A1B1и А2В2будут два положения отрезка AB; восставим из середин А1А2и В1В2перпендикуляры ар и bq, которые пересекутся в некоторой точке P. Из равенства треугольников не трудно видеть, что PA1=PA2и PB1=PB2и что, следовательно, точка A может быть переведена из положения A1в положение А2вращением прямой PA около точки P; точно так же доказывается, что точка B может быть переведена из положения В1в положение B2вращением прямой PB около точки P. Следовательно, весь отрезок AB может быть перемещен из положения А1В1в положение А2В2вращением треугольника PAB около точки P, которая и называется центром перемещения. В случае взаимной параллельности положений А1В1и А2В2центр перемещения лежит в бесконечности.

    Непрерывное движение плоской фигуры в ее плоскости рассматривается как ряд бесконечно малых перемещений фигур из одного положения в соседнее; для каждых двух соседних положений существует свой центр перемещения, называемый, в случае непрерывного движения фигуры, мгновенным центром, потому что фигура переходит из одного положения в соседнее (бесконечно мало отличающееся от первого) в бесконечно малый промежуток времени, в течение которого она, по доказанному, вращается около мгновенного центра; в следующий момент фигура переходит из второго положения в третье, вращаясь около другого мгновенного центра, и т. д. Последовательный ряд мгновенных центров образует в неподвижной плоскости кривую, называемую неподвижной полодией. В плоскости, совпадающей с неподвижной, но неизменяемо соединенной с фигурой и увлекаемой ею в ее движении, ряд мгновенных центров образует кривую, называемую подвижной полодией, и движение данной фигуры происходит так, как будто фигура эта, неизменяемо соединенная с подвижной полодией, увлекалась в движение тем, что подвижная полодия катится (см. Катание) по неподвижной полодии. Итак, движение плоских неизменяемых фигур в их плоскости приводится к катанию кривых. В каждый данный момент мгновенный центр находится в точке взаимного прикосновения полодий, и фигура вращается на бесконечно малый угол около этой точки. Поэтому скорости всех точек движущейся фигуры и точек, неизменяемо соединенных с нею, пропорциональны прямым (радиус-векторам), проведенным из этих точек в мгновенный центр, соответствующий данному моменту, и направлены по перпендикулярам к упомянутым радиус-векторам. Подобным же образом движение твердого тела около неподвижной точки и исследование скорости этого движения приводится к изучению катания одного конуса по другому, причем вершины обоих конусов находятся в неподвижной точке, а конусам этим присваивается название аксоидов. Самое общее (всякое) движение твердого тела приводится к катанию одной линейчатой поверхности (см.) по другой, соединенному со скольжением (см.). Движение около точки и общее движение изучаются К. в пространстве. К. изучает и движение изменяемых систем. Скорости поступательные, скорости вращения и ускорения изображаются прямолинейными отрезками и складываются по правилам сложения векторов (см. Сложение векторов). Доказывается, что в бесконечно малый момент всякое движение неизменяемой системы приводится к винтовому. К. жидкого тела опирается главнейшим образом на исследование деформаций бесконечно малого параллелепипеда и на конформное преобразование плоскостей мнимого переменного.

    Выделение К., как особой науки, из общего цикла наук о движении произведено было Ампером в его "Essai sur la philosophie des sciences" в 1834 г. Чисто аналитическую обработку К. получила в сочинении Резаля: "Traité de cinématique pure". В следующих сочинениях: Бобылев, "Курс аналитической механики"; Schel, "Theorie der Bewegung und der Kräfte"; Collignon, "Traité de mecanique"; Сомов, "Теоретическая механика" и во многих других методы аналитический и геометрический взаимно дополняются. Превосходное, чисто геометрическое изложение К. дается в книге Бурместра "Lehrbuch der Kinematik". В связи с приложением к теории механизмов К. трактуется в классическом сочинении Reuleaux "Theoretische Kinematik" (1888), а также в следующих: Willis, "Principles of Mechanism" (1841); Giulio, "Elementi di cinématica applicata alle arti" (1847); Laboulaye, "Traité de cinématique" (1849, 1864, 1878); Morin, "Notion géométriques sur les mouvements et leurs transformations" (1851); Girault, "Eléments de Géométrie appliquée à la transformation du mouvement dans les machines" (1858); Belanger, "Traité de cinématique" (1864); Haton de la Goupillière, "Traité de mécanismes" (1864); Bour, "Cours de mécanique et machines" (1865) и Streinz, "Physikalische Grundlagen der Mechanik" (1883). К. жидкого тела изложена в сочинении профессора Жуковского: "Кинематика жидкого тела" (1876).

    H. Делоне.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    (от греч. kínema, родительный падеж kinematos — движение)

    раздел механики (См. Механика), посвященный изучению геометрических свойств движений без учета их масс и действующих на них сил. Излагаемое ниже относится к К. движений, рассматриваемых в классической механике (движение макроскопических тел со скоростями, малыми по сравнению со скоростью света). О К. движений со скоростями, близкими к скоростям света, см. Относительности теория, а о движениях микрочастиц — Квантовая механика.

    Устанавливаемые в К. методы и зависимости используются при кинематических исследованиях движений, в частности при расчётах передач движений в различных механизмах, машинах и др., а также при решении задач динамики (См. Динамика).В зависимости от свойств изучаемого объекта К. разделяют на К. точки, К. твёрдого тела и К. непрерывной изменяемой среды (деформируемого тела, жидкости, газа).

    Движение любого объекта в К. изучают по отношению к некоторому телу (тело отсчёта); с ним связывают так называемую систему отсчёта (оси х, у, z на рис. 1), с помощью которой определяют положение движущегося объекта относительно тела отсчёта в разные моменты времени. Выбор системы отсчёта в К. произволен и зависит от целей исследования. Например, при изучении движения колеса вагона по отношению к рельсу систему отсчёта связывают с землёй, а при изучении движения того же колеса по отношению к кузову вагона — с кузовом и т.д. Движение рассматриваемого объекта считается заданным (известным), если известны уравнения, называемые уравнениями движения (или графики, таблицы), позволяющие определить положение этого объекта по отношению к системе отсчёта в любой момент времени.

    Основная задача К. заключается в установлении (при помощи тех или иных математических методов) способов задания движения точек или тел и в определении по уравнениям их движений соответствующих кинематических характеристик движения, таких, как траектории, скорости и ускорения движущихся точек, угловые скорости и угловые ускорения вращающихся тел и др. Для задания движения точки пользуются одним из 3 способов: естественным, координатным или векторным:

    а) естественный (или траекторный), применяемый, когда известна траектория точки по отношению к выбранной системе отсчёта. Положение, точки определяется расстоянием s = O1M от выбранного на траектории начала отсчёта O1, измеренным вдоль дуги траектории и взятым с соответствующим знаком (рис. 1), а закон движения даётся уравнением s = f(t), выражающим зависимость s от времени t. Например, если задано, что s = 3t21, то в начальный момент времени t0 = 0,S0 = —1 м (точка находится слева от начала О на расстоянии 1 м), в момент t1= 1 сек, S1 = 2 м (точка справа от O1 на расстоянии 2 м) и т.д. Зависимость s от t может быть также задана графиком движения, на котором в выбранном масштабе отложены вдоль оси t время, а вдоль оси s —расстояние (рис. 2), или таблицей, где в одном столбце даются значения t,а в другом соответствующие им значения s (подобный способ применяется, например, в железнодорожном расписании движения поезда).

    б) Координатный, при котором положение точки относительно системы отсчёта определяется какими-нибудь тремя координатами, например прямоугольными декартовыми х, у, z, а закон движения задаётся 3 уравнениями х = f1(t), у = f2(t), z = f3(t). Исключив из этих уравнений время t, можно найти траекторию точки.

    в) Векторный, при котором положение точки по отношению к системе отсчёта определяется её радиус-вектором r, проведённым от начала отсчёта до движущейся точки, а закон движения даётся векторным уравнением r = r(t). Траектория точки — Годограф вектора r.

    Основными кинематическими характеристиками движущейся точки являются её скорость и ускорение, значения которых определяются по уравнениям движения через первые и вторые производные по времени от s или от х, у, z, или от r (см. Скорость, Ускорение).

    Способы задания движения твёрдого тела зависят от вида, а число уравнений движения — от числа степеней свободы тела (см. Степеней свободы число).Простейшими являются Поступательное движение и Вращательное движение твёрдого тела. При поступательном движении все точки тела движутся одинаково, и его движение задаётся и изучается так же, как движение одной точки. При вращательном движении вокруг неподвижной оси z (рис. 3) тело имеет одну степень свободы; его положение определяется углом поворота φ, а закон движения задаётся уравнением φ = f(t). Основными кинематическими характеристиками являются угловая скорость ω=dφ/dt и угловое ускорение ε = dω/dt тела. Величины ω и ε изображаются в виде векторов, направленных вдоль оси вращения. Зная ω и ε, можно определить скорость и ускорение любой точки тела.

    Более сложным является движение тела, имеющего одну неподвижную точку и обладающего 3 степенями свободы (например, Гироскоп, или волчок). Положение тела относительно системы отсчёта определяется в этом случае какими-нибудь 3 углами (например, Эйлера углами: углами прецессии, нутации и собственного вращения), а закон движения — уравнениями, выражающими зависимость этих углов от времени. Основными кинематическими характеристиками являются мгновенная угловая скорость ω и мгновенное угловое ускорение ε тела. Движение тела слагается из серии элементарных поворотов вокруг непрерывно меняющих своё направление мгновенных осей вращения ОР, проходящих через неподвижную точку О (рис. 4).

    Самым общим случаем является движение свободного твёрдого тела, имеющего 6 степеней свободы. Положение тела определяется 3 координатами одной из его точек, называемых полюсом (в задачах динамики за полюс принимается центр тяжести тела), и 3 углами, выбираемыми так же, как для тела с неподвижной точкой; закон движения тела задаётся 6 уравнениями, выражающими зависимости названных координат и углов от времени. Движение тела слагается из поступательного вместе с полюсом и вращательного вокруг этого полюса, как вокруг неподвижной точки. Таким, например, является движение в воздухе артиллерийского снаряда или самолета, совершающего фигуры высшего пилотажа, движение небесных тел и др. Основными кинематическими характеристиками являются скорость и ускорение поступательной части движения, равные скорости и ускорению полюса, и угловая скорость и угловое ускорение вращения тела вокруг полюса. Все эти характеристики (как и кинематические характеристики для тела с неподвижной точкой) вычисляются по уравнениям движения; зная эти характеристики, можно определить скорость и ускорение любой точки тела. Частным случаем рассмотренного движения является плосконаправленное (или плоское) движение твёрдого тела, при котором все его точки движутся параллельно некоторой плоскости. Подобное движение совершают звенья многих механизмов и машин.

    В К. изучают также сложное движение точек или тел, то есть движение, рассматриваемое одновременно по отношению к двум (и более) взаимно перемещающимся системам отсчета. При этом одну из систем отсчета рассматривают как основную (ее еще называют условно неподвижной), а перемещающуюся по отношению к ней систему отсчёта называют подвижной; в общем случае подвижных систем отсчёта может быть несколько.

    При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к основной системе отсчёта называют условно абсолютными, а по отношению к подвижной системе — относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с ней точек пространства по отношению к основной системе называют переносным движением, а скорость и ускорение той точки подвижной системы отсчёта, с которой в данный момент совпадает движущаяся точка, называют переносной скоростью и переносным ускорением. Например, если основную систему отсчета связать с берегом, а подвижную с пароходом, идущим по реке, и рассмотреть качение шарика по палубе парохода (считая шарик точкой), то скорость и ускорение шарика по отношению к палубе будут относительными, а по отношению к берегу — абсолютными; скорость же и ускорение той точки палубы, которой в данный момент касается шарик, будут для него переносными. Аналогичная терминология используется и при изучении сложного движения твёрдого тела.

    Основные задачи К. сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, т. е.

    νa= νoтн+ νпер,

    а абсолютное ускорение точки равно геометрической сумме трёх ускорений — относительного, переносного и поворотного, или кориолисова (см. Кориолиса ускорение), т. е.

    wa = woтн+wпер+wkop.

    Для твердого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений (см. Винтовое движение).

    В К. непрерывной среды устанавливаются способы задания движения этой среды, рассматривается общая теория деформаций и определяются так называемые уравнения неразрывности, отражающие условия непрерывности среды.

    Лит. см. при ст. Механика.

    С. М. Тарг.

    Рис. 1 к ст. Кинематика.

    Рис. 2 к ст. Кинематика.

    Рис. 3 к ст. Кинематика.

    Рис. 4 к ст. Кинематика.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. кинема́тика;
    2. кинема́тики;
    3. кинема́тики;
    4. кинема́тик;
    5. кинема́тике;
    6. кинема́тикам;
    7. кинема́тику;
    8. кинема́тики;
    9. кинема́тикой;
    10. кинема́тикою;
    11. кинема́тиками;
    12. кинема́тике;
    13. кинема́тиках.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Ожегова

    КИНЕМА́ТИКА, -и, жен. Раздел механики, изучающий движение тел без учёта их массы и действующих на них сил.

    | прил. кинематический, -ая, -ое.

  7. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  8. Малый академический словарь

    , ж.

    Раздел теоретической механики, изучающий геометрические свойства механического движения тел без учета их массы и действующих на них сил.

    [От греч. κίνημα, κινήματος — движение]

  9. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  10. Толковый словарь Ушакова

    КИНЕМА́ТИКА, кинематики, мн. нет, жен. (от греч. kinema - движение) (мех.). Отдел механики - учение о движении независимо от причин, его производящих.

  11. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  12. Толковый словарь Ефремовой

    ж.

    Раздел механики, изучающий геометрические свойства движения тел без учёта их массы и действующих на них сил.

  13. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  14. Большой энциклопедический словарь

    КИНЕМАТИКА (от греч. kinema - родительный падеж kinematos - движение), раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.

  15. Источник: Большой Энциклопедический словарь. 2000.



  16. Современная энциклопедия

    КИНЕМАТИКА (от греческого kinema, родительный падеж kinematos - движение), раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил; сформировался в трудах греческих ученых Аристотеля (4 в. до нашей эры), Птоломея (2 в. нашей эры).

  17. Источник: Современная энциклопедия. 2000.



  18. Энциклопедия Брокгауза и Ефрона

  19. Источник: Энциклопедия Брокгауза и Ефрона



  20. Большой англо-русский и русско-английский словарь

    жен.;
    физ. kinematicsж. физ. kinematics.

  21. Источник: Большой англо-русский и русско-английский словарь



  22. Англо-русский словарь технических терминов

    kinematics

  23. Источник: Англо-русский словарь технических терминов



  24. Русско-английский словарь математических терминов

    f.kinematics

  25. Источник: Русско-английский словарь математических терминов



  26. Большой немецко-русский и русско-немецкий словарь

    ж физ.

    Kinematik f

  27. Источник: Большой немецко-русский и русско-немецкий словарь



  28. Большой немецко-русский и русско-немецкий словарь

    кинематика ж физ. Kinematik f

  29. Источник: Большой немецко-русский и русско-немецкий словарь



  30. Большой французско-русский и русско-французский словарь

    ж. мех.

    cinématique f

  31. Источник: Большой французско-русский и русско-французский словарь



  32. Большой испано-русский и русско-испанский словарь

    ж. физ.

    cinemática f

  33. Источник: Большой испано-русский и русско-испанский словарь



  34. Большой итальяно-русский и русско-итальянский словарь

    ж.

    cinematica

  35. Источник: Большой итальяно-русский и русско-итальянский словарь



  36. Физическая энциклопедия

    КИНЕМАТИКА

    (от греч. kinema, род. п. kinematos — движение), раздел механики, посвящённый изучению геом. св-в движений тел, без учёта их масс и действующих на них сил. Методы и зависимости, устанавливаемые в К., используются при кинематич. исследованиях движений, в частности при расчётах передач движений в разл. механизмах, машинах и др., а также при решении задач динамики. В зависимости от св-в изучаемого объекта К. разделяют на К. точки, К. тв. тела и К. непрерывной изменяемой среды (деформируемого тв. тела, жидкости, газа).

    Движение любого объекта в К. изучают по отношению к нек-рому телу (тело отсчёта), с к-рым связывают т. н. систему отсчёта (оси х, у, г на рис. 1), позволяющую определять положение движущегося объекта в разные моменты времени относительно тела отсчёта.

    КИНЕМАТИКА1

    Выбор системы отсчёта в К. произволен и зависит от целей исследования. Напр., при изучении движения колеса вагона по отношению к рельсу систему отсчёта связывают с Землёй, а при изучении движения того же колеса по отношению к кузову вагона — с кузовом и т. д. Движение рассматриваемого объекта считается заданным (известным), если известны ур-ния (или графики, таблицы), позволяющие определить положение этого объекта по отношению к системе отсчёта в любой момент времени.

    Осн. задача К.— установление (при помощи тех или иных матем. методов) способов задания движения точек или тел и определение соответствующих кинематич. хар-к этих движений (траектории, скорости и ускорения движущихся точек, угл. скорости и угл. ускорения вращающихся тел и др.).

    Движение точки может быть задано одним из трёх способов: векторным, координатным или естественным. При векторном способе положение точки по отношению к системе отсчёта определяется её радиусом-вектором r, проведённым от начала отсчёта до движущейся точки, а закон движения даётся векторным ур-нием: r=r(t). Траекторией точки явл. годограф вектора r. При координатном способе положение точки относительно системы отсчёта определяется к.-л. тремя координатами, напр. прямоугольными декартовыми х, у, z, а закон движения задаётся тремя ур-ниями: x=f1(t), y=f2(t), z=f3(t). Исключив из этих ур-ний время t, можно найти траекторию точки. Естественный (или траекториый) способ применяется обычно, когда известна траектория точки по отношению к выбранной системе отсчёта. Положение точки определяется расстоянием s=О1М от выбранного на траектории начала отсчёта O1, измеренным вдоль траектории и взятым с соответствующим знаком (рис. 1), а закон движения даётся ур-нием s=f(t), выражающим зависимость s от времени t. Зависимость s от t может быть также задана графиком движения, на к-ром в выбранном масштабе вдоль оси t отложено время, а вдоль s — расстояние (рис. 2), или таблицей, где в одном столбце даются значения t, а в другом — соответствующие им значения s. Осн. кинематич. хар-ками движущейся точки явл. её скорость и ускорение.

    КИНЕМАТИКА2

    Способы задания движения тв. тела зависят от вида его движения, а число ур-ний движения — от числа степеней свободы тела (см. СТЕПЕНЕЙ СВОБОДЫ ЧИСЛО). Простейшими явл. поступательное движение и вращательное движение тв. тела. При поступат. движении все точки тела движутся одинаково, и его движение задаётся и изучается так же, как движение одной точки. При вращат. движении вокруг неподвижной оси АВ (рис. 3) тело имеет одну степень свободы; его положение определяется углом поворота j, а закон движения задаётся ур-нием: j=f(t). Осн. кинематич. хар-ками явл. угловая скорость w и угловое ускорение e тела. Зная w и e, можно определить скорость и ускорение любой точки тела.

    Более сложным явл. движение тела, имеющего одну неподвижную точку и обладающего тремя степенями свободы (напр., гироскоп). В этом случае положение тела относительно системы отсчёта определяется к.-н. тремя углами (напр., Эйлеровыми углами), а закон движения — ур-ниями, выражающими зависимость этих углов от времени. Осн. кинематич. хар-ками явл. w и e тела. Движение тела слагается из серии элем. поворотов вокруг непрерывно меняющих своё направление мгновенных осей вращения ОР, проходящих через неподвижную точку О (рис. 4).

    КИНЕМАТИКА3

    Самый общий случай — движение свободного тв. тела, имеющего шесть степеней свободы. Положение тела определяется тремя координатами одной из его точек, наз. полюсом (в задачах динамики за полюс принимается обычно центр тяжести тела), и тремя углами, к-рые выбираются так же, как для тела с неподвижной точкой. Закон движения тела задаётся шестью ур-ниями, выражающими зависимости названных координат и углов от времени. Движение тела слагается из поступательного вместе с полюсом и вращательного вокруг этого полюса, как вокруг неподвижной точки. Такими, напр., являются: движение в воздухе артиллерийского снаряда или самолёта, совершающего фигуры высш. пилотажа, движения небесных тел. Осн. кинематич. хар-ки — скорость и ускорение поступат. части движения, равные скорости и ускорению полюса, и угл. скорость и угл. ускорение вращения тела вокруг полюса. Все названные хар-ки (как и кинематич. хар-ки для тела с неподвижной точкой) определяются по ур-ниям движения; зная эти хар-ки, можно вычислить скорость и ускорение любой точки тела. Частным случаем рассмотренного движения явл. плосконаправленное (или плоское) движение тв. тела, при к-ром все его точки движутся параллельно нек-рой плоскости. Подобное движение совершают звенья многих механизмов и машин.

    В К. изучают также сложное движение точек или тел, т. е. движение, рассматриваемое одновременно по отношению к двум (или более) взаимно перемещающимся системам отсчёта. При этом одну из систем отсчёта рассматривают как основную (её условно наз. неподвижной), а перемещающуюся по отношению к ней систему отсчёта наз. подвижной; в общем случае подвижных систем отсчёта может быть несколько. При изучении сложного движения точки её движение, а также скорость и ускорение по отношению к осн. системе отсчёта наз. условно абсолютными, а по отношению к подвижной системе — относительными. Движение самой подвижной системы отсчёта и всех неизменно связанных с нею точек np-ва по отношению к осн. системе наз. п е р е н о с н ы м движением. Осн. задачи К. сложного движения заключаются в установлении зависимостей между кинематич. хар-ками абс. и относит. движений точки (или тела) и хар-ками движения подвижной системы отсчёта, т. е. переносного движения (см. ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ).

    Для тв. тела, когда все составные (т. е. относительные и переносные) движения явл. поступательными, абс. движение также поступательное со скоростью, равной геом. сумме скоростей составных движений. Если составные движения тела явл. вращательными вокруг осей, пересекающихся в одной точке (как, напр., у гироскопа), то результирующее движение также явл. вращательным вокруг этой точки с угл. скоростью, равной геом. сумме угл. скоростей составных движений. Если же составными движениями тела явл. и поступательные и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений.

    В К. сплошной среды устанавливаются способы задания движения этой среды, рассматривается общая теория деформаций и определяются т. н. ур-ния неразрывности (сплошности) среды (подробнее (см. ГИДРОМЕХАНИКА, УПРУГОСТИ ТЕОРИЯ)).

  37. Источник: Физическая энциклопедия



  38. Энциклопедический словарь

    КИНЕМА́ТИКА -и; ж. [от греч. kinēma (kinēmatos) - движение] Раздел теоретической механики, изучающий геометрические свойства механического движения тел без учёта их массы и действующих на них сил.

    Кинемати́ческий, -ая, -ое. К. метод. К-ие схемы.

    * * *

    кинема́тика

    (от греч. kínēma, род. п. kinēmatos — движение), раздел механики, в котором изучаются геометрические свойства движения тел без учёта их массы и действующих на них сил.

    * * *

    КИНЕМАТИКА

    КИНЕМА́ТИКА (от греч. kinema, родительный падеж kinematos — движение), раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.

  39. Источник: Энциклопедический словарь



  40. Начала современного естествознания

    (от греч.kinema (kinematis) — движение) — раздел классической (ньютоновой) механики, в котором изучаются геометрические свойства движения (траектории, пути) тел без учета их массы и действующих на них сил. Исходными в кинематике являются представления о пространстве и времени, их производные — скорость, ускорение.

  41. Источник: Начала современного естествознания



  42. Большой энциклопедический политехнический словарь

    [от греч. kinema (kinematos) - движение] - раздел механики, в к-ром изучаются геом. св-ва механич. движения тел без учёта действующих на них сил. К. механизмов - раздел машин и механизмов теории, в к-ром изучается движение звеньев механизма независимо от прилож. к ним сил. Различают кинематич. анализ н синтез (см. Синтез механизмов). Осн. задачи кинематич. анализа: определение положений звеньев, траекторий отд. точек механизма, угловых скоростей и ускорений отд. точек механизма при заданных осн. размерах, определяющих кинематич. схему и законы движения ведущих звеньев. Задачи К. механизмов могут решаться графически, аналитически н экспериментально.

  43. Источник: Большой энциклопедический политехнический словарь



  44. Большая политехническая энциклопедия

    КИНЕМАТИКА — раздел механики (см.), в котором изучаются геометрические свойства механического движения тел без учёта их масс и физ. причин (сил), вызывающих это движение.

  45. Источник: Большая политехническая энциклопедия



  46. Русско-английский политехнический словарь

    kinematics

    * * *

    кинема́тика ж.

    kinematics

  47. Источник: Русско-английский политехнический словарь



  48. Dictionnaire technique russo-italien

    ж.

    cinematica f;(кинематическая цепь) cinematismo m

    - звёздная кинематика

    - кинематика механизмов

    - кинематика относительных движений

    - прикладная кинематика

    - кинематика твёрдого тела

    - кинематика точки

  49. Источник: Dictionnaire technique russo-italien



  50. Русско-украинский политехнический словарь

    астр., матем., физ.

    кінема́тика

  51. Источник: Русско-украинский политехнический словарь



  52. Русско-украинский политехнический словарь

    астр., матем., физ.

    кінема́тика

  53. Источник: Русско-украинский политехнический словарь



  54. Естествознание. Энциклопедический словарь

    (от греч. - движение), раздел механики, в к-ром изучаются геом. свойства движения тел без учёта их массы и действующих на них сил.

  55. Источник: Естествознание. Энциклопедический словарь



  56. Большой Энциклопедический словарь

  57. Источник: