Большая Советская энциклопедия

    мышечного сокращения, выражает изменение скорости сокращения мышцы в зависимости от её нагрузки. Выведено английским физиологом А. В. Хиллом в 1938. Формула Х. у.: (P + a)(v + b) = b(P0 + а), где v — скорость сокращения мышцы при нагрузке P, P0 — максимальное значение изометрической силы при тетаническом (см. Тетанус) раздражении всей мышцы, константы а и b — эмпирические величины. Константа а имеет размерность силы и равна около 4·105 дин/см2 поперечного сечения мышц различных видов, а константа b имеет размерность скорости (выражается в см/сек или l0/cek, где l0 — начальная длина мышцы) и для разных мышц различна.

    В более общем виде эту закономерность выразили в 1953 английские учёные Б. С. Эббот и Д. Р. Уилки. Если сокращающаяся мышца имеет длину l в момент времени t, то скорость её укорочения — dl/dt определяется по формуле: —dl/dt = (F1F) b/(F + а), где F — сила, которую преодолевает мышца, F1 — максимальная сила мышц при той длине, при которой измеряется скорость её укорочения, а и b — константы. Эта формула модифицирована Уилки в 1956, что позволило рассматривать скорость сокращения мышцы (—dx/dt) при любой заданной нагрузке во время тетанические сокращения всей мышцы: Fm — напряжение мышцы, пропорциональное тетаническому раздражению, f1(Fm) — характеристика зависимости напряжения от нагрузки для упругого элемента, соединённого последовательно, F0 — изометрическое (тетаническое) напряжение.

    Скорость сокращения уменьшается при понижении температуры; температурный коэффициент Q10 равен около 2,5. Даже при отсутствии силы, противодействующей сокращению, мышца укорачивается с ограниченной скоростью: если F = 0, то — (dl/dt) = F1b/a.

    Х. у. точно описывает сокращение мышц позвоночных н беспозвоночных, хотя ещё не установлено соответствие констант уравнения сократительным, упругим и вязким элементам структуры мышцы. См. также Мышечное сокращение.

    Лит.: Физиология мышечной деятельности, труда и спорта, Л., 1969 (Руководство по физиологии); Хилл А., Механика мышечного сокращения, пер. с англ., M., 1972; Abbott В. С., Wilkie D. R., The relation between velocity of shortening and the tension-length curve of skeletal muscle, «Journal of Physiology», 1953, v. 120; Wilkie D. R., The mechanical properties of muscle, «British Medical Bulletin», 1956, v. 12.

    А. С. Батуев,

    О. П. Таиров.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Физическая энциклопедия

    ХИЛЛА УРАВНЕНИЕ

    - обыкновенное дифференц. ур-ние 2-го порядка

    5082-18.jpg

    с периодич. ф-цией p(z); все величины могут быть ком.-плексными. Названо по имени Дж. Хилла [1 ], к-рый, изучая движение Луны, получил ур-ние

    5082-19.jpg

    с действит. числами q0, q2, q4,..., причём ряд 5082-20.jpg сходится.

    Хилл дал метод решения X. у. с использованием определителей бесконечного порядка. Это явилось толчком для создания теории таких определителей и далее для создания Э. Фредгольмом (Е. Fredholm) теории интегральных ур-ний. Для X. у. ставятся прежде всего задачи устойчивости решений, существования или отсутствия периодич. решений. Если в действительном случае в X. у. ввести параметр l:

    5082-21.jpg

    то, как установил А. М. Ляпунов [2], существует такая бесконечная последовательность

    5082-22.jpg

    что при l5082-23.jpg(l2n, l2n+1) X. у. устойчиво, а при l5082-24.jpg[l2n-1, l2n] X. у. неустойчиво. При этом l4n и l4n+3 являются собственными значениями периодич. краевой задачи, а l4n+1 и l4n+2 - собственными значениями полупериодич. краевой задачи. Теория X. у. хорошо изучена (см. [3]).

    Лит.:Hill G., On the part of the motion of the lunar perigees with is a function of the mean motions of the sun and moon, "Acta Math.",, 1886, v. 8, p. 1; 2) Ляпунов А. М., Собр. соч., т. 2, М., 1956, с. 407; 3) Якубович В. А., Старжинский В. М., Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения, М., 1972. Ю. В. Комленкo.

  3. Источник: Физическая энциклопедия



  4. Математическая энциклопедия

    - обыкновенное дифференциальное уравнение 2-го порядка

    с периодич. функцией p(z);все величины могут быть комплексными. Уравнение наавано по имени Дж. Хилла [1], к-рый, изучая движение Луны, получил уравнение

    с действительными числами причем ряд сходится.

    Дж. Хилл дал метод решения X. у. с использованием определителей бесконечного порядка. Это явилось толчком для создания теории таких определителей и, далее, для создания Э. Фредгольмом (Е. Fredholm) теории интегральных уравнений. Для X. у. ставятся прежде всего задачи устойчивости решений, существования или отсутствия периодич. решений. Если в действительном случае в X. у. ввести параметр:

    то, как установил А. М. Ляпунов [2], существует такая бесконечная последовательность

    что при X. у. устойчиво, а при Х. у. неустойчиво. При этом и являются собственными значениями периодич. краевой задачи, а и -собственными значениями полупериодич. краевой задачи. Хорошо изучена теория Х. <у. (см. [3]).

    Лит.:[1] Нill G., лActa math.

  5. Источник: Математическая энциклопедия