Словарь Брокгауза и Ефрона

    Содержание статьи. I. Свечение тел. Спектр лучеиспускания. Солнечный спектр. Фраунгоферовы линии. Призматический и дифракционный спектры. Цветорассеяние призмы и решетки. — II. Спектроскопы. Коленчатый и прямой спектроскоп à vision directe. Разрешающая сила призмы и решетки. Чистота спектра. Сложные спектроскопы (Броунинга, Толлона). Спектроскоп с оптическими сетками. Ступенчатый спектроскоп. Градуировка спектроскопических шкал. Спектроскопия невидимых лучей (инфракрасных и ультрафиолетовых лучей). — III. Способы получения спектров лучеиспускания. Типы спектров лучеиспускания. Открытие спектрального анализа. Спектры поглощения. Обращенные спектры. Закон Кирхгофа. Ограничение его. Формулы, выражающие лучеиспускание твердого тела. — IV. Влияние различных условий на спектры лучеиспускания и поглощения. Влияние температуры, давления, плотности, растворителя, толщины слоя. Влияние скорости движения светового источника (принцип Доплера-Физо). Влияние магнитного поля (явление Цемана). — V. Закономерность в распределении спектральных линий. Формулы: Бальмера, Кайзера и Рунге. Связь между спектрами различных элементов. — VI. Приложение спектрального анализа к астрономии. Солнечный спектроскоп. Коронограф. Спектрогелиограф. Звездный спектроскоп. Удваивающий спектроскоп Цельнера. — VII. Приложение спектрального анализа к технической химии и медицине. Микроспектроскоп. Спектрофотометр Фирордта. — VIII. Литература.

    С. анализ представляет собой оптический метод исследования химического состава тел и физического их состояния (температуры, скорости движения и пр.). Открытый в 1859 г. совместными усилиями профессорами химии и физики гейдельбергского университета Бунзена (Bunsen) и Кирхгофа (Kirchhoff), С. анализ не только дал возможность открыть новые химические элементы (цезий, рубидий, индий, таллий, галлий и гелий), но и содействовал возникновению нового научного отдела — астрофизики. В своем непрерывном развитии С. анализ, расширяя области научного исследования, достиг уже таких результатов, с помощью которых мы точнее можем определять качества атомов и частиц, их взаимные соотношения и причины излучения телами световой энергии.

    Табл. I. СПЕКТРЫ ЛУЧЕИСПУСКАНИЯ И ПОГЛОЩЕНИЯ (по шкале Бунзена и Кирхгофа).

    Объяснение к табл. I.

    1) Солнечный спектр (H1H2соответствует HK на рис. 1. Табл. II; звезда II типа). 2) Спектр Сириуса (звезда I типа). 3) Спектр Геркулеса (звезда III типа). 4) Спектр водорода. 5) Спектр азота. 6) Спектр рубидия. 7) Спектр цезия. 8) Спектр поглощения крови (оксигемоглобина). 9) Спектр поглощения хлорофилла.

    Табл. II. СПЕКТРЫ ЛУЧЕИСПУСКАНИЯ И ПОГЛОЩЕНИЯ (шкала по длине световых волн).

    Объяснение к табл. II.

    1) Спектр солнечный (фотосфера). 2) Спектр солнечного края (хромосферический). 3) Спектр аргона (слева по порядку: 4 и 5 характерные линии спектра неона, 7 и 14 — спектра ксенона и 8 — самая яркая спектра криптона). 4) Спектр гелия. 5) Спектр натрия. 6) Спектр калия (наиболее яркая 1-я слева). 7) Спектр магния. 8) Спектр лития. 9) Спектр поглощения хлористого дидимия.

    I. Свечение тел. Возбуждение в телах световой энергии происходит обыкновенно за счет тепловой энергии движения молекул тел. Большинство твердых тел уже при температурах около 500° Ц. дает заметно красные и желтые лучи. С дальнейшим повышением температуры тела испускаются новые лучи с более короткими волнами, а прежние лучи увеличиваются в своей яркости. Но существует целый ряд условий, при которых тела испускают свет, хотя явно отсутствует высокая температура. Достаточно упомянуть случаи фосфоресценции, электрических тихих разрядов в гейслеровских трубках и т. д. Все эти случаи свечения, т. е. образования световой энергии непосредственно за счет форм энергии иной, чем теплота, названы в последнее время люминесценцией. Всякий предмет, испускающий белый свет, при рассматривании через призму дает радужную полосу, спектр лучеиспускания. Ньютон в 1666 г. первый показал на опыте, что белый солнечный свет, падающий из небольшого круглого отверстия на прозрачную стеклянную призму, преломляясь в ней, разлагается на пучки цветных лучей, образуя на белом экране — спектр. Изменяя материал для призм (при той же форме и размерах опыта) можно значительно изменять длину спектра (см. Светорассеяние). Вульстен, а затем в 1814 г. Фраунгофер доказали, что при опыте с одной и той же призмой — характер солнечного спектра может изменяться, в зависимости от размеров отверстия, и что при узкой щели, расположенной параллельно ребру призмы, спектр хотя становится менее ярким, но зато делается более резким и отчетливым. Оказывается, что солнечный спектр по всей длине покрыт множеством темных линий различных по толщине и темноте, но расположенных параллельно щели и ребру призмы. Эти фраунгоферовы линии и послужили, как увидим дальше, опорой, на которой построено современное учение о спектрах. Фраунгоферу же наука обязана и открытием другого способа получения спектров — посредством так называемой дифракционной оптической сетки (см. Дифракция). Призматический и дифракционный спектры имеют существенное различие (ср. табл. I, 1 и табл. II, 1). При одной и той же длине солнечного спектра между фраунгоферовыми линиями A и H менее преломляемые призмой лучи (красные, оранжевые) сильнее сжаты, нежели синие, фиолетовые; в дифракционном С. распределение более равномерно. Наиболее яркая часть (желто-зеленая D) призматического спектра удалена от A на1/4всей длины AH, а в дифракционном спектре D находится на середине видимого спектра. Также заметно различаются и формулы для наименьшего отклонения луча в призме и в сетке. В статье Призма было указано, что наименьшее отклонение цветного однородного луча от первоначального пути связано с показателем преломления луча и с преломляющим углом призмы простой зависимостью:

    В статье Светорассеяние было уже указано, что между nDи λDсуществует определенная зависимость, так называемая формула дисперсии:

    nD= A + BλD—2.. .(2).

    Совокупность этих формул (1) и (2) позволяет выразить сложную зависимость между наименьшим углом отклонения для определенного цветного луча и длиной волны этого луча. С другой стороны, подобным же образом соответственное минимальное отклонение δ' того же самого цветного однородного луча связано просто с элемент. сетки (т. е. числом штрихов на 1 мм), с номером порядка спектра и с длиной волны:

    λD= [2(a + b)/m]Sinδ'/2.. .(3).

    Чтобы точнее определить цветорассеивающую способность призмы и решетки для определенного рода цветных лучей (с длиной волны λ), пользуются особыми величинами, так называемыми коэффициентами дисперсии как для призмы, так и для решетки. Если через dδ' обозначить элементарный угол между двумя соседними выходящими из призмы лучами, отличающимися по длине своих волн на малую величину dλ, а по показателю преломления на dn и находящихся в min. отклонения, то коэффициентом дисперсии призмы называется величина:

    В дифракционной отражательной сетке коэффициентом дисперсии называют другую величину (i — угол падения, δ' — угол между падающим лучом и отраженным):

    которая увеличивается с порядком спектра, с числом штрихов в 1 мм и с увеличением угла между осью зрительной трубы и нормалью сетки. При трубе, установленной по нормали к сетке, dδ'/dλ = mn, хотя и наименьшая, но постоянная величина, а это имеет большое значение для многих С. исследований.

    II. Спектроскопы. Для наблюдения спектров световых источников со времени исследований Кирхгофа и Бунзена пользуются особыми приборами, которые называются спектроскопами. Простой коленчатый спектроскоп Кирхгофа и Бунзена представлен на фиг. I, 1 и 2.

    Фиг. I.

    Главные части его: 1) коллиматор А; 2) призма (система из нескольких призм — простых или сложных, оптическая решетка); 3) зрительная труба B; 4) приспособление (С), для измерения относительного расстояния С. линий. Коллиматор (прямолинейная узкая щель в фокусе ахроматического собирательного стекла) служит для получения от световых источников пучка параллельных лучей, падающих на призму или решетку. Призма или сетка — самые главные части; они служат исключительно для цветорассеивания лучей, для образования спектра. Обыкновенная зрительная труба — вспомогательная часть прибора — служит для увеличения спектра и в некоторых случаях может быть совершенно исключена (например, в карманном спектроскопе Броунинга). Для определения относительного расстояния между различными полосами и линиями спектров пользуются чаще всего вспомогательным коллиматором C, в котором щель заменена полупрозрачной пластинкой с делениями (шкала). Освещая шкалу свечой или газовой горелкой, направлять коллиматор C так, чтобы параллельные лучи, вышедшие из C на грань P призмы, могли отражаться от этой грани в зрительную трубу. В этом случае легко увидеть над спектром изображение шкалы с делениями и цифрами. При точных измерениях пользуются микрометрическими винтами (микрометренный окуляр, микрометрический винт, перемещающий или зрительную трубу из одной части спектра в другую, или самую призму при неподвижной зрительной трубе). Для одновременного сравнения спектров от двух источников света (например, цветных бунзеновских пламеней) пользуются особой вспомогательной призмочкой ab, устанавливаемой перед щелью mn коллиматора C (как на фиг. I, 3 и 4). Лучи от источника, расположенного сбоку грани а, претерпевая в призмочке полное внутреннее отражение (фиг. I, 4), входят в нижнюю часть коллиматора одновременно с лучами источника, расположенного прямо перед верхней половиной щели. При таких условиях можно получить два спектра, расположенных друг над другом, и рядом со шкалой.

    Табл. III. СПЕКТРАЛЬНЫЙ АНАЛИЗ. СПЕКТРОСКОПЫ.

    1. Спектроскоп Броунинга. 2. Микроспектроскоп Цейса. 3. Маленький прямой спектроскоп (à vision directe) со шкалой. 4. Большая модель прямого спектроскопа. 5. Разрез малого прямого спектроскопа. 6. Спектрофотометр Фирордта. 7. Солнечный спектроскоп Броунинга с переменной дисперсией. 8. Главная часть спектроскопа (echelon) Михельсона. Спектроскоп Толлона. 10. То же — ход лучей. 11. Спектрограф Роуланда. 12. Отражательная сетка Роуланда. 13. Гейслеровы (плюкеровы) трубки. 14. Индукционная спираль Румкорфа, трубка Делошанеля и маленький спектроскоп. 15. Спектрометр.

    Прямой спектроскоп (à vision directe), изображенный на фиг. 4 табл. III, состоит из обыкновенного коллиматора ES со щелью S, зрительной трубы F, сложной системы призм P (с чередующимися призмами из кронгласа и флинтгласа), как показано на фиг. 5 табл. III, и коллиматора s со шкалой; дисперсия системы получается от избытка дисперсии флинта над дисперсией кронгласа. С помощью винта Х можно отклонять зрительную трубу около вертикальной оси в ту или другую сторону от главного направления — оптической оси коллиматора. Обыкновенно прибор собран так, чтобы, при положении оптической оси зрительной трубы на главном направлении, можно было видеть в середине поля зрения зеленую часть спектра, соответственную фраунгоферовой линии E солнечного спектра. В карманном спектроскопе (фиг. 3 и 5 табл. III) зрительной трубы нет и наблюдатель, приспособляясь к своему зрению, перемещает трубку R со сложной системой призм P и стеклом C в другой трубке, на конце которой установлена щель S, до тех пор, пока не увидит резкого спектра. К такой перемещающейся трубке присоединяют сбоку шкалу; соответственно освещенная шкала, с помощью прямоугольной призмы с полным внутренним отражением, видна одновременно со спектром (см. фиг. 3 табл. III).

    Прежде чем перейти к описанию некоторых сложных спектроскопов, необходимо выяснить себе цель их устройства и те качества, которые придают этим приборам высокую чувствительность и большую точность. Приобретая спектроскоп, ученый исследователь в настоящее время желает, прежде всего, гарантировать в спектроскопе определенную разрешающую силу его, разумея под этими словами его способность отчетливо отделять в спектре друг от друга два соседних пучка, отличающихся по длине волны на очень малую ее часть. Обыкновенно принято за единицу разрешающей силы считать такую силу прибора, при которой можно отличить в спектре два рода лучей, различающихся по длине волны на1/1000волны, например, наверняка отделить две желтые натронные линии, соответственные фраунгоферовым линиям D1и D2(различаются на 0,001λ). Такая разрешающая сила, и по теории, и по опыту, зависит, однако, не только от дисперсии призмы или системы призм или сетки, но в значительной степени обусловливается и их (призм и сеток) размерами. При какой угодно дисперсии призм можно получить прибор с произвольной разрешающей силой. Для получения спектроскопа с большой разрешающей силой, при слабом цветорассеивании (дисперсии) призмы (например, из кронгласа) или дифракционной сетки (небольшое число штрихов в 1 мм, например 50) необходимо только взять для такого прибора призмы, сетки и объективы больших размеров. С другой стороны, чрезвычайно легко получить прибор и при большой дисперсии, но со слабой разрешающей силой; достаточно только ограничить размер призм, сетки и объективов очень малыми величинами. На эти обстоятельства впервые обращено внимание Райле (Rayleigh) в его замечательной статье: "Investigations in optics" ("Phil. Magazine" за 1879, 1880 года).

    По Райле, разрешающая сила (R= λ//dλ) спектроскопа с одной простой призмой может быть выражена формулой:

    1000R = — (t2—t1)dn/dλ

    где через t2и t1обозначены наибольшая и наименьшая длина пути лучей в призме, например при вершине и при основании. Из формулы видно, что R возрастает и с размером призмы, и с величиной преломляющего угла ее. Поэтому R будет одна и та же величина как для спектроскопа с одной большой призмой (например, преломляющий угол α = 60°, кронглас), так и для спектроскопа с пятью призмами, но соответственно меньших размеров (преломляющий угол α = 60°, тот же сорт кронгласа), если только разность пройденных путей, наименьшего и наибольшего, по всей системе из 5 призм равна разности соответственных путей в одной большой призме. Райле предвычислил, что разделение D на две линии возможно в случае одной призмы (n = 1,65) при утилизации всей поверхности граней и при min. отклонения, когда основание призмы не меньше 1,02 стм. Пользуясь формулой дисперсии, n = A +B/λ, можно написать

    1000R = 2B(t2—t1) λ—3.

    Эта формула показывает, что разрешающая сила спектроскопа с одной простой призмой пропорциональна размерам граней и преломляющему углу призмы, и обратно пропорциональна третьей степени λ; например, для фиолетовых лучей величина R почти в 8 раз больше, чем для красных лучей.

    Для спектроскопа с оптической сеткой разрешающая сила, по Райле, представляется очень простой формулой: 1000R = т×п. Иначе говоря, R не зависит от λ, но изменяется пропорционально номеру порядка и общему числу (n) штрихов на всей поверхности сетки, т. е. при одном и том же элементе сетки разрешающая сила пропорциональна длине заштрихованной поверхности. Впрочем, полезность спектроскопа с такой большой разрешающей силой может быть очень понижена, если в нем не подобраны соответственно размеры щели и фокусного расстояния коллиматора. Известно, что ширина щели обуславливает и ширину однородного цветного своего изображения, а потому понятно, что, при достаточно широких соседних изображениях, может случиться такое наложение их друг на друга, которое скроет окончательно двойственность образующих их лучей (с волнами λ и λ + dλ) и спектр не будет резким или чистым в той мере, какая требуется высокой разрешающей силой спектроскопа. Чистота или резкость спектра по Шустеру (Schuster) характеризуется особенной величиной P по формуле:

    P = λR/(dψ + λ) [Вывод формулы Шустера находится в "Handbuch d. Spectroskopie" H. Kayser (1900, т. I, стр. 552).]

    где d — означает ширину щели, а ψ — угол, под которым видно из щели стекло коллиматора. При достаточно суженной щели можно сделать dψ величиной, сравнимой с λ, в таком случае чистота спектра может и не зависеть от ширины щели. Обратно, когда размеры щели и фокусной длины коллиматора делают dψ — величиной очень значительной, сравнительно с λ, чистота спектра будет меняться обратно пропорционально ширине щели. Только при бесконечно узкой щели (dψ = 0) чистота P по числовой величине будет равна разрешающей силе R; во всяком случае на практике чистота редко достигает1/2R, ибо очень трудно выполнить условие dψ = λ, хотя и желательное по теории, ибо при этом условии (dψ = λ) получается и наибольшая яркость линий. На практике, однако, приходится пользоваться для достижения наилучшей видимости С. линий более широкими щелями, так как видимость линии зависит не только от распределения яркости в линии, но и от угла зрения, под которым она видна наблюдателю. Из опытов известно, что для наблюдения многих широких линий, например водородных, в гейслеровой трубке, или блестящих металлических в вольтовой дуге, достаточно пользоваться прибором с разрешающей силой 20000—25000, а именно или с 5 призмами из белого флинта с преломляющим углом 60° при 11/4дюйме ширины пучка, падающего на грань первой призмы (отверстие стекла коллиматора), или с сеткой в 1-дюймовом отверстии при 20000 делений. При исследовании же солнечного спектра, в котором встречаются линии по ширине даже менее1/20μμтребуется большая сетка с отверстием 5—6 дюймов (в 1 порядке, при 20000 делений в 1 дюйме разрешающая сила 100000) и dψ = λ...1,5λ (это возможно для вогнутой сетки Роуланда с радиусом кривизны в 21 фут, ибо d =1/501/30мм, ψ =1/40). При устройстве спектроскопов надо принимать во внимание потери света при отражении, преломлении и поглощении в стеклах и призмах (руководствуясь формулами для количеств отраженного и преломленного естественного света в ст. Свет). При пользовании сетками надо иметь в виду огромные потери света; приняв за 1 яркость света, падающего на сетку, мы получим для яркости спектра первого порядка только1/10, второго1/80, третьего1/270и т. д. (по формуле 1/mπ2, где m — порядок спектра, а π = 3,14...).

    Из сложных спектроскопов с большой разрешающей силой укажем на спектроскопы Броунинга (Browning) и Толлона (Thollon). Первый изображен на табл. III фиг. 1. Лучи, выходя из коллиматора, проходят систему из 6 равносторонних призм, легко приводимых одновременно в минимум отклонения. Это достигается с помощью особых шарнирных сочленений между призмами. Ближайшая к коллиматору вершина основания 1-й призмы связана неподвижно с коллиматором A, а ближайшая вершина основания последней (6-й) призмы соединена с помощью шарнирного рычага H с подвижной зрительной трубой B. По направлениям биссектрис треугольных металлических столиков для призм сделаны особенные направляющие пластины (a) с прорезом, надетым на общую ось. Посредством микрометрического винта M перемещают зрительную трубу B по дуговому прорезу, сдвигая или раздвигая всю систему 6 призм около общего центра; таким образом средний пучок лучей проходит через призмы параллельно их основаниям, т. е. при минимуме отклонений. Более усовершенствованный универсальный спектроскоп Браунинга (фиг. 1, табл. III) представляет прибор, применяемый и для спектральных исследований солнечного края. Спектроскоп состоит из 4 призм по 60° и 2 полупризм по 30° на концах системы. К наружным граням полупризм присоединены прямоугольные призмы с полным внутренним отражением. Лучи из коллиматора обходят всю систему по верхней ее половине и затем после двукратного полного внутреннего отражения возвращаются в систему и, обходя ее нижнюю половину, входят в зрительную трубу, установленную неподвижно под прямым углом к коллиматору. В этом спектроскопе можно изменять дисперсию (пользуясь дисперсией 2 или 4, 6, 8 и всех 10 призм) вследствие того, что вместо каждой целой призмы можно легко помещать последнюю полупризму, скрепленную с прямоугольной отражательной призмой. Различные части спектра вводятся в поле зрения трубы посредством микрометрического винта, сдвигающего или раздвигающего систему. Спектроскоп Толлона со сложными призмами. В спектроскопе (фиг. 9 и 10, табл. III) установлены две сложные призмы (каждая из призм сернистого углерода в 113°, закрытой по сторонам кронгласовыми призмами 31° как на фиг. II) и две сложные полупризмы (преломляющий угол призмы сернистого углерода 56,5°, а кронгласовых призм — 31°).

    Фиг. II.

    Параллельный пучок лучей из коллиматора CB (табл. III, фиг. 9) проходит по верхней части призмы A и полупризмы B (фиг. 10, табл. III) выходя из B нормально к грани, лучи претерпевают двойное полное внутреннее отражение в прямоугольной призме P и снова возвращаются в те же сложные призмы B и A; пройдя их по нижней половине, лучи входят в верхнюю часть призмы A' и полупризмы B' и, выходя из последней, переходят в нижнюю половину призмы с помощью прямоугольной призмы P' для двукратного внутреннего отражения; из нижней половины A' лучи входят в зрительную трубку E (фиг. 9). Посредством микрометрического винта F, шарнирных соединений и пары пружин две системы призм одновременно приводятся в минимум отклонения для любого рода лучей, причем на перемещающейся бумажной ленте легко отмечать карандашом линии, проходящие через окулярные нити зрительной трубы.

    Спектроскопы с оптическими сетками. Оптические сетки приготовляют на стекле или на зеркальном металле. Они главным образом служат для определения длины световых волн; с этой целью их обыкновенно устанавливают в особой оправе (табл. III, фиг. 12) на столик спектрометра, представляющий собой угломерный снаряд с разделенным кругом, двумя нониусами, коллиматором со щелью и зрительной трубой (фиг. 15, табл. III). Классическая работа определения длины волн солнечного спектра была исполнена в 60-х годах Ангстремом с помощью очень точного спектрометра и сетки, приготовленной на стекле. Металлические дифракционные сетки стали применяться для спектрально-аналитических работ Рутерфордом и Юнгом. Особенную известность они приобрели благодаря исследованиям Роуланда (Rowland), который в 1881 г. устроил вогнутую металлическую сетку с радиусом кривизны в 21 фут. Такая сетка, обладающая свойством (см. Дифракция) без объективов коллиматора и зрительной трубы образовывать фокусы различных лучей спектра на окружности диаметра = радиусу кривизны сетки, много содействовала успеху С. работ. С помощью такой большой вогнутой сетки Роуланд получил превосходные фотографии солнечного спектра (опубликованные в виде атласа в 1887 г.), а также составил таблицы волн, гарантируя в них 0,01АЕ = 0,001 μμ. За основную принята λ для D1= 5896,154AE. Одна из таблиц для гл. фраунгоферовых линий дана в ст. Дифракция.

    Ступенчатый (echelon) спектроскоп А. Михельсона также основан на явлениях дифракции. По своей огромной разрешающей силе и ничтожной потери света — этот спектроскоп превосходит все до сих пор известные спектроскопы. Главную его часть, цветорассеивающую по законам дифракции, составляет стопка прозрачных оптически шлифованных стеклянных плоскопараллельных пластинок одинаковой толщины. Они устанавливаются на общее основание, причем они последовательно друг относительно друга сдвинуты на общий небольшой интервал (1 мм), как видно на фиг. 8 табл. III. Теория показывает, что при прохождении параллельных лучей нормально через низенькие ступеньки пластин 1, 2..., имеет место дифракция лучей. Так, в некотором направлении под углом θ (фиг. III) разность δ хода лучей, прошедших толщу 1-й пластины и общую толщу первых двух пластин, может быть вообще

    mλ = μ × bd — ac = μt — t cosθ + s sinθ

    где m — целое число волн, μ — показатель преломления пластинок, t — толщина, s — высота ступенек или сдвиг пластин. Для направлений вблизи нормали можно принять приближенно

    mλ = (μ — 1)t.

    Принимая μD= 1,6, t = 5 мм и λ = 600 μμмы получим, что, m = 5000; т. е. вблизи нормали мы имеем дифракционный спектр 5000-го порядка; при этом разрешающая сила R спектроскопа Михельсона, как показывает теория прибора, при 20 пластинках толщиной в 5 мм, может достигать величины 100000. Опыт Гильира, исполнившего такой первый спектроскоп в Англии, показал, что при пластинках толщиной в 7,5 мм, сдвинутых последовательно на 1 мм можно было видеть интервал между натровыми линиями D1D2под углом в 16', т. е. почти в 1,3 раза больше, чем в большом спектроскопе со сложными призмами Толлона (ср. ниже фиг. V представляет увеличенное в три раза изображение группы линий D1D2, полученное Толлоном в его спектроскопе). Подробности о приборе Михельсона см. "Phil. Mag.", 1900 г., Vol. XLIX, стр. 384.

    Фиг. III.

    Градуировка спектроскопических шкал. При описании простого коленчатого спектроскопа Кирхгофа и Бунзена (с одной призмой 60°) было уже указано на вспомогательный коллиматор, в котором щель была заменена стеклом с миллиметренной шкалой с цифрами. При исследованиях Кирхгофа и Бунзена натровая линия (соответственная фраунгоферовой — D) находилась на делении 50-м шкалы Бунзена-Кирхгофа. Она и нами принята в статье для 1-й таблицы спектров. Но многие наблюдатели поступают иначе: Лекок Дебуабодран устанавливает D на деление 100, а Фогель — на деление 0. Конечно, при одной и той же призме все-таки расстояние между С. линиями, выраженное в мм, нисколько не менялось бы. Но, принимая во внимание обстоятельство, что нет возможности иметь у различных экземпляров спектроскопа совершенно одинаковые призмы в отношении их дисперсии, условились всегда для каждого спектроскопа составлять интерполяционную кривую длин волн по нижеследующему способу. На миллиметровой чертежной бумаге по оси абсцисс откладывают деления шкалы спектроскопа, а по оси ординат в произвольном масштабе длины волн от 400 μμ до 800 μμ. Пересечения соответственных ординат и абсцисс для ряда С. линий дают точки некоторой плавной "кривой дисперсии", как показано на табл. IV фиг. 1. С помощью такой вычерченной вспомогательной кривой легко определить с достаточным приближением для каждой линии в спектре при пользовании шкалой Кирхгофа и Бунзена соответственную длину волны. Обыкновенно для составления такой кривой пользуются С. линиями, принадлежащими солнечному спектру и спектрам некоторых пламеней.

    Табл. IV. СПЕКТРАЛЬНЫЙ АНАЛИЗ.

    Фиг. 1. Таблица для градуировки спектроскопов. Фиг. 2. Группа A атмосферических линий солнечного спектра. Фиг. 3. Группа B атмосферических линий солнечного спектра.

    На табл. I, внизу всех спектров начерчена соответственная шкала по длине волн. Иногда такую шкалу фотографируют и помещают рядом с миллиметровой шкалой по Бунзену-Кирхгофу. Установив С. линию D на 50 деление шкалы Бунзена-Кирхгофа, можно прямо читать по цифрам соседней шкалы длину волны всякой другой линии в исследуемом спектре. Едер (Eder) предлагает для градуировки спектроскопов с умеренной дисперсией (1, 2 призмы обыкновенного флинта) пользоваться спектром от индукционной искры между проволоками, приготовленными из сплава кадмия, цинка и свинца (в равных количествах), спектры коих точно и подробно обследованы. При работах со спектроскопами большой разрешающей силы (сетки, системы призм) часто применяют одновременное фотографирование исследуемого спектра с солнечным или железным спектром, а затем из сравнения этих спектров определяют длины волн изучаемых линий.

    Спектроскопия невидимых инфракрасных и ультрафиолетовых лучей. Глаз видит только лучи, волны которых имеют длину между 400 μμ (0,000400 мм) и 760 μμ. Линии A и K солнечного спектра совпадают с этими пределами, как видно из табл. II, 1. Невидимая часть спектра за лучами λ = 760 μμ. называется инфракрасной. В настоящее время, благодаря исследованиям Пашена и Рубенса, мы имеем средства наблюдать невидимые инфракрасные лучи, у которых длина волн 61 μ = 0,061 мм. Инфракрасная часть спектров может быть изучаема с помощью нескольких методов: 1) посредством линейных термоэлектрических столбиков или болометров, соединенных с очень чувствительными гальванометрами. Этим способом можно измерять изменения температуры до 0,000001° (Ц.); 2) фотографированием на особой бромосеребряной эмульсии (Абней) в специальном спектрографе с серебряными зеркалами и отражательной сеткой P; 3) посредством фосфоресцирующих экранов (бальманин, цинковая обманка Сидо и т. п.). Э. и Г. Беккерели доказали на опытах, что под влиянием тепловых лучей фосфоресценция многих веществ сильно затухает. Этим методом открыты горячие невидимые линии в спектрах металлов. Ломмель воспользовался продолжительностью этого явления для фотографирования инфракрасной части спектров, накладывая измененный лучами фосфоресцирующий экран на обыкновенную фотографическую пластинку. Проявленная такая пластинка давала позитив спектра, так как белые линии и полосы на ней соответствовали горячим полосам и линиям спектра, а темные — холодным. Водяной пар и углекислота, находящиеся обыкновенно в наших комнатах, уже достаточны для того, чтобы давать несколько заметных полос поглощения (холодных) в инфракрасной части спектров. Ввиду этого, а также выбора наиболее теплопрозрачного материала для призм, исследование длинных инфракрасных волн представляло много почти непреодолимых трудностей, особенно для волн λ)5 μ = 0,005 мм. По опытам К. Ангстрема, Пашена, Рубенса и Ашкинаса полосы поглощения углекислоты соответствуют лучам с волнами 2,69μ; 2,72μ; 4,27μ; 14,7μ; а полосы поглощения водяного пара — лучам с волнами 5,89μ; 6,03μ; 6,15μ. Из тел давно известных по своей огромной теплопрозрачности (каменная соль, флюорин и сильвин), наиболее прозрачным является сильвин, который прозрачен даже для волн больших, чем 20 μ. Особенно остроумными соображениями и приемами Рубенсу недавно удалось обнаружить в ауеровской горелке (без стекла) инфракрасные лучи с длинами волн: 24μ, 52μи 61μ. Эти лучи Рубенсом названы остаточными (Reststrahlen); они получаются после четырехкратного отражения от некоторых теплоцветных поверхностей, исключительно сильно отражающих только некоторые сорта лучей (как металлы). Лучи с 24μполучены при отражении от флюорина, лучи 52μ— при отражении от каменной соли и лучи 61μ— от сильвина. Интересно здесь заметить, что для лучей таких длинных волн — кварц, сернистый углерод, бензин являются весьма прозрачными телами, как видно из следующей таблицы:

    ----------------------------------------------------------------------------------------------------

    |                                 | Толщина  | Проходит                               |

    |                                 | слоя         |-----------------------------------------------|

    |                                 |                 | λ = 24μ   | λ = 52μ   | λ = 61μ    |

    |---------------------------------------------------------------------------------------------------|

    | Парафин                  | 1,9 мм      | 18%       | 43%       | 52%        |

    | Кварц                       | 0,5 мм      | 0%         | 61%       | 77%        |

    | Флюорин                  | 5,6 мм      | 0%         | 4%         | 6%         |

    | Каменная соль         | 3,0 мм      | 4%         | 0%         | 0%         |

    | Сильвин                   | 3,6 мм      | 34%       | 0%         | 0%         |

    | Сернистый углерод  | 1,0 мм      | 60%       | 98%       | 97%        |

    | Вода                        | 1,0 мм      | 0%         | 0%         | 0%         |

    ----------------------------------------------------------------------------------------------------

    Невидимые лучи спектра, волны которых меньше 400 μμ, называются ультрафиолетовыми, а также невидимыми химическими в соответствии с невидимыми тепловыми, инфракрасными. Эти лучи исследуются в спектроскопах из призм и линз, приготовленных или из горного хрусталя, или из исландского шпата и флюоршпата, а также и в спектрографе Роуланда (с металлической вогнутой сеткой) — по способу фотографирования или при помощи явлений флюоресценции. В солнечном спектре ультрафиолетовая часть оканчивается лучами с волнами 300 μμ вследствие полной непрозрачности для этих лучей атмосферы. В спектрах электрических искр (кадмиевы электроды) Корню удалось сфотографировать линии с волнами не менее 180μμ. В последние годы Шуман, с помощью особого кварцевого спектрографа, в котором можно было сильно разрежать атмосферный воздух, и особых фотографических пластинок без желатинной пленки, имел возможность определить блестящие линии водородного спектра, соответствующие волнам около 100μμ. Невидимые ультрафиолетовые лучи можно сделать видимыми с помощью явления флюоресценции. Флюоресцирующими экранами из уранового стекла, сернокислого хинина, эскулина, синеродисто-бариевой платины пользуются для проектирования на них невидимой обыкновенно ультрафиолетовой части спектров солнечного или металлических паров (алюминия, кадмия) в электрической дуге. Соре предложил особый флюоресцирующий окуляр для субъективного рассматривания ультрафиолетовых линий. На прилагаемой схеме (фиг. IV) видно, что видимая часть спектров составляет только одну октаву в огромном комплексе световых колебаний. Только 2 октавы приходятся на ультрафиолетовую часть и 61/2октав на инфракрасную часть спектров. Затушеванный ряд октав пока не исследован. После него следует бесконечное множество октав электрических (герцовых) колебаний. Длины волн показаны на шкале внизу (от 0,1 μ до1 метра).

    Фиг. IV.

    III. Способы получения спектров лучеиспускания. Для получения спектров многих металлов достаточно пользоваться пламенем спиртовой и бунзеновской горелок (особенно когда для опыта не требуется температура выше 2000°). Для исследования спектров тяжелых металлов пользуются жаром вольтовой дуги (температура значительно выше 3000°), помещая испытуемое вещество — соль или металл — в углубление положительного угля, располагаемого поэтому внизу. Чтобы изучить лучеиспускание металлических паров не в воздухе, а в других газах (углекислота, водород и т. п.), вольтову дугу образуют внутри большого куска извести или магнезии. Через 2 отверстия вводят угли для вольтовой дуги, через 3-е отверстие вбрасывают материал для испарения, через 4-е наблюдают спектр. В одном из углей пробуравливается канал, по которому впускают тот газ, в атмосфере коего желают накаливать металлические пары. Подобным образом произведено очень много исследований известными спектроскопистами: Ливингом и Дюаром, Кайзером и Рунге — главным образом для определения в спектрах так называемых обращающихся линий, т. е. переходящих быстро из блестящих в темные линии и обратно. При этом методе неизбежно примешивается к спектру металла и спектр углерода в виде характерных полос, которые, поэтому, должны быть хорошо исследованы предварительно. Испарение металлов или их сплавов можно производить посредством индукционных искр между концами проволок, приготовленных из этих металлов. Меняя условия образования искр во вторичной цепи Румкорфских спиралей (с лейденской банкой, с большой самоиндукцией), можно в больших пределах варьировать температуру паров. Когда для опытов имеется только соль металла и особенно в небольшой массе, тогда применяют особые трубки Делашанеля и Мерме наполняя их раствором соли. В дно пробирки впаивается платиновая проволока, входящая вовнутрь на небольшую длину (4—6 мм). В пробирку наливается немного раствора. На платиновую проволочку надевается короткая капиллярная трубочка (6—7 мм). Через пробку в верхней части пробирки вставляется другая платиновая проволочка, впаянная в стеклянную трубку ради изоляции. Можно всегда пододвинуть эту проволочку на такое небольшое расстояние к концу проволоки впаянной в дно пробирки, при котором между проволоками всегда проскочит индукционная искра, если изолированные друг от друга платиновые проволочки присоединены к зажимам вторичной спирали Р. (табл. III, фиг. 14) соответственного размера. Для свечения паров и газов пользуются особыми трубками Гейслера (Плюкера), в которых эти вещества доводятся до той степени разрежения различной для различных паров и газов, которая необходима для наибольшего свечения их в капилляре трубки при прохождении через нее электрических разрядов между платиновыми или алюминиевыми электродами, впаянными в концы трубки. Смотря по характеру С. работ, гейслеровским трубкам дают различные формы. Трубки Монкговена имеют форму буквы Н — широкие вертикальные ветви с электродами, а горизонтальная (табл. III, фиг. 13 B) имеет капиллярный канал, вдоль которого и наблюдают свечение газов при электрических разрядах. Трубки Сале (Salet) не имеют впаянных электродов, и свечение в них производится с помощью тихих разрядов, прикладывая электроды от полюсов вторичной катушки Румкорфа к оловянным изолированным друг от друга листам, окружающим снаружи широкие ветви трубки. Наконец, сильное свечение многих тел (фосфоресценция) может быть вызвано под влиянием катодных лучей, помещая эти тела внутри Круксовых трубок. При приготовлении гейслеровских трубок надо подбирать давление соответственное наилучшему свечению газа, а также принимать меры предосторожности относительно посторонних газу примесей (углекислота, углеводороды, водяной пар и т. п.).

    Спектры лучеиспускания представляют 3 типа: I) спектры непрерывные, в которых отсутствуют резкие переходы в яркости; II) спектры полосатые или ступенчатые; III) линейчатые спектры. Все твердые (например, известь, цирконий) и жидкие тела (расплавленная сталь, платина) при свечении через накаливание лучеиспускают непрерывный спектр. Только светящиеся пары и газы дают прерывающиеся спектры с блестящими цветными полосами и линиями. На такую существенную зависимость вида спектров от физического состояния тела, иначе говоря, на различие спектров одного и того же тела, смотря по тому, светится ли при накаливании оно, будучи в твердом, жидком и парообразном состоянии — обратили особенное внимание основатели спектрального анализа (Бунзен и Кирхгоф в 1859 г.). Они своими опытами впервые доказали, что в линейчатых спектрах светящихся паров солей щелочных земель и металлов большинство линий могут служить очень чувствительными признаками присутствия в бунзеновском пламени элементов этих солей, несмотря даже на самое ничтожное их количество (1/1400000мг. натрия,1/600000мг. лития и т. п.). Такая необыкновенная чувствительность спектрально-аналитических реакций и привела к открытию следующих новых элементов:

    ----------------------------------------------------------------------------

    | Цезий (Cs)       | 1860 г.   | Бунзен                       |

    |---------------------------------------------------------------------------|

    | Рубидий (Ru)   | 1860 г.   | Бунзен                       |

    |---------------------------------------------------------------------------|

    | Талий (Ti)        | 1862 г.   | Крукс                         |

    |---------------------------------------------------------------------------|

    | Индий (In)        | 1863 г.   | Рейх и Рихтер           |

    |---------------------------------------------------------------------------|

    | Галлий (Ga)     | 1875 г.   | Лекок де Буабодран  |

    |---------------------------------------------------------------------------|

    | Гелий (Не)       | 1895 г.   | Рамзей.                     |

    ----------------------------------------------------------------------------

    На табл. II, фиг. 3 и 4 изображены спектры цезия и рубидия, на табл. I, фиг. 6 и 7 представляют спектры аргона и гелия, в спектре гелия характерной линией служит желто-зеленая линия вблизи D солнечного спектра, открытая в солнечном хромосферическом спектре Локьером во время полного солнечного затмения 1868. Если температура бунзеновского пламени была достаточна для первых опытов Кирхгофа и Бунзена для получения линейчатых спектров натрия, лития, калия, рубидия и цезия (ввиду легкой диссоциации солей этих элементов), то с другой стороны при тех же температурах соли других металлов — бария, стронция и проч. только давали сложные спектры, в которых преобладали по количеству полосы соединений (или окислов или галоидных солей) с незначительным числом линий, характерных для этих элементов. Например, при накаливании хлористого стронция сперва наблюдается спектр соли, а только затем спектр окисла с единственной голубой линией металла и с 5 характерными красными полосами, имеющими со стороны менее преломляющихся лучей резкий край. При продолжительном накаливании в бунзеновском пламени галоидных солей бария происходит диссоциация и от всех этих соединений получаются полосатые спектры с единственной зеленой линией бария. Таким образом, некоторые сложные тела, будучи приведены в пар, светятся самостоятельными характерными спектрами в виде полос и групп линий. Это позволяет предполагать, что такие спектральные явления определяются колебаниями частиц, а не их атомов. На табл. IV, фиг. 1, 5 и 6 изображены линейчатый спектр паров ртути и спектры с характерными полосами галоидных ртутных соединений. Они взяты как пример поучительной иллюстрации, насколько спектр элемента может отличаться от спектра химического соединения того же самого элемента. Из всех металлических спектров особенного внимания заслуживает спектр железа. Им занимались весьма многие спектроскописты. В последние годы Кайзер и Рунге изучили длины волн 4500 линий спектра железа с точностью до 0,002 μμ; они нашли всем им соответственные линии в солнечном спектре. Здесь кстати заметить, что почти все фраунгоферовы линии, начиная от E до U, совпадают с линиями спектра железа. Исключение составляют только F, G (водород), H и K (кальций). Спектры поглощения получаются от поглощения лучей непрерывного спектра — твердыми, жидкими телами, газами и парами, даже при свечении последних. Обыкновенно спектр поглощения светящегося газа или пара (водорода, натрия, лития, серебра, железа и т. п.) называется обращенным спектром, а темные линии, появляющиеся на месте блестящих — обращенными или обращающимися С. линиями [Не все блестящие линии металлических паров одинаково легко обращаются в темные линии. Из многочисленных опытов и наблюдений замечено, что легко обращаемые линии — те же самые, которые Локьер называет "длинными основными линиями" спектров (см. далее)]. Со времени основного опыта Кирхгофа с обращением светлых желтых натровых линий в темные (когда основным источником света служит светящееся тело или даже светящиеся пары натрия более высокой температуры, нежели светящийся поглощающий слой натровых паров) и наблюденного им совпадения этих 2-х блестящих желтых линий с фраунгоферовыми линиями D1и D2— принимают солнечный спектр за спектр обращенный, получающийся от поглощения лучей в его наружных парообразных и газообразных слоях. Подобные опыты и наблюдения привели Кирхгофа к открытию замечательного закона о соотношении между лучеиспусканием и поглощением тел при одинаковой температуре. Если означить через E1, E2... лучеиспускательные способности различных тел при одной и той же температуре t° в отношении некоторого определенного рода (цвета) лучей, имеющего длину волны λ, через A1, A2... лучепоглощательные способности тех же тел при той же t°, то по закону Кирхгофа E1/A1= E2/A2=.. .e/1; в этих равенствах e означает лучеиспускательную способность для тех же λ абсолютно черного тела [Например, тело, покрытое сажей, платиновой чернью. В последнее время Lummer и Wien показали опытами, что лучеиспускание с внутренней замкнутой поверхности нагретого тела через отверстие в поверхности — тожественно с лучеиспусканием абсолютно черного тела и не зависит от материала, из которого приготовлена замкнутая поверхность.], т. е. такого, которое способно поглощать совершенно все лучи, падающие на него. Долго служа руководящим законом для всего С. анализа, закон Кирхгофа, в последнее время, для многих опытов является совершенно неприменимым. Им можно пользоваться только во всех случаях нормального обычного свечения, т. е. такого, которое получается при достаточном повышении температуры. Во всех же остальных случаях свечения (люминесценция) возбуждаемого в теле другими способами, а не нагреванием, закон Кирхгофа не приложим. Пары натрия и калия по опытам Видемана и Шмидта могут сильно флюоресцировать, и спектр флюоресценции натрия представляет сплошную красную полосу, ступенчатую зеленую полосу, и яркую желтую обычную линию. Но такая флюоресценция имеет место при таких температурах, при которых черное тело не испускает видимых лучей. При наблюдении желтой натровой в бунзеновском пламени яркость линий не соответствует закону Кирхгофа. Уже в 1885 г. Гитторф и Сименс доказали опытами, что накаленные прозрачные бесцветные газы даже при t° = 1500°, 2000° не дают видимых лучей. Но многим известны блестящие С. водородные линии в гейслеровских трубках, получаемые благодаря электрическим разрядам даже при t°, близких к 100°. Наконец, закон Кирхгофа, применяемый вполне даже к непрерывным и полосатым спектрам некоторых газов и паров (Н2О, СО2, I, Br, Cl, S, Se, As, Na K, Li, Tl), получаемым исключительно за счет тепловой энергии, оказывается приложим только в качественном отношении, но не в количественном, к тем же спектрам, когда они получаются при накаливании соответственных тел в бунзеновских пламенях, ибо такое их лучеиспускание обуславливается до некоторой степени и химическими процессами. Теоретические и экспериментальные попытки определить закон распределения энергии в спектрах твердых тел — в последнее десятилетие увенчались успехом. Теперь уже можно принять, что для твердых тел в непрерывном спектре λmT = A, и Em= BT5, где T означает абсолютную температуру, λm— длину волны лучей с наибольшей тепловой энергией, Em— величину этой наибольшей энергии, A и B — постоянные. Наконец, опытами последнего времени оправдывается и так называемое С. уравнение, которое выражает для всякого сорта лучей в спектре твердого тела зависимость между энергией этих лучей, длиной волн и температурой тела

    IV. Влияние различных условий на спектры лучеиспускания и поглощения. — При повышении температуры светящихся газов и паров интенсивность всех С. линий возрастает; иногда кажется, что число линий в спектре увеличивается, так как те линии, которые при низкой температуре были по их слабости едва заметны, являются при повышении температуры в спектре более или менее отчетливыми. Так, натрий в бунзеновской горелке дает в спектре одну двойную линию D, в индукционной искре кроме линии D еще семь линий. Увеличение интенсивности неодинаково для всех линий; вообще, более возрастает интенсивность тех линий, которым соответствуют меньшие длины волн. Таким образом, отношение яркостей двух С. линий может, вследствие изменения температуры, резко изменяться. Например, Li в бунзеновской горелке дает две линии — одну очень светлую, красную (λ = 670,82 μμ, другую слабую желтую (λ = 610,37 μμ). В слабой индукционной искре обе линии одинаково ярки, а в вольтовой дуге не только желтая линия ярче красной, но кроме них появляются еще две линии — зеленая и очень блестящая синяя. Иногда при понижении температуры — спектр из линейчатого переходит в полосатый; например, спектр азота при сильных электрических разрядах линейчатый, при слабых разрядах в гейслеровской трубке — полосатый. Если увеличить упругость газа при постоянной температуре, то увеличится также и плотность его, расстояние между молекулами сделаются меньшими, и газ по оптическим свойствам приблизится к твердому телу. Соответственно изменяется и спектр газа; обыкновенно линии расширяются и края их становятся расплывчатыми. У некоторых линий способность расширяться чрезвычайно велика. Так, линию в спектре магния, которой соответствует длина волны в 285,2 μμ, можно сделать по ширине равной нескольким десяткам μμ. В С. водородного пламени при давлении 20 атм. линии становятся настолько широкими, что накладываются одна на другую и таким образом спектр делается непрерывным. Далеко не все линии расширяются одинаково. В спектре лития линии одной группы расширяются равномерно, линии другого ряда расширяются в сторону красного конца спектра и становятся с этой стороны расплывчатыми. Для большинства элементов одностороннее расширение происходит в сторону длинных волн. Но известно несколько линий: Na, In, Cd, которые имеют преобладающее расширение в сторону фиолетовых лучей. Недавно Гумфрей заметил, что С. линии, при увеличении давления, не только расширяются, но и передвигаются к красному концу спектра. Из многочисленных измерений, Гумфрей приходит к следующим результатам: 1) Передвижение линий всегда происходит к красному концу спектра, т. е. соответствующая длина волны всегда увеличивается. 2) Передвижение пропорционально увеличению давления (общего, не парциального). 3) Для разных элементов сдвиг линий имеет неодинаковую величину; для щелочных металлов перемещение линии особенно велико (от 0,08 до 0,15 μμ, при увеличении давления на одну атмосферу). Напротив, в спектрах многих тяжелых металлов линии передвигаются сравнительно мало, например U, Os, W, Y, Ti передвижение меньше 0,02 μμ. Влияние температуры и плотности светящихся паров на характер С. линий чрезвычайно ясно обнаруживается с помощью методы длинных и коротких линий, предложенной Локьером еще в 1873 г. Он помещает электроды, между которыми проскакивает искра, или угли, между которыми образуется вольтова дуга, горизонтально и посредством собирательного оптического стекла получает изображение дуги или искры на вертикальной щели спектроскопа. Центральная часть дуги, очевидно, заключает наиболее раскаленный и плотный газ. Эту центральную часть дуги окружает оболочка из менее горячего (хотя тоже светящегося) пара или газа. Изображение ее образуется на верхней и нижней частях щели. При расположении электродов перпендикулярно к щели в спектре получаются короткие и длинные линии. К коротким линиям принадлежат те, которые появляются только при высокой температуре в центральной части дуги или электрической искры; к длинным же те, которые наблюдаются в спектре и при сравнительно низкой температуре. В среднем спектре длинные линии толще вследствие большей плотности паров центральной части дуги или искры; в верхнем и нижнем спектрах линии постепенно суживаются, заостряясь внизу и вверху. Длинные линии Локьера представляют собой в то же время легко обращающиеся линии, т. е. превращающиеся из блестящих в темные и обратно. Весьма нередкое явление — превращение линейчатого спектра в полосатый, когда давление увеличивается или понижается температура паров. По всей вероятности это изменение спектра находится в тесной зависимости от перемены в строении молекулы. Подтверждение этому можно найти в опытах Жансена над спектром поглощения кислорода в коротких слоях, но при очень больших давлениях. При атмосферном давлении спектр поглощения кислорода состоит из нескольких групп линий, число которых возрастает по мере утолщения слоя, приближаясь к виду групп A и B в солнечном спектре (табл. IV, фиг. 2 и 3). При давлении, в несколько раз превосходящем атмосферное, к линейчатому спектру присоединяется полосатый. В то время как интенсивность линий первого спектра изменяется пропорционально плотности (увеличивается масса поглощающего слоя), интенсивность полос изменяется пропорционально квадрату плотности. Будде объяснил такой результат опытов Жансена, исходя из формулы Ван-дер-Вальса. Влияние растворителя на спектр поглощения красящих веществ, по Кундту, выражается по большей части перемещением полос поглощения к красному концу спектра, когда новый растворитель есть тело сильнее светопреломляющее, нежели первоначальный. Перемена молекулярного строения поглощающих веществ сильно отзывается на спектрах поглощения. По Фогелю, испарившиеся на стеклянной пластинке растворы органических красок дают другие спектры, нежели в том случае, когда к этим растворам были примешаны желатин, клей, крахмал, гуммиарабик. В этом последнем случае, при высыхании раствора, спектр сохраняет вид спектра раствора. По Штенгеру, такое влияние желатина должно быть объяснено тожественностью структуры красящей молекулы в растворе и в желатинной пленке. Красящее вещество в чистом твердом состоянии (при испарении раствора), по всей вероятности, имеет более сложные агрегаты молекул и потому обусловливает особый спектр поглощения. Спектры поглощения мало зависят от толщины слоя и концентрации раствора. Исследованиями Бунзена и Роско установлено: 1) количество лучей, поглощаемое слоем конечной толщины, пропорционально количеству падающих лучей (яркости их); 2) количество поглощенного света зависит от плотности поглощающей среды. На основании этих экспериментальных законов установлено понятие о коэффициенте поглощении света, как отношение света, прошедшего через поглощающий слой толщиной в 1 стм, к свету, падающему на слои. При количественном анализе по спектру поглощения, для удобства вычисления концентрации раствора по количеству поглощенного им света Бунзен и Роско пользовались понятием Extinctionscoëfficient (коэффициент затухания), как величиной, обратной той толщине слоя, которую должен пройти свет, чтобы ослабеть до1/10своей первоначальной величины.

    Изменение в спектре от движения светового источника в направлении луча зрения (принцип Доплера-Физо). По Доплеру-Физо, цвет светового ощущения изменяется, если светящееся тело приближается или удаляется относительно наблюдателя со скоростью не очень малой по сравнению со скоростью света (ср. Звук). При приближении источника, в глаз наблюдателя проникает в одно и то же время большее число волн, нежели при точной неизменности расстояния между источником света и наблюдателем; подобным образом, при удалении — число волн уменьшается. Поэтому при приближении источника к наблюдателю длина волны λ каждого луча уменьшается (число колебаний в 1 секунду увеличивается), а при удалении та же λ увеличивается, следуя формуле:

    λ1= λ (1 ± v/V)

    где v — скорость светового источника, V — скорость света (300000 km. sec.), λ — действительная длина волны луча источника, λ1— результирующая длина волны того же самого луча при вступлении его в глаз наблюдателя. Гиггинс (1874) первый применил этот принцип Доплера к определению скорости приближения Сириуса к Земле, измерив из сдвига линии F к фиолетовому краю (по сравнению со спектром гейслеровской водородной линии) уменьшение длины волны (на 0,109 μμ, что соответствовало удалению Сириуса от Земли со скоростью 66,6 км в 1 сек.). Наблюдения над подобными смещениями фраунгоферовых линий или над различными их искривлениями, по временам происходящие в спектрах солнечных пятен и факелов, указывают на бурные перемещения и вихри (в 30 км—300 км в 1 сек.) на солнечной поверхности. Применение принципа Доплера к солнечному спектру дает средство выделить в солнечном спектре все фраунгоферовы атмосферические линии. Толлон, сравнивая в большом своем спектроскопе (табл. III, фиг. 9) группу линий D в двух спектрах — на западном и восточном концах солнечного диаметра, дал прекрасный рисунок, на котором сразу видны теллурические (без излома в середине) и солнечные линии. Изображенный на фиг. V сдвиг солнечных линий соответствует скорости 2 км в 1 сек.

    Фиг. V.

    Корню предложил другой способ массового выделения теллурических линий. Если полученное ахроматическим стеклом небольшое изображение Солнца быстро перемещать перед щелью спектроскопа (ахроматическое стекло делает 2—3 колебания в 1 сек.), но так, чтобы всегда в одну и ту же точку щели касался поочередно каждый из солнечных краев, то при хорошем апланатизме спектра нетрудно заметить дрожание солнечных линий и полную неподвижность теллурических; при этом получается иллюзия — все подвижные линии кажутся рельефно выделенными впереди плоскости с неподвижными теллурическими. Фиг. VI показывает результат подобного исследования группы a (между C и B — совершенно подобной A и B (табл. IV, фиг. 2 и 3) и тоже происходящей от поглощения кислородом земной атмосферы; в средней части рисунка вся группа a, в верхней — одни теллурические, в нижней — только солнечные. Рис. a, B и A сделаны в масштабах 1, 1,32, 0,54.

    Фиг. VI.

    Влияние магнитного поля на спектры металлических паров и газов пытался открыть Фарадей в 1863 г. (последние его опыты), располагая цветные Бунзеновские пламени (натрия, лития) между полюсами сильного электромагнита. Опыты Фарадея дали отрицательный результат. Впоследствии такое влияние хотя и наблюдал Фивез, но он приписал изменения в натровых линиях температурным изменениям и наблюденное раздвоение D1и D2принял за обращаемость линий. Только в 1896 г. Цеман обратил снова внимание на опыты Фарадея и, руководствуясь данными электромагнитной теории свечения тел, открыл новую группу явлений, тесно связавших явления светящихся ионов с магнитными и световыми. Поместив бунзеновское натровое пламя между полюсами сильного электромагнита и рассматривая посредством вогнутой сетки Роуланда спектр его лучей по направлению магнитных сил, Цеман заметил не только расширение линий D1и D2, но при достаточном напряжении поля даже и резкое раздвоение каждой из этих линий, причем одна составляющая обнаруживала круговую поляризацию вправо, другая влево. При наблюдении того же самого пламени по направлению, перпендикулярному к магнитному полю, по сторонам каждой линии D1и D2, появлялось по одной. В таком тройнике центральная линия была прямолинейно поляризована в плоскости параллельной магнитному полю, а боковые линии были также прямолинейно поляризованы, но в плоскости перпендикулярной. Но не все спектральные линии подвергаются магнитным влияниям, и если подвергаются им, то не вполне одинаково. По теории Лоренца, в светящемся пламени натрия колеблются заряженные отрицательно свободные ионы по всевозможным замкнутым линиям. Под влиянием магнитного поля, колебания ионов перестают быть свободными и принуждены, так сказать, ограничить свои пути — известными плоскостями и формой траекторий. Этим объясняется изменение периодов и поляризация лучей измененных периодов. Величины этих изменений, по Лоренцу, пропорциональны напряжению магнитного поля. Дальнейшие исследования явления Цемана показали, что закон Кирхгофа применим к поляризованным лучам только при дополнительном условии тожественности типов поляризации. Из С. изменений по Цеману можно вычислить отношение e к m (где e — заряд иона и m — его масса), которое значительно разнится по величине от такого же отношения, вычисляемого из явлений электролиза.

    Этот рисунок дает понятие о порядке величины изменений в положении линий D1и D2, в зависимости от разных влияний (шкала дана в ед. Ангстрема).

    I. Положение в том случае, когда источник и наблюдатель удаляются с относительной скоростью 30 км в 1 сек. (приблизительно скорость годового движения Земли).

    II. Приблизительное положение линий D1и D2при наблюдении спектра кометы Уэльса (1882) Толлоном и Гюи (скорость 70 км в 1 сек.).

    III. Полное смещение, испытываемое фраунгоферовыми линиями при переходе от одного края солнечного экватора к другому (разность скор. 4 км).

    IV. Положение линий от газовой дуги в замкнутом сосуде под давлением 11 атмосфер (опыт Гумфри).

    V. Дублет в опыте Цемана при напряжении поля 10000 С. G. S.

    Опыты Ж. Томсона доказывают, что в явлении Цемана колеблющиеся частички имеют массу, чуть ли не в 1000 раз меньшую, чем атом водорода. Упоминая о явлении Цемана и о теоретическом объяснении его, мы только желали отметить некоторую вероятность одной из современных гипотез, что многие спектральные линии обуславливаются колебаниями не только атомов, но, главным образом, тех небольших их осколков (corpuscles), которые несут на себе заряды, обыкновенно принадлежащие свободным отрицательным ионам в явлениях электролиза.

    V. Закономерность в распределении спектральных линий. Наблюдения над постоянством распределения С. линий для каждого из элементов, несмотря на очень резкие изменения в его температуре и давлении, естественно приводят к мысли, что одни линии относятся к другим, подобно тому как в акустике гармонические тоны относятся к основным. Стоней первый предположил, что в спектре водорода числа колебаний, соответственные линиям h, F и C, представляют собой обертоны основного колебания, соответствующего длине волны в 0,013127714 мм. Длины волн этих линий относятся, как 32:27:20. Бальмер (1885) первый дал формулу для целого ряда линий спектра водорода. Формула имеет следующий вид:

    λ = An2/(n2—4).

    Если вместо n подставить целые числа от 3 до 15 и подходящим образом выбрать постоянную A (A = 3647,20), то получаются длины волн 13-ти линий водородного спектра [Формула Б. (для водорода) получает особый интерес ввиду открытия Пикерингом в спектре звезды (Puppis) группы неизвестных линий, по длине волн отвечающих формуле — при замене в ней n через n+0,5. Вероятно это — вторая группа линий С. водорода в условиях пока нам не известных.]. Кайзер и Рунге несколько видоизменили и расширили формулу Б., а для проверки ее пригодности предприняли целый ряд новых наблюдений над спектрами многих металлов. Если формулу Бальмера написать в виде 1—1= A + Bn—2и к правой части формулы прибавить еще один член Cn—4, то получится формула К. и Р.:

    λ—1= A + Bn—2+ Cn—4.

    В эту формулу вставляют вместо n целые числа, начиная с 3. Отступления от этой формулы не очень велики. Например, для линий спектра Mg они не превышают 0,005 μμ. Вычисляя постоянные A, B, C для многих элементов, К. и Р. пришли к следующим заключениям. В спектрах элементов I и III групп системы Менделеева существуют два таких ряда линий, для которых, переходя от одного ряда к другому, требуется только изменять в формуле первую постоянную A. Таким образом, эти два ряда можно рассматривать как одну серию двойных линий. Очень вероятно, что все элементы обладают двумя такими рядами линий. Первый ряд состоит из очень ярких, не расплывчатых линий. Второй ряд заключает в себе слабые, но резкие линии. Для обоих рядов разность чисел колебаний двух линий одного порядка n — величина постоянная. В спектрах щелочных металлов, кроме упомянутых двух побочных рядов, находится еще "главный ряд" (Rb и Cs не имеют линий второго побочного ряда), который состоит из двойных линий, наиболее светлых в спектре. Для каждых 2-х линий одного порядка n, взятых из этого главного ряда, разность чисел колебаний величина не постоянная, но обратно пропорциональная n4. В спектрах элементов II группы тоже существуют две серии линий, но каждая серия состоит не из двойников, а из тройников (triplet), т. е. из трех близко расположенных линий, для которых волны вычисляются изменяя только постоянную A. Например, для Mg первая линия каждого тройника получается из формулы:

    108λ—1= 39496,10 — 130388n—2— 1432090n—4.

    Вторая же и третья линии того же самого тройника имеют волны, величины которых вычисляются по предыдущему уравнению, увеличивая A на 40,69 и на 60,90. В спектрах щелочных металлов все их известные линии включаются в упомянутые три ряда, но у других металлов некоторые линии совсем не подчиняются формуле Кайзера и Рунге; подмечено, что число таких линий возрастает с температурой кипения металлов. Интересно также, что по опытам Эмес и Гумфри, при одинаковом увеличении давления, изменение в длине волн для линий одного и того же ряда пропорционально длине волны, и таким образом, если обозначить через Δλ изменение длины волны, то для каждой серии Δλ/λ = const. Престон измерил разность длин волн (δλ) для крайних линий из тех трех, на которые распадается каждая спектральная линия исследованных им спектров, при действии магнитных сил, от лучей по направлению, перпендикулярному к магнитному полю. Оказывается, что величина δλ/λ2одинакова для соответствующих линий (т. е. для того же значения n) разных серий спектра и даже для соответствующих линий спектров различных элементов. Так, во вторых побочных сериях для n = 3 в спектрах Mg, Cd и Zn находится по тройнику.

    Триплет Mg 5183,8; 5172,8; 5167AE.

    Триплет Cd 5086,0; 4800,0; 4678

    Триплет Zh 4810,7; 4722,0; 4680 (1AE = 0,1 μμ.).

    Вычислив λ2/δλ для всех этих линий Престон составил следующую таблицу:

    ------------------------------------------------------------------------------------------------------

    | Mg         | Cd      | Zn         | λ2/δλ            | Характер магнитного  |

    |              |           |              |                     | возмущения               |

    |----------------------------------------------------------------------------------------------------|

    | 5183,8   | 5086   | 4810,7   | 18 прибл.     | расплыв. три линии     |

    | 5172,8   | 4800   | 4722,0   | 11,5 прибл.   | четыре линии              |

    | 5167,0   | 4678   | 4680,0   | 10 прибл.     | резкие три линии        |

    ------------------------------------------------------------------------------------------------------

    Как видно, для соответствующих линий спектров различных металлов не только λ2/δλ — величина постоянная, но и изменение линий имеет одинаковый характер. Например, для последних линий λ2/δλ = 10, и все они одинаково распадаются от магнитного поля на три резкие линии. Вопрос о зависимости между спектрами различных элементов впервые затронул Лекок де Буабодран. Он предполагал, что между соответствующими линиями спектров (определение соответствующих линий у Л. де Б. было почти произвольным) и атомными весами элементов существует соотношение, которое позволяет по спектру элемента вычислить его атомный вес. Для атомного веса германия способ Л. де Б. дал величину очень близкую к действительности, но для вычисления других атомных весов этот способ оказался непригодным. После многих более или менее неудачных попыток разных ученых, Ридберг и К. с Р. одновременно открыли такие закономерности в спектрах элементов, которые им позволили разделить все исследованные элементы на 5 групп. I) Li, Na, K, Rb, Cs; II) Cu, Ag; III) Mg, Ca, Sr; IV) Zn, Cd, Ug; V) Al, In, Tl. В каждой группе, по мере возрастания атомного веса, серии (побочные) передвигаются к красному концу спектра. Напротив, при переходе от одной группы к следующей, серии передвигаются к фиолетовому концу спектра. Если обозначить через v разность чисел колебаний для двойников и для первых двух линий тройников, и через a означить вес элемента, то v/a2приблизительно величина постоянная для каждой отдельной группы. Подобно указанным формулам, предложены формулы и для полосатых спектров (Деландр дал одну такую формулу для линий атмосферических групп A и B), но общих выводов пока нет.

    VI. Приложение С. анализа к астрономии (астрофизике) может быть резюмировано следующими результатами. 1) Подробные исследования совпадений фраунгоферовых линий с С. линиями известных химических элементов дают право утверждать, что на Солнце некоторые из элементов (железо, углерод, кальций, водород и др.) находятся в преобладающем количестве, другие же (золото, ртуть, сера, кислород и др.) или отсутствуют, или находятся в особых условиях, пока на земле неизвестных (см. Солнце). 2) Спектроскопическое дифференциальное исследование Солнца очень расширило наши познания о физическом строении Солнца и о постоянных бурных движениях в различных частях его поверхности. Оно требует установки сильного спектроскопа (с многими призмами или с сеткой) в фокусе объектива зрительной трубы (отверстия в 3—4 дюйма достаточно для многих наблюдений подобного рода). Метод С. дифференциального исследования был предложен впервые Локьером и Жансеном в 1868 г. Направляя соответственным образом зрительную трубу, можно всегда направить изображение солнечного края на щель прикрепленного к трубе спектроскопа с большим цветорассеиванием. Если расположить щель по радиусу Солнца и рассматривать спектр в линии C или F (водород), то легко заметить два спектра: один блестящий с темной C, а другой ослабленный (принадлежащий диффузному свету, неизбежно попадающему через зрительную трубку в спектроскоп) с яркой блестящей линией на продолжении фраунгоферовой линии C. Это явление безусловно доказывает присутствие водорода на краю Солнца. Но нельзя ли увидеть в спектроскопе при соответствующих размерах изображения Солнца очертания водородного выступа на его краю? Попытка эта была испытана Жансеном через несколько минут после окончания полного солнечного затмения, наблюдавшегося Жансеном в Индии в 1868 г. Расположив щель по касательной к краю солнечного диска и именно в том месте, где во время полной фазы затмения был виден малиново-красный выступ, Жансен заметил в спектре вместо черной линии C, блестящую красную линию. Раздвигая постепенно щель, Жансен увидел на слабом фоне обыкновенного солнечного спектра с темными фраунгоферовыми линиями — как на место расширившейся темной линии C проецировался блестящий красный выступ, по форме напоминавший тот, который был видим за несколько минут во время полной фазы затмения. Схематический рисунок дает некоторое понятие о сущности общей методы Жансена и Локьера (см. фиг. VII и VIII). Темная полоса B представляет расплывчатую группу B теллурических линий, а направо на расплывчатой фраунгоферовой линии C виден выступ P. С этого времени солнечные выступы детально изучаются в нескольких обсерваториях во все ясные дни.

    Фиг. VII

    Фиг. VIII.

    Один из солнечных спектроскопов изображен на табл. III, фиг. 7. Описанный сейчас дифференциальный метод С. исследования Солнца позволяет не только следить за изменениями в солнечных пятнах и факелах, но даже измерять скорости по направленно луча зрения их вихревых движений из искривлений и сдвигов фраунгоферовых линий, согласно принципу Доплера. Изучая по способу Жансена и Локьера солнечный спектр во время полного солнечного затмения (располагая щель по радиусу), можно в некоторый момент перед полной фазой заметить на мгновение превращение всех темных солнечных фраунгоферовых линий в блестящие. Такой факт свидетельствует о существовании на солнечной поверхности так называемого обращающего слоя, над которым уже лежит сравнительно большой толщины и с неправильными внешними очертаниями (выступами) хромосфера. В ней главные блестящие линии показаны на табл. II, фиг. 2. Две из них заслуживают особенного напоминания, а именно желто-зеленая D3вблизи короткой D (табл. 2, фиг. 1) и зеленая линия близ E. Желтую линию приписывали элементу, исключительно принадлежащему Солнцу, и потому названному гелием. В 1895 г. Рамзай открыл этот элемент (газ) в особом минерале клевеит. Другая яркая зеленая линия видна на большом удалении от хромосферы в так называемом солнечном венце (короне) и потому называется коранальной линией (λ = 531,6μμили по обозначению в атласе Кирхгофа 1474 К.). Очертания внутренней части венца тоже удается определять во время полной фазы солнечных затмений, применяя фотографирование в камерах, расположенных на окулярном конце больших рефракторов (например, 8-дюймовых), перед объективом которых помещены одна, две или три больших призмы. В этом приборе, известном под именем коронографа, С. изображение короны представляется в виде 3—4 и более блестящих колец, указывающих на присутствие в короне водорода, гелия и неизвестных элементов (корония и др.). Метод, подобный методу Жансена и Локьера, Деландр, Хель применили в последние годы к одновременному фотографированию Солнца и его выступов в однородных лучах (соответствующих фраунгоферовым линиям H и K (линии кальция); см. табл. II, фиг. 1). Прибор, с помощью которого получается это фотографическое изображение (см. табл. I, фиг. 2 в ст. Солнце), называется спектрогелиографом. Он состоит из спектроскопа с большим цветорассеиванием и из фотографической камеры на месте окуляра зрительной трубы спектроскопа. С помощью очень точно регулированного механизма щель неподвижного коллиматора перемещается параллельно себе по изображению Солнца. В фотографической камере перед чувствительной пластинкой щель параллельная щели коллиматора и установленная на H или K, перемещается с той же скоростью (это необходимое условие), как и щель коллиматора. Таким образом последовательно фотографируется ряд изображений щели коллиматора, соответствующий ряду линейных полосок солнечного диска. На фотографическом снимке получается изображение кальциевых паров в выступах, пятнах и факелах. 3) Спектральное исследование звезд. Оно производится или с помощью особенно прозрачных спектроскопов, расположенных в фокусе сильных рефракторов, или с помощью призм, расположенных соответственным образом на объективе рефрактора (объективная призма). Спектры звезд дают нам сведения о химическом составе звезд, облегчают классификацию в группы и дают материалы для суждения об относительном возрасте звезд и их температурах. На табл. I, фиг. 1, 2 и 3 изображают С. Солнца, Сириуса и Геркулеса. В спектре Сириуса линии C, F, G и H сильнее, чем С. Солнца, в спектре же Геркулеса они значительно слабее и почти малозаметны (см. Звезды). Применяя принцип Доплера к спектрам звезд (измеряя сдвиг С. линий водорода, гелия в спектрах звезд по сравнению с такими же линиями в спектрах гейслеровых трубок с водородом и гелием), астрофизик определяет не только относительную скорость приближения или удаления звезд, но относительное перемещение двойных звезд и периоды их оборотов друг около друга. См. подробнее Scheiner, "Die Spectralanalyse der Gestirne" (1890). Для измерения смещений С. линий Цёльнер (1871) устроил удваивающий спектроскоп (Reversionsspectroscop), главная часть которого 2 системы призм à vision directe, расположенные так, чтобы соответствующие преломляющие их ребра касались. Объектив зрительной трубы спектроскопа разрезан пополам, как в гелиометре. Каждую половину можно сдвигать микрометрически параллельно и перпендикулярно разрезу (вертикал., если ребра призм горизонт.). Таким образом можно привести линии одного спектра в совпадение с такими же линиями другого, а равно один С. надвинуть на другой (подробнее "Pog. Ann.", Bd. 144).

    VII. Приложение С. анализа к технической химии и к медицине. 1) В способе Бессемера. Как известно, этот способ заключается в непосредственном сжигании угля расплавленного чугуна в сильном потоке воздуха. Ослепительный свет, выходящий из отверстия конвертора в момент окончания процесса бессемерования, сразу меняет свой цвет. Для определения этого момента и пользуются обыкновенным спектроскопом с одной и двумя призмами или даже карманным спектроскопом. Уаттс заметил, что в спектре бессемеровского пламени зеленые полосы, принадлежащие окиси марганца, в момент окончательного сгорания углерода сразу исчезают; с этого момента, начинается уже вредное окисление железа, а количество свободного марганца оказывается недостаточным для образования его окисла. В заводской практике, особенно в Англии и Америке, момент окончания бессемерования определяется прямо на глаз. 2) Качественный анализ по спектрам поглощения имеет в технике обширное применение. С помощью характерных спектров можно обнаруживать искусственное окрашивание виноградных вин разными анилиновыми красками, окрашивание пива пикриновой кислотой и т. п. Подробности можно найти в "Practische Spectralanalyse", Г. Фогеля. Пользуясь специальным спектроскопом для ультрафиолетовых невидимых лучей (призма и линзы из кварца), Стокс показал возможность по полосам поглощения в ультрафиолетовой части спектра различать друг от друга алкалоиды: морфин, стрихнин, бруцин и пр. Соре указал, что подобное применение такого спектроскопа может быть выгодно и для открытия ничтожных примесей к аммиаку и аммиачным солям. Эти жидкости в слое 10 стм вполне прозрачные для ультрафиолетовых лучей кадмия (до 24 ультраф. линий кадмия), в случае ничтожных примесей дают полосу поглощения на месте 18, 19 и 20 линий. Спектр поглощения крови (оксигемоглобина; табл. I, фиг. 8) по исследованиям Г. Стокса и Гоппе-Зейлера может сильно изменяться в зависимости от перемен, которые испытывает кровь. В спектре крови, отравленной окисью углерода, получается перемещение полос, но эти полосы при действии восстановителей остаются неизменными. В этих исследованиях можно пользоваться каплями, применяя так называемый микроспектроскоп. Этот прибор, представленный на табл. III, фиг. 2, состоит из обыкновенного карманного спектроскопа, вдвигаемого в микроскоп вместо окуляра, но так, чтобы изображение капли, помещенной на столике под объектив микроскопа, падало на щель спектроскопа. 3) Количественный анализ по спектрам поглощения применяется для определения концентрации некоторых цветных жидкостей с помощью спектрофотометров. Один из самых первых и наиболее простых спектрофотометров был устроен Фирордтом. Такой прибор, представленный на табл. III, фиг. 6, может быть просто устроен из всякого обыкновенного спектроскопа, заменив щель коллиматора — особой двойной щелью. Ширина каждой отдельной щели регулируется особым микрометрическим винтом, причем средние линии щелей составляют всегда одну прямую (для этого сообщается им такое устройство, при котором оба края могут сближаться или удаляться друг от друга совершенно симметрично). Поглощение исследуется в отдельных частях спектра; свет источника проходит непосредственно через одну щель, а свет измененный поглощающим слоем жидкости — через другую щель. Суживая соответственным образом ширину первой щели, мы можем уравнять изучаемые части спектра в обоих спектрах (верхнем и нижнем), и по размерам щелей сделать вывод о количестве поглощенных лучей. Подробности см. "Practische Spectralanalyse", H. W. Vogel. См. также ст. Фотометрия. Для определения количественного содержания гемоглобина в живых сосудах пользуются тем, что при 14% гемоглобина, при толщине свежей крови в 70 мм две темные характерные полосы оксигемоглобина (между D и R табл. I, фиг. 8), наблюдаемые в прямой спектроскоп, имеют одинаковую ширину и черноту. Подробности см. в брошюре Henocque, "Spectroscopie du sang".

    VIII. Литература. История спектрального анализа, описание и теория приборов, а также литература предмета находится в "Handbuch d. Spectroscopie", H. Kayser'a (1900, т. I, 1—780 стр.); обширная литература дана в "Die Spectralanalyse", Dr. John Landauer'a, 1896, 1—170 стр. (оттиск из "Neue Handwörterbuch der Chemie", Fehling-Hell'a). См. Хвольсон, "Курс физики" (т. II, стр. 274—340); Scheiner, "Die Spectralanalyse der Gestirne" (1890); Юнг, "Солнце" (1899, 2-е изд.); Lefèvre, I, "Spectroscopie", II, "Spectrometrie" (из "Encyclopedie Scientifique des Aide-memoiré", Leauté). Спектры новых газов (аргона, гелия, неона и др.) даны в Erdman's, "Lehrbuch. d. anorg. Chemie" (1900, 2 изд.).

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    I

    Спектра́льный ана́лиз

    физический метод качественного и количественного определения атомного и молекулярного состава вещества, основанный на исследовании его спектров. Физическая основа С. а.— Спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров (см. Спектры оптические). Атомный С. а. (АСА) определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения, молекулярный С. а. (МСА) — молекулярный состав веществ по молекулярным спектрам поглощения, люминесценции (См. Люминесценция) и комбинационного рассеяния света (См. Комбинационное рассеяние света).

    Эмиссионный С. а. производят по спектрам испускания атомов, ионов и молекул, возбуждённым различными источниками электромагнитного излучения в диапазоне от γ-излучения до микроволнового. Абсорбционный С. а. осуществляют по спектрам поглощения электромагнитного излучения анализируемыми объектами (атомами, молекулами, ионами вещества, находящегося в различных агрегатных состояниях).

    Историческая справка. В основе АСА лежит индивидуальность спектров испускания и поглощения химических элементов, установленная впервые Г. Р. Кирхгофоми Р. Бунзеном (1859—61). В 1861 Кирхгоф доказал на основе этого открытия присутствие в хромосфере Солнца ряда элементов, положив начало астрофизике. В 1861—1923 с помощью АСА было открыто 25 элементов. В 1932 спектральным методом был открыт дейтерий.

    Высокая чувствительность и возможность определения многих элементов в пробах малой массы сделали АСА эффективным методом качественного анализа элементного состава объектов. В 1926 нем. физик В. Герлах положил начало количественному С. а. Для развития С. а. и внедрения его на промышленных предприятиях СССР большую роль сыграли Г. С. Ландсберг, С. Л. Мандельштам, А. К. Русанов (Москва), А. Н. Филиппов, В. К. Прокофьев (Ленинград) и др.

    Атомный спектральный анализ (АСА)

    Эмиссионный АСА состоит из следующих основных процессов:

    1) отбор представительной пробы, отражающей средний состав анализируемого материала или местное распределение определяемых элементов в материале;

    2) введение пробы в источник излучения, в котором происходят испарение твёрдых и жидких проб, диссоциация соединений и возбуждение атомов и ионов;

    3) преобразование их свечения в спектр и его регистрация (либо визуальное наблюдение) с помощью спектрального прибора (См. Спектральные приборы);

    4) расшифровка полученных спектров с помощью таблиц и атласов спектральных линий элементов.

    На этой стадии заканчивается качественный АСА. Наиболее результативно использование чувствительных (т. н. «последних») линий, сохраняющихся в спектре при минимальной концентрации определяемого элемента. Спектрограммы просматривают на измерительных микроскопах, компараторах, спектропроекторах. Для качественного анализа достаточно установить наличие или отсутствие аналитических линий определяемых элементов. По яркости линий при визуальном просмотре можно дать грубую оценку содержания тех или иных элементов в пробе.

    Количественный АСА осуществляют сравнением интенсивностей двух спектральных линий в спектре пробы, одна из которых принадлежит определяемому элементу, а другая (линия сравнения) — основному элементу пробы, концентрация которого известна, или специально вводимому в известной концентрации элементу («внутреннему стандарту»).

    В основе количественного АСА лежит соотношение, связывающее концентрацию с определяемого элемента с отношением интенсивностей линии определяемой примеси (I1) и линии сравнения (I2):

    I1/I2 = acb

    (постоянные а и b определяются опытным путём), или

    lg(I1/I2) = b lgс + lga.

    С помощью стандартных образцов (не менее 3) можно построить график зависимости lg(I1/I2.) от lg с (градуировочный график, рис. 1) и определить по нему а и b. Значения I1 и I2 можно получать непосредственно путём фото-электрической регистрации или путём фотометрирования (измерения плотности почернения) линии определяемой примеси и линии сравнения при фоторегистрации. Фотометрирование производят на Микрофотометрах.

    Для возбуждения спектра в АСА используют различные источники света и соответственно различные способы введения в них образцов. Выбор источника зависит от конкретных условий анализа определённых объектов. Тип источника и способ введения пробы составляют главное содержание частных методик АСА.

    Первым искусственным источником света в АСА было пламя газовой горелки — источник весьма удобный для быстрого и точного определения многих элементов. Температура пламён горючих газов не высока (от 2100 К для смеси водород — воздух до 4500 К для редко используемой смеси кислород — циан). С помощью фотометрии пламени определяют около 70 элементов по их аналитическим линиям, а также по молекулярным полосам соединений, образующихся в пламёнах.

    В эмиссионном АСА широко используют электрические источники света. В электрической дуге постоянного тока между специально очищенными угольными электродами различной формы, в каналы которых помещают исследуемое вещество в измельченном состоянии, можно производить одновременное определение десятков элементов. Она обеспечивает относительно высокую температуру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300—400 в или переходя к высоковольтной дуге (3000—4000 в), можно увеличить точность анализа.

    Более стабильные условия возбуждения создаёт дуга переменного тока. В современных генераторах дуги переменного тока (см., напр.,рис. 2) можно получить различные режимы возбуждения: низковольтную искру, высокочастотную искру, дугу переменного тока, импульсный разряд и т. д. Такие источники света с различными режимами используют при определении металлов и трудновозбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсированная искра (рис. 3) служит главным образом источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях анализируемых электродов, приводят к изменениям состава плазмы разряда. Чтобы устранить это явление, приходится производить предварительный обжиг проб и нормировать форму и размеры проб и стандартных образцов.

    В АСА перспективно применение стабилизированных форм электрического разряда типа плазмотронов различных конструкций, высокочастотного индукционного разряда, СВЧ-разряда, создаваемого магнетронными генераторами, высокочастотного факельного разряда. С помощью различных приёмов введения анализируемых веществ в плазму этих типов разряда (продувка порошков, распыление растворов и т. д.) значительно повышена относительная точность анализа (до 0,5—3% ), в том числе и компонентов сложных проб, содержание которых составляет десятки %. В некоторых важных случаях анализа чистых веществ применение этих типов раз ряда снижает пределы определения примесей на 1—2 порядка (до 10-5—10-6 % ).

    Для анализа чистых веществ, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в металлах и твёрдых веществах и т. д. весьма перспективным оказалось использование разряда в полом катоде и безэлектродных ВЧ-и СВЧ-разрядов. В АСА в качестве источников возбуждения применяются также лазеры (см. Спектроскопия лазерная).

    Атомно-абсорбционный С. а. (ААА) и атомно-флуоресцентный С. а. (АФА).В этих методах пробу превращают в пар в атомизаторе (пламени, графитовой трубке, плазме стабилизированного ВЧ-или СВЧ-разряда). В ААА свет от источника дискретного излучения, проходя через этот пар, ослабляется и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на специальных Спектрофотометрах. Методика проведения ААА по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах. ААА с успехом заменяет трудоёмкие и длительные химические методы анализа, не уступая им в точности .

    В АФА атомные пары пробы облучают светом источника резонансного излучения и регистрируют флуоресценцию определяемого элемента. Для некоторых элементов (Zn, Cd, Hg и др.) относительные пределы их обнаружения этим методом весьма малы (Спектральный анализ10-5—106 %).

    АСА позволяет проводить измерения изотопного состава. Некоторые элементы имеют спектральные линии с хорошо разрешенной структурой (например, Н, Не, U). Изотопный состав этих элементов можно измерять на обычных спектральных приборах с помощью источников света, дающих тонкие спектральные линии (полый катод, безэлектродные ВЧ-и СВЧ-лампы). Для проведения изотопного спектрального анализа большинства элементов требуются приборы высокой разрешающей способности (например, эталон Фабри — Перо). Изотопный спектральный анализ можно также проводить по электронно-колебательным спектрам молекул, измеряя изотопные сдвиги полос, достигающие в ряде случаев значительной величины.

    Экспрессные методы АСА широко применяются в промышленности, сельском хозяйстве, геологии и многих др. областях народного хозяйства и науки. Значительную роль АСА играет в атомной технике, производстве чистых полупроводниковых материалов, сверхпроводников и т. д. Методами АСА выполняется более 3/4 всех анализов в металлургии. С помощью квантометров проводят оперативный (в течение 2—3 мин) контроль в ходе плавки в мартеновском и конвертерном производствах. В геологии и геологической разведке для оценки месторождений производят около 8 млн. анализов в год. АСА применяется для охраны окружающей среды и анализа почв, в криминалистике и медицине, геологии морского дна и исследовании состава верхних слоев атмосферы, при разделении изотопов и определении возраста и состава геологических и археологических объектов и т. д.

    Лит.: Заидель А. Н., Основы спектрального анализа, М., 1965; Методы спектрального анализа, М,, 1962; Эмиссионный спектральный анализ атомных материалов, Л. — М., 1960; Русанов А. К., Основы количественного спектрального анализа руд и минералов. М., 1971; Спектральный анализ чистых веществ, под ред. X. И. Зильберштейна, [Л.], 1971; Львов Б. В., Атомно-абсорбционный спектральный анализ, М., 1966; Петров А. А., Спектрально-изотопный метод исследования материалов, Л., 1974; Тарасевич Н. И.. Семененко К. А., Хлыстова А. Д., Методы спектрального и химико-спектрального анализа, М., 1973: Прокофьев В. К., Фотографические методы количественного спектрального анализа металлов и сплавов, ч. 1—2, М. — Л., 1951; Менке Г., Менке Л., Введение в лазерный эмиссионный микроспектральный анализ, пер. с нем., М., 1968; Королев Н. В., Рюхин В. В., Горбунов С. А., Эмиссионный спектральный микроанализ, Л., 1971; Таблицы спектральных линий, 3 изд., М., 1969; Стриганов A. P., Свентицкий Н. С., Таблицы спектральных линий нейтральных и ионизованных атомов, М., 1966.

    Л. В. Липис.

    Молекулярный спектральный анализ (МСА)

    В основе МСЛ лежит качественное и количественное сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качественный и количественный МСА. В МСА используют различные виды молекулярных спектров (См. Молекулярные спектры), вращательные [спектры в микроволновой и длинноволновой инфракрасной (ИК) областях], колебательные и колебательно-вращательные [спектры поглощения и испускания в средней ИК-области, спектры комбинационного рассеяния света (КРС), спектры ИК-флуоресценции], электронные, электронно-колебательные и электронно-колебательно-вращательные [спектры поглощения и пропускания в видимой и ультрафиолетовой (УФ) областях, спектры флуоресценции]. МСА позволяет проводить анализ малых количеств (в некоторых случаях доли мкг и менее) веществ, находящихся в различных агрегатных состояниях.

    Основные факторы, определяющие возможности методов МСА:

    1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определённом интервале длин волн или частот исследуемого диапазона (для микроволнового диапазона оно Спектральный анализ 105, для средней ИК-области в спектрах твёрдых и жидких веществ Спектральный анализ 103);

    2) количество измеренных спектров индивидуальных соединений;

    3) существование общих закономерностей между спектром вещества и его молекулярным строением;

    4) чувствительность и избирательность метода;

    5) универсальность метода;

    6) простота и доступность измерений спектров.

    Качественный МСА устанавливает молекулярный состав исследуемого образца. Спектр молекулы является его однозначной характеристикой. Наиболее специфичны спектры веществ в газообразном состоянии с разрешенной вращательной структурой, которые исследуют с помощью спектральных приборов высокой разрешающей способности. Наиболее широко используют спектры ИК-поглощения и КРС веществ в жидком и твёрдом состояниях, а также спектры поглощения в видимой и УФ-областях. Широкому внедрению метода КРС способствовало применение для их возбуждения лазерного излучения.

    Для повышения эффективности МСА в некоторых случаях измерение спектров комбинируют с др. методами идентификации веществ. Так, всё большее распространение получает сочетание хроматографического разделения смесей веществ с измерением ИК-спектров поглощения выделенных компонент.

    К качественному МСА относится также т. н. структурный молекулярный анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания общие черты. Наиболее ярко это проявляется в колебательных спектрах. Так, наличие сульфгидрильной группы (—SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565—2575 см-1, нитрильная группа (—CN) характеризуется полосой 2200—2300 -1 и т. д. Присутствие таких характеристических полоса колебательных спектрах веществ с общими структурными элементами объясняется характеристичностью частоты и формы многих молекулярных колебаний. Подобные особенности колебательных (и в меньшей степени электронных) спектров во многих случаях позволяют определять структурный тип вещества.

    Качественный анализ существенно упрощает и ускоряет применение ЭВМ. В принципе его можно полностью автоматизировать, вводя показания спектральных приборов непосредственно в ЭВМ. В её памяти должны быть заложены спектральные характеристические признаки многих веществ, на основании которых машина произведёт анализ исследуемого вещества.

    Количественный МСА по спектрам поглощения основан на Бугера - Ламберта - Бера законе, устанавливающем связь между интенсивностями падающего и прошедшего через вещество I света от толщины поглощающего слоя I и концентрации вещества с:

    I(l)=I0e-χcl

    Коэффициент χ является характеристикой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие проведения количественного МСА — независимость χ от концентрации вещества и постоянство χ в измеряемом интервале частот, определяемом шириной щели спектрофотометра. МСА по спектрам поглощения проводят преимущественно для жидкостей и растворов, для газов он значительно усложняется.

    В практическом МСА обычно измеряют т. н. оптическую плотность:

    D = In (/о//) = χсl.

    Если смесь состоит из n веществ, не реагирующих друг с другом, то оптическая плотность смеси на частоте ν аддитивна: mточках спектра смеси (m ≥ n) и решению получаемой системы уравнений:

    Для количественного МСА обычно пользуются спектрофотометрами, позволяющими производить измерение /(ν) в сравнительно широком интервале ν . Если полоса поглощения исследуемого вещества достаточно изолирована и свободна от наложения полос др. компонент смеси, исследуемый спектральный участок можно выделить, например, при помощи интерференционного Светофильтра.На его основе конструируют специализированные анализаторы, широко используемые в промышленности.

    При количественном МСА по спектрам КРС чаще всего интенсивность линии определяемого компонента смеси сравнивают с интенсивностью некоторой линии стандартного вещества, измеренной в тех же условиях (метод «внешнего стандарта»). В др. случаях стандартное вещество добавляют к исследуемому в определённом количестве (метод «внутреннего стандарта» ).

    Среди др. методов качественного и количественного МСА наибольшей чувствительностью обладает флуоресцентный анализ, однако в обычных условиях он уступает методам колебательной спектроскопии в универсальности и избирательности. Количественный МСА по спектрам флуоресценции основан на сравнении свечения раствора исследуемого образца со свечением ряда эталонных растворов близкой концентрации.

    Особое значение имеет МСА с применением техники замороженных растворов в специальных растворителях, например парафинах (см. Шпольского эффект). Спектры веществ в таких растворах (спектры Шпольского) обладают ярко выраженной индивидуальностью, они резко различны для близких по строению и даже изомерных молекул. Это позволяет идентифицировать вещества, которые по спектрам их флуоресценции в обычных условиях установить не удаётся. Например, метод Шпольского даёт возможность осуществлять качественный и количественный анализ сложных смесей, содержащих ароматические углеводороды. Качественный анализ в этом случае производят по спектрам люминесценции и поглощения, количественный — по спектрам люминесценции методами «внутреннего» и «внешнего» стандартов. Благодаря исключительно малой ширине спектральных линий в спектрах Шпольского в этом методе удаётся достигнуть пороговой чувствительности обнаружения некоторых многоатомных ароматических соединений (Спектральный анализ 10Спектральный анализ11 г/см3).

    Лит.: Чулановский В. М., Введение в молекулярный спектральный анализ, М. — Л., 1951; Беллами Л., Инфракрасные спектры сложных молекул, пер. с англ., М., 1963; Применение спектроскопии в химии, пер. с англ., М., 1959; Определение индивидуального углеводородного состава бензинов прямой гонки комбинированным методом, М., 1959; Юденфренд С., Флуоресцентный анализ в биологии и медицине, пер. с англ., М., 1965.

    В. Т. Алексанян.

    Рис. 1. Градуировочный график (метод трёх эталонов).

    Рис. 2. Принципиальная схема дуги переменного тока двойного питания: А — амперметр; R1 и R2 — реостаты; Тр — повышающий трансформатор: К — катушка индуктивности; АП — аналитический промежуток; П — вспомогательный промежуток; C1 и С2 — конденсаторы.

    Рис. 3. Схема генератора конденсированной искры с управляющим промежутком: АП — регулируемый аналитический промежуток, образованный ванадиевыми электродами; R1 — реостат; Тр — питающий трансформатор; С — конденсатор; L — катушка индуктивности; П — управляющий промежуток; R2 — блокирующее сопротивление.

    II

    Спектра́льный ана́лиз

    линейных операторов, обобщение выросшей из задач механики теории собственных значений (См. Собственные значения) и собственных векторов (См. Собственные векторы) матриц (т. е. линейных преобразований в конечномерном пространстве) на бесконечномерный случай (см. Линейный оператор,Операторов теория). В теории колебаний изучается движение системы с n степенями свободы в окрестности положения устойчивого равновесия, которое описывается системой линейных дифференциальных уравнений вида х есть n-мерный вектор отклонений обобщённых координат системы от их равновесных значений, а А — симметрическая положительно определённая матрица. Такое движение может быть представлено в виде наложения n гармонических колебаний (т. н. нормальных колебаний) с круговыми частотами, равными корням квадратным из всевозможных собственных значений λ k матрицы А. Нахождение нормальных колебаний системы здесь сводится к нахождению всех собственных значений λk; и собственных векторов xk матрицы А.Совокупность всех собственных значений матрицы называют её спектром. Если матрица А — симметрическая, то её спектр состоит из n действительных чисел λ1, ..., λn (некоторые из них могут совпадать друг с другом), а сама матрица с помощью перехода к новой системе координат может быть приведена к диагональному виду, т. е. отвечающее ей линейное преобразование А в n-мерном пространстве (т. н. самосопряжённое преобразование) допускает специальное представление — т. н. Спектральное разложение вида

    где E1,..., En операторы проектирования на взаимно перпендикулярные направления собственных векторов х1, ......, xn. Несимметрическая же матрица А (которой отвечает несамосопряжённое линейное преобразование) имеет, вообще говоря, спектр, состоящий из комплексных чисел λ1,..., λ1, и может быть преобразована лишь к более сложной, чем диагональная, жордановой форме [см. Нормальная (жорданова) форма матриц (См. Нормальная форма матриц)], отвечающей представлению линейного преобразования А, более сложному, чем описанное выше обычное спектральное разложение.

    При изучении колебаний около состояния равновесия систем с бесконечным числом степеней свободы (например, однородной или неоднородной струны) задачу о нахождении собственных значений и собственных векторов линейного преобразования в конечномерном пространстве приходится распространить на некоторый класс линейных преобразований (т. е. линейных операторов) в бесконечномерном линейном пространстве. Во многих случаях (включая, в частности, и случай колебания струны) соответствующий оператор может быть записан в виде действующего в пространстве функций f(x)интегрального оператора А, так что здесь

    где К(х, у)— заданная на квадрате ах, уb непрерывная функция двух переменных, удовлетворяющая условию симметрии К(х, у)= К(у, х). В этих случаях оператор А всегда имеет полную систему попарно ортогональных собственных функций (См. Собственные функции)φk, которым отвечает счётная последовательность действительных собственных значений λk, составляющих в своей совокупности спектр оператора А.Если рассматривать функции, на которые действует оператор А, как векторы гильбертова пространства, то действие Абудет, как и в случае конечномерного самосопряжённого преобразования, сводиться к растяжению пространства вдоль системы взаимно ортогональных осей φk с коэффициентами растяжения λk (при λk 0 такое растяжение имеет смысл растяжения с коэффициентом |λk|, объединённого с зеркальным отражением), а сам оператор А здесь снова будет иметь спектральное разложение вида

    где Ek операторы проектирования на направления φk.

    С. а., развитый первоначально для интегральных операторов с симметричным ядром К(х, у), определённым и непрерывным в некоторой ограниченной области, был затем в рамках общей теории операторов распространён на многие другие типы линейных операторов (например, на интегральные операторы с ядром, имеющим особенность или заданным в неограниченной области, дифференциальные операторы в пространствах функций одного или нескольких переменных и т. д.), а также на абстрактно заданные линейные операторы в бесконечномерных линейных пространствах. Оказалось, однако, что такое распространение связано с существенным усложнением С. а., так как для многих линейных операторов собственные значения и собственные функции, понимаемые в обычном смысле, вообще не существуют. Поэтому в общем случае спектр приходится определять не как совокупность собственных значений оператора А, а как совокупность тех значений, для которых оператор (А— λЕ)-1, где Е — тождественный (единичный) оператор, не существует, или определён лишь на неплотном множестве, или является неограниченным оператором. Все собственные значения оператора принадлежат его спектру и в совокупности образуют его дискретный спектр; остальную часть спектра часто называют непрерывным спектром оператора [иногда же непрерывным спектром называют лишь совокупность тех λ, при которых оператор (А —λЕ)-1 определён на плотном множестве элементов пространства, но неограничен, а все точки спектра, не входящие ни в дискретный, ни в непрерывный спектр, называют остаточным спектром].

    Наиболее разработан С. а. самосопряжённых линейных операторов в гильбертовом пространстве (обобщающих симметрические матрицы) и унитарных линейных операторов в том же пространстве (обобщающих унитарные матрицы). Самосопряжённый оператор А в гильбертовом пространстве всегда имеет чисто действительный спектр (дискретный, непрерывный или смешанный) и допускает спектральное разложение вида

    где E(λ)— т. н. разложение единицы (отвечающее оператору А), т. е. семейство проекционных операторов (См. Проекционный оператор), удовлетворяющее специальным условиям. Точками спектра в данном случае являются точки роста операторной функции Е(λ);в случае чисто дискретного спектра все они являются скачками Е(λ), так что здесь

    и спектральное разложение (*) сводится к разложению

    Унитарный оператор в гильбертовом пространстве имеет спектр, расположенный на окружности |λ|= 1, и допускает спектральное разложение родственного (*) вида, но с заменой интегрирования от -∞ до ∞ интегрированием по этой окружности. Изучен также специальный класс нормальных операторов в гильбертовом пространстве, представимых в аналогичном представлению (*) виде, но где уже интегрирование в правой части распространено на более общее множество точек λ комплексной плоскости, представляющее собой спектр А. Что касается С. а. несамосопряжённых и не являющихся нормальными линейных операторов, обобщающих произвольные несимметрические матрицы, то ему были посвящены многочисленные работы Дж. Биркгофа (США), Т. Карлемана (Швеция), М. В. Келдыша, М. Г. Крейна (СССР), Б. Сёкефальви-Надя (Венгрия), Н. Данфорда (США) и многих др. учёных, но тем не менее соответствующая теория ещё далека от полной завершённости.

    С. а. линейных операторов имеет целый ряд важных применений в классической механике (особенно теории колебаний), электродинамике, квантовой механике, теории случайных процессов, дифференциальных и интегральных уравнений и др. областях математики и математической физики.

    Лит.: Курант P., Гильберт Д., Методы математической физики, пер. с нем., 3 изд., т. 1, М. — Л., 1951; Ахиезер Н. И., Глазман И.М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; Плеснер А. И., Спектральная теория линейных операторов, М., 1965; Рисе Ф., Секефальви Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954; Секефальви-Надь Б., Фояш Ч., Гармонический анализ операторов в гильбертовом пространстве, пер. с франц., М., 1970; Данфорд Н., Шварц Дж. Т., Линейные операторы, пер. с англ., ч. 2—3, М., 1966—74; Келдыш М. В., Лидский В. Б., Вопросы спектральной теории несамосопряженных операторов, в кн.: Тр. 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 101—20.

    III

    Спектра́льный ана́лиз

    функции, обобщение гармонического анализа, тоже самое, что и Спектральное разложение функции.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Большой энциклопедический словарь

    СПЕКТРАЛЬНЫЙ анализ - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.

  5. Источник: Большой Энциклопедический словарь. 2000.



  6. Большой англо-русский и русско-английский словарь

    spectrum analysis

  7. Источник: Большой англо-русский и русско-английский словарь



  8. Англо-русский словарь технических терминов

    frequency analysis, frequency-domain analysis, spectral [spectrum\] analysis, spectral [spectrum\] estimation

  9. Источник: Англо-русский словарь технических терминов



  10. Физическая энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ

    физич. методы качеств..и количеств. определения состава в-ва, основанные на получении и исследовании его спектров. Основа С. а. — спектроскопия атомов и молекул, его классифицируют по целям анализа и типам спектров. Атомный С. а. (АСА) определяет элементный состав образца по атомным (ионным) спектрам испускания и поглощения; м о л е к у л я р н ы й С. а. (МСА) — мол. состав в-ва по мол. спектрам поглощения, люминесценции и комбинационного рассеяния света. Эмиссионный С. а. производят по спектрам испускания атомов, ионов и молекул, возбуждённым разл. источниками эл.-магн. излучения в. диапазоне от g-излучения до микроволнового. А б-сорбционный С. а. осуществляют по спектрам поглощения анализируемых объектов (атомов, молекул, ионов в-ва).

    Атомный С. а. (АСА)

    Качественный АСА осуществляют сопоставлением полученного спектра исследуемого в-ва со спектр. линиями элементов, приведёнными в спец. таблицах и атласах. В основе количественного АСА лежит соотношение, связывающее концентрацию с определяемого элемента с отношением интенсивностей линий определяемой примеси (I1) и линии сравнения (I2): I1/I2=асb (постоянные a и b определяются опытным путём), или

    lg(I1/I2)=blgc+lga.

    С помощью стандартных образцов (не менее трёх) можно построить график зависимости lg(I1/I2) от Igc (градуировочный график, рис.) и определить по нему а и 6. Значения It и I2 можно получать непосредственно путём фотоэлектрич. измерений или путём фотометрирования (измерения плотности почернения) на микрофотометре линий определяемой примеси и линии сравнения при фоторегистрации.

    СПЕКТРАЛЬНЫЙ АНАЛИЗ

    Градуировочный график (метод трёх эталонов).

    В эмиссионном АСА для получения спектров испускания исследуемого в-ва отбирают представит. пробу, отражающую его состав, и вводят её в источник излучения (атомизатор). Здесь тв. и жидкие пробы испаряются, соединение диссоциирует и свободные атомы (ионы) переходят в возбуждённое состояние. Испускаемое ими излучение раскладывается в спектр и регистрируется (или наблюдается визуально) с помощью спектрального прибора.

    Для возбуждения спектра в АСА используют разл. источники света и соответственно разл. способы введения в них образцов. Выбор источника зависит от конкретных условий анализа объекта. Тип источника и способ введения в него пробы составляют гл. содержание частных методик АСА. Первым искусств. источником света в АСА было пламя газовой горелки — источник. весьма удобный для быстрого и точного определения мн. элементов. Темп-ра пламён горючих газов невысока (от 2100К для смеси водород — воздух до 4500К для смеси кислород — циан). С помощью фотометрии пламенной определяют ок. 70 элементов по их аналитич. линиям, а также по мол. полосам соединений, образующихся в пламёнах.

    В эмиссионном АСА широко используются электрич. источники света. В электрич. дуге пост. тока между специально очищенными угольными электродами разл. формы, в каналы к-рых помещают исследуемое в-во в измельчённом состоянии, можно производить одновременно определение десятков элементов. Она обеспечивает относительно высокую темп-ру нагрева электродов и благоприятные условия возбуждения атомов пробы в дуговой плазме, однако точность этого метода невысока из-за нестабильности разряда. Повышая напряжение до 300—400 В или переходя к высоковольтной дуге (3—4 кВ), можно увеличить точность анализа.

    Более стабильные условия создаёт дуга перем. тока. В совр. генераторах дуги перем. тока можно получать разл. режимы возбуждения (низковольтную дугу, искру, ВЧ искру, дугу перем. тока, импульсный разряд и т. д.). Такие источники света с разл. режимами используют при определении металлов и трудно возбудимых элементов (углерод, галогены, газы, содержащиеся в металлах, и т. д.). Высоковольтная конденсиров. искра служит гл. обр. источником света при анализе металлов. Стабильность искрового разряда позволяет получать высокую воспроизводимость анализа, однако сложные процессы, происходящие на поверхностях электродов, приводят к изменению состава плазмы разряда. Чтобы устранить это явление, производят предварит. обжиг проб, нормируют форму и размеры проб и стандартных образцов.

    В эмиссионном АСА перспективно применение стабилизиров. форм электрич. разряда, получаемых в плазмотронах разл. конструкций, ВЧ индукционного разряда, СВЧ разряда, создаваемого магнетронными генераторами, ВЧ факельного разряда. С помощью разл. приемов введения анализируемых в-в в плазму этих разрядов (продувка порошков, распыление р-ров и т. д.) значительно повышена относит. точность анализа (до 0,5—3%), в т. ч. и компонентов сложных проб, содержание к-рых составляет десятки %. В нек-рых важных случаях анализа чистых в-в применение этих типов разряда снижает пределы определения примесей на 1—2 порядка (до 10-5—10-6 %).

    Для апализа чистых в-в, радиоактивных материалов, смесей газов, изотопного анализа, спектрально-изотопного определения газов в металлах и тв. телах и т. д. весьма перспективно оказалось использование разряда в полом катоде и безэлектродных ВЧ и СВЧ разрядов. В качестве источников возбуждения применяются также лазеры (см. ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ).

    Атомно-абсорбционный С. а. (ААА) и атомно-флуоресцентный С. а. (АФА). В этих методах пробу также испаряют в атомизаторе (в пламени, графитовой трубке, плазме стабилизированного ВЧ и СВЧ разряда). В ААА свет от источника дискр. излучения, проходя через пар в-ва, ослабляется, и по степени ослабления интенсивностей линий определяемого элемента судят о концентрации его в пробе. ААА проводят на спец. спектрофотометрах; методика его проведения по сравнению с др. методами значительно проще, для него характерна высокая точность определения не только малых, но и больших концентраций элементов в пробах.

    В АФА ат. пары пробы облучают резонансным для исследуемого элемента излучением и регистрируют его флуоресценцию. Для нек-рых элементов (Zn, Cd, Hg и др.) относит, пределы обнаружения весьма малы (=10-5—10-6 %).

    АСА позволяет проводить измерение изотопного состава благодаря изотопному сдвигу спектр. линий (для большинства элементов требуются приборы высокой разрешающей способности, напр. эталон Фабри — Перо). Изотопный С. а. можно также проводить по электронно-колебательным спектрам молекул, определяя изотопные сдвиги полос, достигающие в некоторых случаях значительной величины.

    Экспрессные методы АСА широко применяются в пром-сти, с. х-ве, геологии и мн. др. областях нар. х-ва и науки. Значит. роль АСА играет в ат. технике, произ-ве чистых ПП материалов, сверхпроводников и т. д.

    К С. а. относится также анализ элементного состава в-ва по рентг. спектрам (см. СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ), по спектрам оже- и фотоэлектронов ((см. ) Оже-спектроскопия и Фотоэлектронная спектроскопия), по спектрам фотопроводимости и др.

    Молекулярный спектральный анализ (МСА)

    В основе МСА лежит качеств. и количеств. сравнение измеренного спектра исследуемого образца со спектрами индивидуальных веществ. Соответственно различают качеств. и количеств. МСА. В МСА используют разл. виды молекулярных спектров: вращательные (микроволновая и длинноволновая ИК области спектра), колебательные и колебательно-вращательные (спектры поглощения и излучения в ср. ИК области, спектры комбинационного рассеяния света (КРС), спектры ИК флуоресценции), электронные, электронно-колебательные и электронно-колебательно-вращательные (спектры поглощения и пропускания в видимой и УФ областях, спектры флуоресценции). МСА позволяет проводить анализ малых количеств в-ва (до долей мкг и менее) в разл. агрегатных состояниях.

    Осн. факторы, определяющие возможности методов МСА:

    1) информативность метода. Условно выражается числом спектрально разрешаемых линий или полос в определ. интервале длин волн или частот исследуемого диапазона (для микроволн. диапазона оно =105, для ср. ИК области =103);

    2) кол-во измеренных спектров индивидуальных соединении;

    3) существование общих закономерностей между спектром в-ва и его мол. строением;

    4) чувствительность и избирательность метода;

    5) универсальность метода;

    6) простота и доступность измерений спектров.

    Качественный МСА устанавливает мол. состав исследуемого образца. Спектр молекулы явл. его однозначной хар-кой. Наиболее специфичны спектры в-в в газообразном состоянии с разрешённой вращат. структурой, к-рые исследуют с помощью спектр. приборов высокой разрешающей способности. Чаще всего используют спектры ИК поглощения и КРС в-в в жидком и тв. состояниях, а также спектры поглощения в видимой и УФ областях. Широкому внедрению метода КРС способствовало применение для их возбуждения лазерного излучения.

    Для повышения эффективности МСА в нек-рых случаях измерение спектров комбинируют с др. методами идентификации в-в. Так, всё большее распространение получает сочетание хроматографич. разделения в-в смесей с измерением ИК спектров поглощения выделенных компонентов.

    К качеств. МСА относится также т. н. структурный мол. анализ. Установлено, что молекулы, имеющие одинаковые структурные элементы, обнаруживают в спектрах поглощения и испускания (особенно колебательных) общие черты. Так, наличие сульфгидрильной группы (—SH) в структуре молекулы влечёт за собой появление в спектре полосы в интервале 2565—2575 см-1 нитрильной группы (—CN) — полосы 2200— 2300 см-1 и т. д. Присутствие этих характеристич. полос в колебат. спектрах в-в с общими структурными элементами объясняется характеристичностью частоты ((см. ) Характеристические частоты) и формы мн. мол. колебаний. Эта особенность колебательных (и в меньшей степени электронных) спектров позволяет определять структурный тип в-ва.

    Применение ЭВМ существенно упрощает и ускоряет качеств. анализ. В принципе его можно полностью автоматизировать, вводя показания спектр. приборов непосредственно в ЭВМ, в память к-рой заложены спектральные характеристич. признаки мн. в-в.

    Количественный МСА по спектрам поглощения основан на Бугера — Ламберта — Бера законе, устанавливающем связь между интенсивностями падающего I0 и прошедшего через в-во I света в зависимости от толщины поглощающего слоя l и концентрации в-ва с:

    I(l)=I0e-ccl.

    Коэфф, c явл. хар-кой поглощающей способности определяемого компонента для данной частоты излучения. Важное условие успешного проведения количеств. МСА — независимость c от с и постоянство c в измеряемом интервале частот, определяемом шириной щели спектрофотометра. МСА по спектрам поглощения проводят преим. для жидкостей и р-ров, для газов он значительно усложняется.

    В практич. МСА обычно измеряют т. н. оптич. плотность D:

    D = lnI0/I=ccl.

    Если смесь состоит из n в-в, не реагирующих друг с другом, то оптич. плотность смеси на частоте v аддитивна: D=Sni=1Div. Это позволяет проводить полный или частичный анализ многокомпонентных смесей. Задача в этом случае сводится к измерению значений оптич. плотности в m точках спектра смеси (m?n) и решения получаемой системы ур-ний:

    Dk=Sni=1Dki.

    Для количеств. МСА обычно пользуются спектрофотометрами, позволяющими производить измерения I(v) в сравнительно широком интервале v. Если полоса поглощения исследуемого в-ва достаточно изолирована и свободна от наложения полос др. компонентов смеси, исследуемый спектр. участок можно выделить, напр., при помощи интерференц. светофильтра. На его основе конструируют спец. анализаторы, используемые в промышленности.

    При количеств. MCA по спектрам КРС чаще всего интенсивность линий определяемого компонента смеси сравнивают с интенсивностью нек-рой линии стандартного в-ва, измеренной в тех же условиях (метод внеш. стандарта). В др. случаях стандартное в-во добавляют к исследуемому в определ. кол-ве (метод внутр. стандарта).

    Среди др. методов качеств. и количеств. МСА наибольшей чувствительностью обладает флуоресцентный анализ, однако он уступает методам колебат. спектроскопии в универсальности и избирательности. Количеств. МСА по спектрам флуоресценции основан на сравнении свечения р-ра исследуемого образца со свечением ряда эталонных р-ров близкой концентрации.

    Особое значение имеет флуоресцентный анализ с применением техники замороженных р-ров в спец. растворителях, напр. в парафинах (Шпольского эффект). Благодаря исключительно малой ширине спектр. линий в этом случае удаётся достичь высокой пороговой чувствительности обнаружения нек-рых многоатомных ароматич. соединений (= 10-11 г/см3).

  11. Источник: Физическая энциклопедия



  12. Химическая энциклопедия

    ,

    метод качеств. и количеств. определения состава в-в, основанный на исследовании их спектров испускания, поглощения, отражения и люминесценции. Различают атомный и молекулярный С. а., задачи к-рых состоят в определении соотв. элементного и молекулярного состава в-ва. Эмиссионный С. а. проводят по спектрам испускания атомов, ионов или молекул, возбужденных разл. способами, абсорбционный С. а.-по спектрам поглощения электромагн. излучения анализируемыми объектами (см. Абсорбционная спектроскопия).В зависимости от цели исследования, св-в анализируемого в-ва, специфики используемых спектров, области длин волн и др. факторов ход анализа, аппаратура, способы измерения спектров и метро-логич. характеристики результатов сильно различаются. В соответствии с этим С. а. подразделяют на ряд самостоят. методов (см., в частности, Атомно-абсорбционный анализ, Атомно-флуоресцентный анализ, Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Люминесцентный анализ, Молекулярная оптическая спектроскопия, Спектроскопия отражения, Спектрофотометрия, Ультрафиолетовая спектроскопия, Фотометрический анализ, Фурье-спектроскопия, Рентгеновская спектроскопия).

    Часто под С. а. понимают только атомно-эмис-сионный спектральный анализ (АЭСА)-метод элементного анализа, основанный на изучении спектров испускания своб. атомов и ионов в газовой фазе в области длин волн 150-800 нм (см. Атомные спектры).

    Пробу исследуемого в-ва вводят в источник излучения, где происходят ее испарение, диссоциация молекул и возбуждение образовавшихся атомов (ионов). Последние испускают характеристич. излучение, к-рое поступает в регистрирующее устройство спектрального прибора.

    При качественном АЭСА спектры проб сравнивают со спектрами известных элементов, приведенных в соответствующих атласах и таблицах спектральных линий, и таким образом устанавливают элементный состав анализируемого в-ва. При количеств. анализе определяют кол-во (концентрацию) искомого элемента в анализируемом в-ве по зависимости величины аналит. сигнала (плотность почернения или оптич. плотность аналит. линии на фотопластинке; световой поток на фотоэлектрич. приемник) искомого элемента от его содержания в пробе. Эта зависимость сложным образом определяется многими трудно контролируемыми факторами (валовый состав проб, их структура, дисперсность, параметры источника возбуждения спектров, нестабильность регистрирующих устройств, св-ва фотопластинок и т. д.). Поэтому, как правило, для ее установления используют набор образцов для градуировки, к-рые по валовому составу и структуре возможно более близки к анализируемому в-ву и содержат известные кол-ва определяемых элементов. Такими образцами могут служить специально приготовленные металлич. сплавы, смеси в-в, р-ры, в т. ч. и стандартные образцы, выпускаемые пром-стью. Для устранения влияния на результаты анализа неизбежного различия св-в анализируемого и стандартных образцов используют разные приемы; напр., сравнивают спектральные линии определяемого элемента и т. наз. элемента сравнения, близкого по хим. и физ. св-вам к определяемому. При анализе однотипных материалов можно применять одни и те же градуировочные зависимости, к-рые периодически корректируют по поверочным образцам.

    Чувствительность и точность АЭСА зависят гл. обр. от физ. характеристик источников излучения (возбуждения спектров)-т-ры, концентрации электронов, времени пребывания атомов в зоне возбуждения спектров, стабильности режима источника и т. д. Для решения конкретной аналит. задачи необходимо выбрать подходящий источник излучения, добиться оптимизации его характеристик с помощью разл. приемов - использование инертной атмосферы, наложение магн. поля, введение спец. в-в, стабилизирующих т-ру разряда, степень ионизации атомов, диффузионные процессы на оптим. уровне и т. д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы мат. планирования экспериментов.

    При анализе твердых в-в наиб. часто применяют дуговые (постоянного и переменного тока) и искровые разряды, питаемые от специально сконструир. стабилизир. генераторов (часто с электронным управлением). Созданы также универсальные генераторы, с помощью к-рых получают разряды разных типов с переменными параметрами, влияющими на эффективность процессов возбуждения исследуемых образцов. Твердая электропроводящая проба непосредственно может служить электродом дуги или искры; не проводящие ток твердые пробы и порошки помещают в углубления угольных электродов той или иной конфигурации. В этом случае осуществляют как полное испарение (распыление) анализируемого в-ва, так и фракционное испарение последнего и возбуждение компонентов пробы в соответствии с их физ. и хим. св-вами, что позволяет повысить чувствительность и точность анализа. Для усиления эффекта фракционирования испарения широко применяют добавки к анализируемому в-ву реагентов, способствующих образованию в условиях высокотемпературной [(5-7)

  13. Источник: Химическая энциклопедия



  14. Энциклопедический словарь

    спектра́льный ана́лиз

    физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединениях; в количественном спектральном анализе определяют содержание исследуемого вещества по относительным или абсолютным интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.

    * * *

    СПЕКТРАЛЬНЫЙ АНАЛИЗ

    СПЕКТРА́ЛЬНЫЙ АНА́ЛИЗ, физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим(см. СПЕКТРЫ ОПТИЧЕСКИЕ). Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.

  15. Источник: Энциклопедический словарь



  16. Геологическая энциклопедия

    — см. Спектроскопия.

  17. Источник: Геологическая энциклопедия



  18. Математическая энциклопедия

    - исследование спектральных характеристик линейных операторов: геометрии спектра и его основных частей, спектральной кратности, асимптотики собственных значений и т. д.

    Для операторов, действующих в конечномерных пространствах, задача определения спектра эквивалентна задаче локализации корней характеристич. уравнения в бесконечномерных пространствах дело обстоит значительно сложнее, хотя аппарат определителей строится и успешно используется в С. а. нек-рых бесконечномерных операторов. В ряде случаев С. а. оператора основывается на явной конструкции функционального исчисления (операторы умножения в функциональных пространствах, другие модельные операторы, а также операторы, подобные их сужениям или факторам). Широко применяются в С. а. различные теоремы об отображении спектра для функций одного или нескольких операторов - от простейших (спектр многочлена от оператора состоит из значений этого многочлена на спектре оператора, спектр суммы двух коммутирующих операторов содержится в алгебраич. сумме их спектров) до весьма тонких, описывающих спектры функций от некоммутирующих операторов, функций от оператора, имеющих разрывы в граничных точках его спектра, совместные спектры образов многозначных отображений, отображения аппроксимативных, точечных и дефектных спектров и т. д. Полезную информацию о спектре оператора можно извлечь из его топологич. характеристик (напр., спектр непрерывного оператора компактен, а спектр компактного - не более чем счетен, причем его ненулевые точки - изолированные собственные значения), поведения относительно выделенного в пространстве конуса (ведущие собственные значения у положительного оператора) или скалярного произведения (спектр самосопряженного оператора веществен, эрмитово положительного - неотрицателен, диссипативного - лежит в верхней полуплоскости, унитарного - на единичной окружности). Если скалярное произведение не является знакоопределен-ным, но его индекс индефинитности конечен, то спектр сохраняющего его оператора (такие операторы наз. J-унитарными) может иметь не более точек вне единичной окружности; для J-самосопряженных и J-диссипативных операторов положение аналогично (см. [5]).

    Спектральные характеристики могут обладать определенными свойствами устойчивости (непрерывности); эти свойства являются объектом теории возмущений спектра (раздел общей теории возмущений). Так, спектр является полунепрерывной сверху функцией оператора: любая окрестность спектра ограниченного оператора содержит спектры всех достаточно близких кнему операторов (случай неограниченных операторов требует небольшой модификации). Это позволяет проследить за изменением изолированных точек спектра при малых возмущениях и аналитически (в виде ряда по степеням параметра выразить собственные значения оператора лежащие в окрестности изолированного конечнократного собственного значения оператора А. В нек-рых случаях удается также оценить изменение числа собственных значений оператора в заданной области под действием возмущения, к-рое не предполагается малым по норме, но имеет фиксированный (конечный) ранг. В том же круге идей лежит теорема Вейля (Н. Weyl, 1909) об инвариантности спектра сгущения (дополнение в спектре к множеству изолированных собственных значений конечной кратности) самосопряженного оператора при компактных возмущениях. Фактически им показано, что спектр сгущения самосопряженного оператора Асовпадает с его существенным спектром

    а равенство справедливо для любого замкнутого Аи компактного К. Из теоремы Вейля следует, что все самосопряженные расширения симметрического оператора с конечными (и равными) дефектными числами имеют одинаковые существенные спектры. Теорема Вейля переносится на случай относительно компактных возмущений (оператор Кназ. компактным относительно А, если он переводит всякое ограниченное множество с ограниченным А- образом в компактное), откуда следует совпадение существенных спектров всех самосопряженных расширений симметричных многомерных дифференциальных операторов широкого класса. Теорема Вейля допускает обращение (Дж. Нейман, J. Neumann, 1935): если два самосопряженных оператора имеют одинаковые существенные спектры, то один из них унитарно эквивалентен возмущению другого компактным (даже принадлежащим классу Гильберта - Шмидта) оператором, имеющим произвольно малую норму. Найдены обобщения этого результата на случай нормальных, существенно нормальных операторов, а также на представления некоммутативных С*-алгебр.

    Теорема Вейля - Неймана показывает, что существенный спектр - единственная спектральная характеристика самосопряженного оператора, устойчивая относительно компактных возмущений, и что непрерывный и точечный спектры крайне неустойчивы. В то же время абсолютно непрерывный спектр (спектр сужения Ана подпространство Н ас (А)всех векторов для к-рых функция абсолютно непрерывна) также обладает нек-рой устойчивостью: он не меняется при ядерных возмущениях. Это один из основных результатов теории волновых операторов, тесно связанный с квантовомеханич. теорией рассеяния (см. [2]). Волновой оператор W(А, В)для пары самосопряженных операторов А, В - это изометрическое линейное отображение

    определенное на замкнутом подпространстве всех векторов для к-рых предел существует. Соотношения W(A, В) A=BW(A, В показывают, что W(A,B )осуществляет унитарную эквивалентность операторов А, В, если Условие ядерности оператора В-А влечет включения а следовательно, - унитарную эквивалентность абсолютно непрерывных частей операторов Аи В, обеспечивающую тождественность спектральных характеристик. Существует иной подход к задаче доказательства унитарной эквивалентности (в случае несамосопряженных операторов - подобия) возмущенного оператора невозмущенному. При этом подходе записывают условия подобия операторов Аи А+К в виде линейного операторного уравнения AV-VA=VK;ищут линейный оператор Г, обратный слева к оператору умножения т. е. AT(X)- Т (Х) А=Х, дляк-ротооператор является сжатием в пространстве операторов. Если такой оператор Г найти удается, то в качестве Vможно взять оператор (I+Г К)-1I, проверив предварительно его обратимость. Этим методом удается исследовать широкий класс нормальных операторов с дискретным и непрерывным спектром, квазинильпотентных операторов, операторов взвешенного сдвига и, что особенно важно для приложений, многомерных интегро-дифференциальных операторов.

    С. а. операторов, порожденных аналитич. (дифференциальными, интегральными, разностными и т. д.) операциями в функциональных пространствах, предполагает описание спектра операторов в терминах параметров (коэффициентов) соответствующей операции; широкая применимость теории возмущений в таких задачах объясняется тем, что выделить главную часть и возмущение часто удается в тех же терминах (перераспределяя коэффициенты). Напр., пусть Aq(G)(G - область в q - вещественный потенциал, т. е. числовая функция на G)- оператор Шрёдингёра, определяемый в L2(G)дифференциальной операцией и наиболее жесткими граничными условиями (минимальный оператор). В этом случае Aq(G)симметричен. Естественно считать (точнее, A0(G))невозмущенным оператором, а умножение на q - возмущением; такое представление дает полезные следствия, когда потенциал в каком-то смысле мал. Так, если при то теорема Вейля обеспечивает совпадение существенных спектров операторов Aq и A0 (совпадающих с существенным спектром их самосопряженных расширений); если область G лдостаточно велика

  19. Источник: Математическая энциклопедия



  20. Математическая энциклопедия

    стационарных случайных процессов, С. а. временных рядов, - 1) то же, что и спектральное разложение стационарных случайных процессов; 2) совокупность статистич. приемов, позволяющих оценить значение спектральной плотности стационарного случайного процесса по данным наблюдений за одной реализацией этого процесса (см. [1] - [4], а также Статистические задачи теории случайных процессов, Периодограмма, Спектральной плотности оценка, Спектральная оценка максимальной энтропии, Спектральная оценка параметрическая).

    Лит.:[1] Дженкинс Г., Ватте Д., Спектральный анализ и его приложения, пер. с англ., в. 1-2, М., 1971-72; [2] Modern spectrum analysis, N. Y., 1978; [з] Nonlinear methods of spectral analysis, В.- [a. о.],1979; [4] Кей С. М., Марил С. Л., лТр. ин-та инж. алектротехн. радиоэлектроники

  21. Источник: Математическая энциклопедия



  22. Большой энциклопедический политехнический словарь

    физ. метод качеств. и количеств. анализа в-в, осн. на изучении их спектров - испускания (эмиссионный С. а.), поглощения (абсорбц. С. а.), комбинационного рассеяния света, люминесценции. Метод отличается весьма высокой чувствительностью. С. а. применяют в астрофизике, металлургии, машиностроении, при разведке руд и минералов и т. д.

  23. Источник: Большой энциклопедический политехнический словарь



  24. Большая политехническая энциклопедия

    СПЕКТРАЛЬНЫЙ АНАЛИЗ — физ. методы качественного и количественного определения хим. состава любых веществ на основе получения и исследования их оптического спектра. В зависимости от характера используемых спектров различают следующие их виды: испускания (эмиссионный С. а.), поглощения (абсорбционный С. а.), комбинационного рассеяния света, люминесценции, рентгеновский и др. С. а. отличается высокой чувствительностью, точностью и быстротой получения результатов. Его широко используют в химии, металлургии, машиностроении, геологической разведке и др. областях науки и техники. С помощью С. а. можно определить температуру, плотность и массу небесных тел, скорости движения космических объектов, расстояния до звёзд и возраст последних.

  25. Источник: Большая политехническая энциклопедия



  26. Русско-английский политехнический словарь

    frequency analysis, frequency-domain analysis, spectral [spectrum] analysis, spectral [spectrum] estimation

    * * *

    emission analysis

  27. Источник: Русско-английский политехнический словарь



  28. Dictionnaire technique russo-italien

    analisi spettrale

  29. Источник: Dictionnaire technique russo-italien



  30. Естествознание. Энциклопедический словарь

    физ. метод качественного и количественного определения состава в-ва, проводимый по его спектрам оптическим. Различают атомный и мол. С. а., эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном С. а. полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соед.; в количественном С. а. определяют содержание исследуемого в-ва по относит. или абс. интенсивностям линий или полос в спектрах. Применяется в пром-сти, с. х-ве, геологии и др.

  31. Источник: Естествознание. Энциклопедический словарь



  32. Астрономический словарь

    физический метод качественного и количественного анализа химического состава веществ, основанный на изучении их спектров оптических. Отличается высокой чувствительностью и применяется в химии, астрофизике, металлургии, геологической разведке и т. д. Теоретической основой С. а. является Спектроскопия.

  33. Источник: Астрономический словарь



  34. Большой Энциклопедический словарь

    СПЕКТРАЛЬНЫЙ АНАЛИЗ
    СПЕКТРАЛЬНЫЙ анализ - физический метод качественного и количественного определения состава вещества, проводимый по его спектрам оптическим. Различают атомный и молекулярный спектральный анализ, эмиссионный (по спектрам испускания) и абсорбционный (по спектрам поглощения). В качественном спектральном анализе полученный спектр интерпретируют с помощью таблиц и атласов спектров элементов и индивидуальных соединений; в количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Применяется в промышленности, сельском хозяйстве, геологии и др.

    Большой Энциклопедический словарь. 2000.

  35. Источник: