Большая Советская энциклопедия

    характеристики атомов, позволяющие приблизительно оценивать межатомные расстояния в веществах. Согласно квантовой механике, атом не имеет определённых границ, но вероятность найти электрон на данном расстоянии от ядра атома, начиная с некоторого расстояния, весьма быстро убывает. Поэтому можно приближённо приписать атому некоторый размер. Для всех атомов этот размер порядка 10-8 см,т. е. 1 Å или 0,1 нм. Опытные данные показывают, что, суммируя для атомов А и В значения величин, называются А. р., во многих случаях удаётся получить значение межатомного расстояния AB в химических соединениях и кристаллах, близкое к истинному. Это свойство межатомных расстояний, называется аддитивностью, оправдывает применение А. р. Последние подразделяются на металлические и ковалентные.

    За металлический радиус принимается половина кратчайшего межатомного расстояния в кристаллической структуре элемента-металла. Металлический радиус зависит от числа ближайших соседей атома в структуре (координационного числа К). Если принять А. р. при К = 12 (это значение К чаще всего встречается в металлах) за 100%, то А. р. при К = 8,6 и 4 составят 98,96 и 88% соответственно. А. р. металлов применяют для предсказания возможности образования и анализа строения сплавов и интерметаллических соединений. Так, близость А. р. — необходимое, хотя и недостаточное условие взаимной растворимости металлов по типу замещения: магний (А. р. 1,60 Å) в широких пределах образует твёрдые растворы с литием (1,55 Å) и практически не образует их с натрием и калием (1,89 Å и 2,36 Å). Аддитивность А. р. позволяет ориентировочно предсказывать параметры решёток интерметаллов (например, для тетрагональной структуры β-AlCr2, расчёт даёт а = 3,06 Å, с = 8,60 Å, соответствующие экспериментальные значения 3,00 Å и 8,63 Å).

    Ковалентные радиусы представляют собой половину длины ординарной связи Х — X, где Х — элемент-неметалл. Так, например, в случае галогенов А. р.— это половина межатомного расстояния в молекулах X2, для серы и селена — в молекулах X8, для углерода — это половина длины связи в кристаллической структуре алмаза или в молекулах предельных углеводородов. Повышение кратности связи (например, в молекулах бензола, этилена, ацетилена) приводит к уменьшению её длины, что иногда учитывают введением соответствующей поправки. Приблизительно выполняющаяся аддитивность ковалентных радиусов позволяет вычислить их значения и для металлов (из длин ковалентных связей Me — X, где Me — металл). В некоторых исследованиях, сравнивая экспериментально найденные расстояния Me — Х с суммами ковалентных радиусов и ионных радиусов (См. Ионные радиусы), судят о степени ионности связи. Однако межатомные расстояния Х—Х и Me — Х заметно зависят от валентного состояния атомов. Последнее уменьшает универсальность ковалентных радиусов и ограничивает возможность их применения. О связи А. р. элементов с их положением в периодической системе см. Периодическая система элементов Д. И. Менделеева.

    Лит.: Бокий Г. Б., Кристаллохимия, 2 изд., М., 1960; Жданов Г. С., Физика твердого тела, М., 1962; Китайгородский А. И., Органическая кристаллохимия, М., 1955; Bastiansen О., Тraetteberg M., The nature of bonds between carbon atoms, «Tetrahedron», 1962, v. 17, №3.

    П. М. Зоркий.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    АТОМНЫЕ РАДИУСЫ - характеристики, позволяющие приближенно оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. Определяются главным образом из данных рентгеновского структурного анализа.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    АТОМНЫЕ РАДИУСЫ

    хар-ки атомов, позволяющие приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. Атомы не имеют чётких границ, однако, согласно представлениям квант. механики, вероятность найти эл-н на определ. расстоянии от ядра быстро убывает с увеличением этого расстояния. Когда вводят понятие «А. р.», то считают, что подавляющая часть электронной плотности атома (90—98%) заключена в сфере этого радиуса. А. р. имеют порядок 0,1 нм, однако даже небольшие различия в А. р. атомов А и В могут определять структуру построенных из них кристаллов, сказываться на равновесной геометрии молекул и т. д. Опыт показывает, что кратчайшие расстояния в молекулах, тв. телах и жидкостях можно представить в виде суммы А. р. этих атомов. Однако аддитивность А. р. явл. весьма приближённой и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами А и В (см. МЕЖАТОМНОЕ ВЗАИМОДЕЙСТВИЕ), различают металлические, ионные, ковалентные и ван-дер-ваальсовы А. <р.

    М е т а л л и ч е с к и е р а д и у с ы считаются равными половине кратчайшего расстояния между атомами в крист. структуре элемента-металла. Металлич. А. р. зависят от числа ближайших соседей атома в структуре (координац. числа K). Чаще всего встречаются крист. структуры металлов с К=12. Если принять А. р. при K=12 за единицу, то А. р. при К = 8, 6 и 4 составят соотв. 0,98, 0,96 и 0,88. Близость А. р.— необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образует непрерывный ряд тв. р-ров (А. р. Li, К, Rb и Cs равны соотв. 0,155; 0,236; 0,248 и 0,268 нм). Аддитивность А. р. позволяет с умеренной точностью предсказывать параметры кристаллических решёток интерметаллических соединений.

    Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. норв. геохимиком В. М. Гольдшмидтом, опиравшимся на опытные (рефрактометрические) значения радиусов F- и O2-(соотв. 0,133 и 0,132 нм). В системе Полинга за основу принимается значение радиуса кислородного иона 0,140 нм, а в наиб. надёжной системе Белова и Бокия — 0,136 нм. В ионных кристаллах, имеющих одинаковые координац. числа, отклонения от аддитивности А. р. обычно не превышают 0,001—0,002 нм.

    Ковалентные радиусы определяются как половина длины одинарной хим. связи X—X, где X — элемент-неметалл. Для галогенов ковалентный А. р.— это половина межъядерного расстояния X—X в молекуле Х2, для S и Se — половина расстояния X—X в Х8, для углерода — половина кратчайшего расстояния С—С в кристалле алмаза. В результате находят, что ковалентные А. р. F, Cl, Br, I, S, Se и С равны соотв. 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Ковалентный А. р. водорода принимают равным 0,030 нм (хотя половина длины связи Н — Н в молекуле Н2 равна 0,037 нм). Пользуясь правилом аддитивности ковалентных А. р., предсказывают длины связей (кратчайшие межъядерные расстояния) в многоат. молекулах. Напр., длины связей С—Н, С—F и С—Cl должны составлять соотв. 0,107; 0,141 и 0,176 нм, и они действительно примерно равны указанным значениям во многих органич. насыщ. молекулах (молекулах, не содержащих кратных связей). При наличии двойных и тройных связей углерод — углерод, когда в образовании связи участвуют две и три пары эл-нов, соответствующее межъядерное расстояние уменьшается на 0,021 и 0,034 нм.

    Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой хим. связью, т. е. принадлежащими разным молекулам (напр., в мол. кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых А. р., возникает сильное межат. отталкивание. Ван-дер-ваальсовы А. р. находят, пользуясь принципом их аддитивности, из кратчайших межат. контактов соседних молекул в кристаллах. В среднем они на =0,08.нм больше ковалентных А. р. Знание ван-дер-ваальсовых А. р. позволяет определить форму молекул, конформации молекул (см. ИЗОМЕРИЯ МОЛЕКУЛ) и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются т. о., что «выступы» одной молекулы входят во «впадины» другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографич. данные, а в ряде случаев и предсказывать структуру мол. кристаллов.

  5. Источник: Физическая энциклопедия



  6. Химическая энциклопедия

    эффективные характеристики атомов, позволяющие приближенно оценивать межатомное (межъядерное) расстояние в молекулах и кристаллах. Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают нек-рый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (90-98%). А. р. - величины очень малые, порядка 0,1 нм, однако даже небольшие различия в их размерах могут сказываться на структуре построенных из них кристаллов, равновесной конфигурации молекул и т. п. Опытные данные показывают, что во мн. случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих А. р. (т. наз. принцип аддитивности А. р.). В зависимости от типа связи между атомами различают металлич., ионные, ковалентные и ван-дер-ваальсовы А. р.

    Металлич. радиус равен половине кратчайшего расстояния между атомами в кристаллич. структуре металла. Его значение зависит от координац. числа К(числа ближайших соседей атома в структуре). Чаще всего встречаются структуры металлов с К= 12. Если принять значение А. р. в таких кристаллах за 1, то А. р. металлов с К, равными 8, 6 и 4, составят соотв. 0,98, 0,96 и 0,88. Близость значений А. р. разл. металлов - необходимое (хотя и недостаточное) условие того, что эти металлы образуют твердые р-ры замещения. Так, жидкие К и Li (радиусы 0,236 и 0,155 нм соотв.) обычно не смешиваются, а К с Rb и Cs образуют непрерывный ряд твердых р-ров (радиусы Rb и Cs-соотв. 0,248 и 0,268 нм). Аддитивность металлич. А. р. позволяет с умеренной точностью предсказывать параметры кристаллич. решеток интерметаллич. соединений.

    Ионные радиусы используют для приближенных оценок кратчайших межъядерных расстояний в ионных кристаллах, предполагая, что эти расстояния равны сумме соответствующих ионных радиусов атомов. Существует неск. систем значений ионных радиусов, отличающихся для индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям в ионных кристаллах. Впервые ионные радиусы были определены в 20-х гг. 20 в. В. М. Гольдшмидтом, опиравшимся на рефрактометрич. значения радиусов F- и О 2-, равных соотв. 0,133 и 0,132 нм. В системе Л. Полинга за основу принято значение радиуса иона О 2-, равное 0,140 нм, в распространенной системе Н. В. Белова и Г. Б. Бокия радиус этого же иона принят равным 0,136 нм, в системе К. Шеннона -0,121 нм (К = 2).

    Ковалентный радиус равен половине длины одинарной хим. связи XЧX, где Х - атом неметалла. Для галогенов ковалентный А. р. - это половина межъядерного расстояния в молекуле Х 2, для S и Se- в Х 8, для С-в кристалле алмаза. Ковалентные радиусы F, Cl, Br, I, S, Se и С равны соотв. 0,064, 0,099, 0,114, 0,133, 0,104, 0,117 и 0,077 нм. Ковалентный радиус водорода принимают равным 0,030 нм, хотя половина длины связи НЧН в молекуле Н 2 равна 0,037 нм. Пользуясь правилом аддитивности А. р., предсказывают длины связей в многоатомных молекулах. Напр., длины связей СЧН, СЧF и СЧС1 должны составлять 0,107, 0,141 и 0,176 нм соотв., и они действительно примерно равны указанным значениям во мн. орг. молекулах, не содержащих кратных углерод-углеродных связей; в противном случае соответствующие межъядерные расстояния уменьшаются.

    Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Считают также, что эти радиусы равны половине межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой хим. связью, т. е. принадлежащими разным молекулам, напр. в молекулярных кристаллах. Значения ван-дер-ваальсовых радиусов находят, пользуясь принципом аддитивности А. р., из кратчайших контактов соседних молекул в кристаллах. В среднем они на ~ 0,08 нм больше ковалентных радиусов. Знание ван-дер-ваальсовых радиусов позволяет определять конформацию молекул и их упаковку в молекулярных кристаллах. Энергетически выгодными обычно бывают такие конформации молекул, в к-рых перекрывание ван-дер-ваалъсовых радиусов валентно не связанных атомов невелико. Ван-дер-ваальсовы сферы валентно связанных атомов в пределах одной молекулы перекрываются. Внеш. контур перекрывающихся сфер определяет форму молекулы. Молекулярные кристаллы подчиняются принципу плотной упаковки, согласно к-рому молекулы, моделируемые своим "ван-дер-ваальсовым окаймлением", располагаются т. обр., что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этими представлениями, можно интерпретировать кристаллографич. данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

    Лит.: Боки и Г. Б., Кристаллохимия, 3 изд., М., 1971, с. 136-41; Полинг Л., По лин г П., Химия, пер. с англ., М., 1978; Современная кристаллография, т. 2, М., 1979, с. 67-88. В. Г. Дашевский.

  7. Источник: Химическая энциклопедия



  8. Энциклопедический словарь

    а́томные ра́диусы

    характеристики, позволяющие приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. Атомные радиусы имеют порядок 0,1 нм. Определяются главным образом из данных рентгеновского структурного анализа.

    * * *

    АТОМНЫЕ РАДИУСЫ

    А́ТОМНЫЕ РА́ДИУСЫ, характеристики, позволяющие приближенно оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах.

    Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, его представляют как ядро, вокруг которого по орбиталям(см. ОРБИТАЛИ) вращаются электроны. Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений.

    Размеры ионных радиусов подчиняются следующим закономерностям:

    1. Внутри одного вертикального ряда периодической системы радиусы ионов с одинаковым зарядом увеличиваются с возрастанием атомного номера, поскольку растет число электронных оболочек, а значит, и размер атома.

    2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Радиус аниона больше радиуса катиона, поскольку у аниона имеется избыток электронов, а у катиона – недостаток. Например, у Fe, Fe2+, Fe3+ эффективный радиус равен 0,126, 0,080 и 0,067 нм соответственно, у Si4-, Si, Si4+ эффективный радиус равен 0,198, 0,118 и 0,040 нм.

    3. Размеры атомов и ионов следуют периодичности системы Менделеева; исключения составляют элементы от № 57 (лантан) до №71 (лютеций), где радиусы атомов не увеличиваются, а равномерно уменьшаются (так называемое лантаноидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актиноидное сжатие).

    Атомный радиус химического элемента зависит от координационного числа(см. КООРДИНАЦИОННОЕ ЧИСЛО). Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний. При этом относительная разность значений атомных радиусов, соответствующих двум разным координационным числам, не зависит от типа химической связи (при условии, что тип связи в структурах со сравниваемыми координационными числами одинаков). Изменение атомных радиусов с изменением координационного числа существенно сказывается на величине объемных изменений при полиморфных превращениях. Например, при охлаждении железа, его превращение из модификации с гранецентрированной кубической решеткой в модификацию с объемно-центрированной кубической решеткой имеющее место при 906 оС, должно сопровождаться увеличением объема на 9%, в действительности увеличение объема составляет 0,8%. Это связано с тем, что за счет изменения координационного числа от 12 до 8 атомный радиус железа уменьшается на 3%. Т. е., изменение атомных радиусов при полиморфных превращениях в значительной степени компенсируют те объемные изменения, которые должны были бы произойти, если бы при этом не менялся атомный радиус. Атомные радиусы элементов можно сопоставлять только при одинаковом координационном числе.

    Атомные (ионные) радиусы зависят также от типа химической связи.

    В кристаллах с металлической связью(см. МЕТАЛЛИЧЕСКАЯ СВЯЗЬ) атомный радиус определяется как половина межатомного расстояния между ближайшими атомами. В случае твердых растворов(см. ТВЕРДЫЕ РАСТВОРЫ) металлические атомные радиусы меняются сложным образом.

    Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Так, расстояния в одинарных связях С-С в алмазе и насыщенных углеводородах одинаковы и равны 0,154 нм.

    Ионные радиусы в веществах с ионной связью(см. ИОННАЯ СВЯЗЬ) не могут быть определены как полусумма расстояний между ближайшими ионами. Как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов отличается от сферической. Существует несколько подходов к оценке величины ионных радиусов. На основании этих подходов оценивают ионные радиусы элементов, а затем из экспериментально определенных межатомных расстояний определяют ионные радиусы других элементов.

    Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми атомными радиусами считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой химической связью, т.е. принадлежащими разным молекулам (например, в молекулярных кристаллах).

    При использовании в расчетах и построениях величин атомных (ионных) радиусов их значения следует брать из таблиц, построенных по одной системе.

  9. Источник: Энциклопедический словарь



  10. Естествознание. Энциклопедический словарь

    характеристики, позволяющие приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. А. р. имеют порядок 0,1 нм. Определяются гл. обр. из данных рентгеновского структурного анализа.

  11. Источник: Естествознание. Энциклопедический словарь



  12. Большой Энциклопедический словарь

  13. Источник: