Большая Советская энциклопедия

    (математическое)

    деформация поверхности, при которой длина каждой дуги любой линии, проведённой на этой поверхности, остаётся неизменной. Наглядный пример И. — свёртывание листа бумаги в цилиндр или конус (при условии, что бумага нерастяжима; поэтому длина каждой дуги любой линии, проведённой на бумаге, остаётся неизменной). Напротив, раздувание шарика, изготовленного из тонкой резиновой плёнки, представляет собой пример деформации, которая не будет И.

    И. поверхностей изучается в дифференциальной геометрии (См. Дифференциальная геометрия). Одна из теорем этой области — теорема Гаусса: при И. поверхности произведение её главных кривизн (полная кривизна) в каждой точке остаётся неизменным. Из этой теоремы следует, что никакой кусок сферы при помощи И. нельзя превратить в кусок сферы другого радиуса или придать ему плоскую форму. В современной дифференциальной геометрии особенно важное место занимают исследования возможности или невозможности И. различных поверхностей. Доказано, что каждая замкнутая выпуклая поверхность (например, целая сфера, целый эллипсоид) не может изгибаться; если же из такой поверхности вырезать сколь угодно малый кусок, то оставшаяся часть будет допускать И. Доказательство получено благодаря работам немецкого математика С. Кон-Фоссена и советских математиков А. Д. Александрова и А. В. Погорелова. Исследование И. поверхности имеет важное значение для теории тонких оболочек в механике.

    Лит.: Кон-Фоссен С. Э., Изгибаемость поверхностей в целом, «Успехи математических наук», 1936, в. 1; Ефимов Н. В., Качественные вопросы теории деформаций поверхностей, там же, 1948, т. 3, в. 2; Рашевский П. К., Курс дифференциальной геометрии, 3 изд., М. — Л., 1950; Погорелов А. В., Изгибание выпуклых поверхностей, М. — Л., 1951.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Словарь форм слова

    1. изгиба́ние;
    2. изгиба́ния;
    3. изгиба́ния;
    4. изгиба́ний;
    5. изгиба́нию;
    6. изгиба́ниям;
    7. изгиба́ние;
    8. изгиба́ния;
    9. изгиба́нием;
    10. изгиба́ниями;
    11. изгиба́нии;
    12. изгиба́ниях.
  3. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  4. Малый академический словарь

    , ср.

    Действие по знач. глаг. изгибать и изгибаться.

  5. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  6. Толковый словарь Ефремовой

    ср.

    1.

    процесс действия по гл. изгибать, изгибаться 1., 2., 3.

    2.

    Результат такого действия; дугообразный поворот, закругление, кривизна, изгиб 2..

  7. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  8. Большой энциклопедический словарь

    ИЗГИБАНИЕ - деформация поверхности, при которой длина каждой дуги любой линии, проведенной на этой поверхности, остается неизменной.

  9. Источник: Большой Энциклопедический словарь. 2000.



  10. Большой англо-русский и русско-английский словарь

    hogging

  11. Источник: Большой англо-русский и русско-английский словарь



  12. Англо-русский словарь технических терминов

    bending, bowing, buckling, curving, flexure, hogging, inflection

  13. Источник: Англо-русский словарь технических терминов



  14. Русско-английский словарь математических терминов

    n.bending, curving, deformation

  15. Источник: Русско-английский словарь математических терминов



  16. Энциклопедический словарь

    ИЗГИБА́НИЕ -я; ср. к Изгиба́ть и Изгиба́ться.

    * * *

    изгиба́ние

    деформация поверхности, при которой длина каждой дуги любой линии, проведённой на этой поверхности, остаётся неизменной.

    * * *

    ИЗГИБАНИЕ

    ИЗГИБА́НИЕ, деформация поверхности, при которой длина каждой дуги любой линии, проведенной на этой поверхности, остается неизменной.

  17. Источник: Энциклопедический словарь



  18. Математическая энциклопедия

    - изометрическая деформация подмногообразия Мв римановом пространстве V, т. е. деформация, при к-рой длины кривых на Мне изменяются. Задача об И. поверхностей ведет свое начало от К. Гаусса (С. Gauss) и принадлежит к числу основных проблем дифференциальной геометрии.

    Помимо общего случая, было достаточно широко исследовано И. поверхности с сохранением нек-рой внешнегеометрич. характеристики; при этом обычно оказывалось, что лишь поверхности определенного класса допускают такого рода И. Сюда относятся, напр.: 1) поверхности, изгибающиеся с сохранением средней кривизны (поверхности постоянной средней кривизны и, в частности, минимальные поверхности, нек-рые поверхности, наложимые на поверхность вращения); 2) поверхности, изгибающиеся с сохранением одного семейства асимптотич. линий (этот класс составляют линейчатые поверхности);3) поверхности, допускающие изгибание на главном основании, и т. д.

    По своему характеру задачу об И. поверхности в евклидовом пространстве условно можно разделить на изгибание в малом, т. е. И. какой-нибудь достаточно малой окрестности UP нек-рой точки Рповерхности, и изгибание в целом, т. е. И. произвольного заранее заданного куска поверхности или полной поверхности. Как правило, любая поверхность допускает И. в малом; однако если Рявляется точкой уплощения, то при нек-рых условиях и при сильных предположениях регулярности допускаемых деформаций Up оказывается неизгибаемой даже в малом.

    Первыми утверждениями, касающимися И. в целом, были теорема Э. Либмана (Е. Liebmann) о неизгибаемости сферы, а также результат Д. Гильберта (D. Hilbert): максимум изгиба куска сферы достигается на границе. Дальнейшими исследованиями установлено, что любая замкнутая выпуклая поверхность неизгибаема в классе выпуклых поверхностей без всяких дополнительных условий регулярности. Найдены также теоремы типа принципа максимума, относящиеся к И. произвольного куска выпуклой поверхности класса С 3, из к-рых следует неизгибаемость замкнутой выпуклой поверхности. Однако доказано, что, напр., сфера в классе С 1 допускает изгибания того же класса.

    Относительно И. замкнутых поверхностей положительного рода установлены лишь частные результаты; так, напр., поверхности типа Т(тора), т. е. поверхности, состоящие из конечного числа областей с кусочно гладкими границами, в каждой из к-рых гауссова кривизна Кне меняет знака и обращается в нуль только на границе, причем полная кривизна всех областей с К>0 равна 4p,- неизгибаемы при нек-рых дополнительных условиях (аналитичность, отсутствие двух замкнутых асимптотических), в частности, обыкновенный тор неизгибаем.

    Полные незамкнутые поверхности, как правило, изгибаемы. Полная выпуклая поверхность Sнеизгибаема, если и допускает И., если произвол допускаемых ею И. определяется И. ее предельного конуса. Нек-рые классы полных поверхностей отрицательной кривизны также допускают И., таковы, напр., минимальные поверхности, в частности катеноид изгибания в геликоид.

    Исследования И. незамкнутых поверхностей с границей также относятся главным образом к поверхностям знакопостоянной гауссовой кривизны, причем детально рассмотрен случай, когда И. определяется единственным образом различного рода граничными условиями. Так, напр., при любом И. выпуклой поверхности Fхотя бы одна точка ее края дF изменяет свое расстояние от нек-рой фиксированной точки О, из к-рой Fвидна изнутри и к-рая расположена вне выпуклой оболочки (так что Fнеизгибаема, если расстояние любой точки края дF от Онеизменно); аналогично, при любом И. выпуклой поверхности F, однозначно проектирующейся на плоскость p и ограниченной плоским контуром, хотя бы одна точка края дF изменяет свое расстояние от p (так что Fне допускает изгибаний скольжения- таких П., при к-рых точки края движутся параллельно нек-рой плоскости я); при И. поверхности этого типа хотя бы в одной точке кривизна x края дF меняется, причем число перемен знака разности кривизн краев поверхности Fи ее изгибания F' не менее четырех (так что если кривизна края не изменяется, то Fнеизгибаема). Что касается поверхностей отрицательной кривизны, то достаточно широкий класс их И. получается при решении задачи Коши для уравнений Гаусса и Петерсона - Кодацци, так, напр., И. куска поверхности с K<0, ограниченного отрезками a0, а 1 геодезических и двумя отрезками b0, b1 их ортогональных траекторий однозначно определяется И. края b0. Относительно И. поверхностей знакопеременной кривизны ряд результатов получен лишь для поверхностей вращения.

    Для изучения И. поверхностей применяются методы теории уравнений с частным производными, напр., эллиптич. типа, к-рыми описываются И. поверхностей положительной гауссовой кривизны, а также И. поверхностей с сохранением средней кривизны; кроме того, для выпуклых поверхностей особую роль играют методы прямых предельных переходов от многогранников (см. Склеивания метод )в комбинации с теоремами о регулярности поверхности, имеющей регулярную метрику. При достаточной близости выпуклой поверхности F-F0 к ее изгибанию F1 исследование И. сводится с помощью Кон-Фоссена преобразования к аналогичным задачам теории бесконечно малых изгибаний так наз. серединной поверхности

    Лит.:[1] Каган В. Ф., Основы теории поверхностей, ч. 2, М.- Л., 1948; [2] Шуликовский В. И., Классическая дифференциальная геометрия, М., 1963; [3] Ефимов Н. В., Качественные вопросы деформаций поверхностей "в малом", "Тр. матем. ин-та АН СССР", 1949 т. 30; [4] его же, "Успехи матем. наук", 1948, т. 3, в. 2, с. 47-158; [5] Погорелов А. В., Изгибание выпуклых поверхностей, М.- Л., 1951; [6] Бляшке В., Дифференциальная геометрия, пер. с нем., т. 1, М.- Л., 1935; [7] Кон-Фоссен С. Э., Некоторые вопросы дифференциальной геометрии в целом, М., 1959.

    М. И. Войцеховский.

  19. Источник: Математическая энциклопедия



  20. Русско-английский политехнический словарь

    bending, bowing, buckling, curving, flexure, hogging, inflection

    * * *

    изгиба́ние с.

    bending; curving

  21. Источник: Русско-английский политехнический словарь



  22. Dictionnaire technique russo-italien

    с.

    curvatura f, piegatura f, flessione f

  23. Источник: Dictionnaire technique russo-italien



  24. Русско-украинский политехнический словарь

    матем., техн., физ.

    згина́ння

  25. Источник: Русско-украинский политехнический словарь



  26. Русско-украинский политехнический словарь

    матем., техн., физ.

    згина́ння

  27. Источник: Русско-украинский политехнический словарь



  28. Тезаурус русской деловой лексики

  29. Источник:



  30. Большой Энциклопедический словарь

  31. Источник: