Большая Советская энциклопедия

    состояние, в котором находится Термодинамическая система; Т. с. характеризуется совокупностью макроскопических параметров, определяющих внутренние свойства системы в данном состоянии и её взаимодействие с внешними телами. Параметрами Т. с. являются: температура, давление, объём системы, электрическая поляризация, намагниченность и т. д. Среди параметров состояния существует определённое количество не зависимых параметров (оно равно числу термодинамических степеней свободы (См. Термодинамические степени свободы) системы), остальные параметры могут быть выражены через независимые. Так, в уравнении состояния (См. Уравнение состояния) идеального газа pV = RT два параметра (например, температура Т и объём V) являются независимыми, третий параметр — давление газа р —определяется через ТиV(R— Газовая постоянная). В термодинамике различают равновесные состояния (см. Равновесие термодинамическое) и неравновесные состояния, которые изучает Термодинамика неравновесных процессов.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ физической системы - определяется в случае равновесия равновесными значениями ее параметров: температуры, давления, объема, концентраций компонентов, потенциалов и т. п.; неравновесное состояние характеризуется наличием в системе перепадов (градиентов) температуры, концентрации или др. параметров.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Большой англо-русский и русско-английский словарь

    thermodynamic condition

  5. Источник: Большой англо-русский и русско-английский словарь



  6. Англо-русский словарь технических терминов

    thermodynamic condition

  7. Источник: Англо-русский словарь технических терминов



  8. Физическая энциклопедия

    ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ

    - равновесное макроскопич. состояние термодинамической системы, к-рое фиксируется заданием параметров состояния, представляющих собой измеряемые макроскопич. приборами ср. величины определ. набора характеристик системы. Конкретный выбор этих параметров неоднозначен и определяется тем, каким способом рассматриваемая равновесная система выделяется из среды окружающих её тел и др, систем (т. е. видом контакта системы и окружения). Обычно используется один из четырёх вариантов такого выбора: 1) адиабатически изолированная система (система выделена стенками, не допускающими через себя потоки энергии и частиц) - фиксируются энергия системы 5016-56.jpg, объём V, число частиц N и внеш. поля X;2) система в термостате (система выделена с помощью теплопроводящих стенок и находится в равновесии с др. термодинамич. системой, выполняющей роль термометра или термостата) - фиксируются темп-pa Т или Q= kT (энергия 5016-57.jpg уже не фиксируется точно), а также V, N, X;3) система выделена воображаемыми стенками (величины 5016-58.jpg и N точно не фиксированы)- в качестве параметров состояния используются Q, V, X и хим. потенциал m; 4) вариант 2, но с подвижной стенкой (система "под поршнем", выполняющим роль мембраны манометра, объём V уже точно не фиксирован) - параметрами состояния являются Q, давление P, N и X. В термодинамич. пределе, 5016-59.jpg , V/N=const, все четыре варианта оказываются эквивалентными, т. к. различия в граничных условиях проявляются как негарантированные малые поправки.

    При выборе параметров в варианте 1 потенциалом термодинамическим, содержащим в себе всю информацию о равновесных свойствах системы, является энтропия S = S(5016-60.jpg, V, N, X), в варианте 2-свободная энергия ( Гелъмгольца энергия) F=5016-61.jpg-QS/k = F(Q,V,N,X), в варианте 3 - введённый Гиббсом потенциал W = F- mN== W (Q, V, X, m) и в варианте 4 - Шббса энергия (потенциал Гиббса) G = F+PV=G(Q, P, X,N). Если зафиксировать условие 1, то энтропия при стремлении системы к равновесному состоянию достигает своего макс. значения, при фиксир. условиях 2, 3, 4 соответственно потенциалы F,W, G стремятся к своим мин. значениям. Т. о., единственное и устойчивое состояние равновесия термодинамического, характеризуемое не только внеш. условиями, но и значениями всех др. макроскопич. параметров, определяется как решение вариационной задачи, соответствующей выбору одного из вариантов 1 -4 в случае 1 - 5017-1.jpg, в случае 2 - (dF)QVXN =0,(d2F)QVXN > 0 и т. д. Вариации термодинамич. потенциалов производятся по тем параметрам системы, к-рые при указанных фиксир. условиях могут принимать неравновесные значения.

    Состояния неравновесных статистич. систем фиксируются по-разному в зависимости от этапов их эволюции. Напр., для классич. неидеального газа в нач. период времени, меньший или порядка времени взаимодействия отдельных частиц друг с другом, микроскопич. состояние системы определяется как в механике - заданием импульсов и координат всех N частиц. Затем состояние хаотизируется, индивидуальность частиц утрачивается и система вступает в кинетич. фазу эволюции, описываемую кинетич. ф-циями распределения и кинетич. ур-ниями (см. Кинетическая теория газов). По истечении времени t пр пр - ср. время свободного пробега) в областях системы, имеющих локальный размер ~l (l -ср. длина свободного пробега), возникает локальное термодинамическое равновесие. Темп-ра Q (t, r), плотность n(t, r )и др. определяемые ими термодинамич. характеристики являются локальными и зависят от времени t и пространственной координаты r. На этом этапе эволюция системы описывается ур-ниями гидроди-намич. типа с учётом неоднородностей темп-ры, плотности и конкретных граничных условий ( Навье -Стокса уравнения, ур-ния теплопроводности, диффузии и др.), а состояние- как "карта" релаксирующих значений локальных термодинамич. характеристик. Лишь по истечении общего времени релаксации в системе прекращаются потоки, устанавливаются равновесные значения темп-ры (одинаковые для всех r), плотности, давления и т. д. (при наличии внеш. статич. поля эти величины неоднородны и зависят от r), утрачивается роль граничных условий, кинетических коэффициентов и т. д. При этом поведение системы описывается методами равновесной термодинамики, состояние фиксируется условиями 1-4, а сама система конкретизируется с помощью макроскопич. ур-ний состояния или соответствующим термодинамич. потенциалом.

    Лит.: Квасников И. А., Термодинамика и статистическая физика. Теория неравновесных систем, М., 1987; его же, Термодинамика и статистическая физика. Теория равновесных систем, М., 1991. И. А. Квасников.

  9. Источник: Физическая энциклопедия



  10. Энциклопедический словарь

    термодинами́ческое состоя́ние

    физической системы, определяется в случае равновесия равновесными значениями её параметров: температуры, давления, объёма, концентраций компонентов, потенциалов и т. п.; неравновесное состояние характеризуется наличием в системе перепадов (градиентов) температуры, концентрации или других параметров.

    * * *

    ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ

    ТЕРМОДИНАМИ́ЧЕСКОЕ СОСТОЯ́НИЕ физической системы, определяется в случае равновесия равновесными значениями ее параметров: температуры, давления, объема, концентраций компонентов, потенциалов и т. п.; неравновесное состояние характеризуется наличием в системе перепадов (градиентов) температуры, концентрации или др. параметров.

  11. Источник: Энциклопедический словарь



  12. Большой энциклопедический политехнический словарь

    равновесное состояние (см. Равновесие термодинамическое) рассматриваемой термодинамич. системы или такое её неравновесное состояние, при к-ром каждая из макроскопич. частей системы находится в равновесном состоянии - т. н. локально равновесное состояние. См. также Уравнение состояния.

  13. Источник: Большой энциклопедический политехнический словарь



  14. Русско-английский политехнический словарь

    thermodynamic condition

  15. Источник: Русско-английский политехнический словарь



  16. Русско-украинский политехнический словарь

    термодинамі́чний стан

  17. Источник: Русско-украинский политехнический словарь



  18. Русско-украинский политехнический словарь

    термодинамі́чний стан

  19. Источник: Русско-украинский политехнический словарь



  20. Естествознание. Энциклопедический словарь

    физ. системы, определяется в случае равновесия равновесными значениями её параметров: темп-ры, давления, объёма, концентраций компонентов, потенциалов и т. п.; неравновесное состояние характеризуется наличием в системе перепадов (градиентов) темп-ры, концентрации или др. параметров.

  21. Источник: Естествознание. Энциклопедический словарь



  22. Большой Энциклопедический словарь

    ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ
    ТЕРМОДИНАМИЧЕСКОЕ СОСТОЯНИЕ физической системы - определяется в случае равновесия равновесными значениями ее параметров: температуры, давления, объема, концентраций компонентов, потенциалов и т. п.; неравновесное состояние характеризуется наличием в системе перепадов (градиентов) температуры, концентрации или др. параметров.

    Большой Энциклопедический словарь. 2000.

  23. Источник: