«Хлорофилл»

Хлорофилл в словарях и энциклопедиях

Значение слова «Хлорофилл»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Ожегова
  5. Малый академический словарь
  6. Толковый словарь Ушакова
  7. Толковый словарь Ефремовой
  8. Большой англо-русский и русско-английский словарь
  9. Большой немецко-русский и русско-немецкий словарь
  10. Большой немецко-русский и русско-немецкий словарь
  11. Большой немецко-русский и русско-немецкий словарь
  12. Большой французско-русский и русско-французский словарь
  13. Большой испано-русский и русско-испанский словарь
  14. Большой итальяно-русский и русско-итальянский словарь
  15. Сельскохозяйственный словарь-справочник
  16. Научно-технический энциклопедический словарь
  17. Энциклопедический словарь
  18. Начала современного естествознания
  19. Геологическая энциклопедия
  20. Энциклопедический словарь нанотехнологий
  21. Русско-английский политехнический словарь
  22. Dictionnaire technique russo-italien
  23. Естествознание. Энциклопедический словарь

    Словарь Брокгауза и Ефрона

    пигмент, окрашивающий растения в зеленый цвет. Это азотистое тело, не растворимое в воде, растворимое в спирте, эфире, сероуглероде и маслах. X. легко разлагается от действия света, кислот и щелочей. При падающем свете флуоресцирует вишнево-красным цветом. Для извлечения X. листья обрабатываются спиртом. Зеленая вытяжка кроме X. содержит другие пигменты и посторонние примеси. Для разделения пигментов существует несколько способов. Один изх них состоит в том, что спиртовая вытяжка осаждается баритовой водой, образовавшийся зеленый осадок собирается на фильтре и обрабатывается спиртом, который извлекает желтые пигменты — ксантофилл и каротин. Хорошо промытый спиртом зеленый осадок разлагается едким кали. На полученный зеленый раствор наливается слой эфира, и затем, для нейтрализации едкого кали, прибавляется по каплям слабая уксусная кислота. После нейтрализации и взбалтывания X. переходит в слой эфира. Но полученный по этому способу X. уже несколько изменен. Получить вполне чистый и неизмененный X. крайне трудно. Лучшие результаты дает следующий способ. Листья извлекаются 82-процентным спиртом. Экстракт взбалтывается с равным объемом сероуглерода. Сероуглеродный слой отделяется и еще несколько раз взбалтывается с равными объемами спирта прежней крепости. Затем сроуглеродный раствор выпаривается и осадок растворяется в спирте. Из всех свойств X. особенного внимания заслуживает его спектр поглощения.

    Фиг. 1. I — спектр раствора X. слабой концентрации. II — спектр раствора Χ средней концентрации. III — спектр желтых пигментов.

    В спектре X. слабой концентрации замечается одна резкая полоса между фрауенгоферовыми линиями В и С и поглощение лучей вправо от линии b (фиг. 1, I). При средней концентрации появляются еще три полосы между С и D, на D и немного влево от E (фиг. 1, II). При увеличении концентрации абсорбционные полосы делаются толще, сливаются, так что через концентрированный раствор X. проходят уже только красные лучи между А и В и часть зеленых лучей. Наконец, при еще большей концентрации и зеленые лучи поглощаются, проходят только одни красные лучи между А и В. Желтые пигменты дают сплошное поглощение всех лучей вправо от линии b (фиг. 1, III). Образование X. зависит от нескольких условий. Одно из них — свет. Выросшие в темноте листья всегда желтого цвета. Такие листья называются этиолированными; будучи выставлены на свет, они скоро зеленеют. Исключение представляют только ростки некоторых хвойных, молодые ваи папоротников, а также некоторые одноклеточные водоросли, зеленеющие в темноте. Для зеленения наиболее благоприятен свет средней напряженности. Если часть выросших в темноте растений выставить на прямой солнечный свет, другую же часть, также выставленную на свет, затенить вертикально повешенными листьями бумаги, то зеленеть постоянно начинают скорее затененные растения. Это объясняется тем, что одновременно с зеленением идет противоположный процесс разрушения X. На слабом и среднем свете разрушения X. почти не происходит. На ярком же свете одновременно с сильным образованием X. идет очень значительное разрушение его и в результате — более слабое зеленение, чем на рассеянном свете. Для зеленения достаточно очень слабого света. Различные лучи спектра неодинаково влияют на образование X. Для изолирования отдельных частей спектра пользуются методом цветных экранов: берутся стеклянные колокола с двойными стенками, наполненные цветными жидкостями. Один колокол наполняется раствором двухромокислого калия, другой — аммиачным раствором окиси меди. Первая жидкость при средней концентрации пропускает лучи первой менее преломляемой части спектра, т. е. красные, оранжевые, желтые и часть зеленых. Вторая жидкость пропускает лучи остальной половины спектра, т. е. вторую половину зеленых, голубые, синие и фиолетовые. Следовательно, при помощи двух названных растворов спектр делится на две половины. На слабом свете зеленение наступает ранее под желтыми колпаками, на ярком же свете — под синими колпаками. Образование X. зависит также от температуры. При очень низкой, как и при очень высокой температуре, нет зеленения. Так, опыты над зеленением ростков ячменя показали:

    При 2 — 4° C нет зеленения

    " 4 — 5° " зеленение через 7 час. 15 мин.

    " 5 — 6° " " " 5 " — "

    " 10° " " " 3 " 30 "

    " 13° " " " 2 " — "

    " 18 — 19° " " " 1 " 40 "

    " 30° " " " 1 " 35 "

    " 35° " " " 1 " 30 "

    " 37 — 38° " " " 4 " — "

    " 40° " нет зеленения

    В зависимости от света и температуры воздуха находится осенняя окраска листьев. Осенние лучи солнца разрушают X., низкая же температура препятствует его новообразованию. Напр., ветви Chamaecypans obtusa, освещаемые солнцем, имеют осенью золотисто-желтый цвет, тогда как затененные ветви остаются зелеными. Третье необходимое условие для образования X. — это присутствие железа. Без железа вырастают бледно-желтые растения, называемые хлоротическими. Самая болезнь называется хлорозисом (см.) и излечивается железными солями. Для зеленения необходим также кислород. На свете в атмосфере, лишенной кислорода, листья остаются желтыми. Недостаток в почве необходимых для растения зольных элементов отражается уменьшением количества X. Уменьшение количества X. вызывается также и избытком минеральных веществ. Наконец, для образования X. необходимы углеводы. Этиолированные листья различных растений, по содержанию в них углеводов, распадаются на две группы. Этиолированные листья одних растений, как, напр., пшеницы, содержат значительное количество растворимых углеводов. Листья же других этиолированных растений (бобов) не содержат их почти ни следа. Если отрезанные этиолированные листья положить на поверхность воды и выставить на свет, то листья пшеницы позеленеют, листья же бобов останутся желтыми. Если же листья бобов положить не на воду, а на раствор сахарозы, глюкозы, фруктозы, то они также все позеленеют. Попытки установить химическую природу X. не давали определенных результатов, пока не занялись продуктами его распада. При пропускании через спиртовой раствор X. тока хлороводорода осаждается почти черная масса. Этот осадок отфильтровывается, промывается спиртом и растворяется в эфире. Раствор отфильтровывается и разбавляется равным объемом крепкой соляной кислоты и взбалтывается. Соляно-кислый слой отделяется, оставляется некоторое время открытым для испарения оставшегося эфира и затем разбавляется избытком воды. Получившийся сине-черный осадок отфильтровывается, промывается, растворяется в кипящей крепкой уксусной кислоте и оставляется стоять. Через некоторое время оседают кристаллики филлоцианина, который перекристаллизовывается из крепкой уксусной кислоты. Для уксусно-кислой медной двойной соли филлоцианина вычислена следующая формула C68H71N5O17Cu2. Оставшийся после отделения соляно-кислого раствора филлоционина грязно-желтый эфирный раствор выпаривается в плоских чашках. Полученная темно-коричневая масса растворяется в хлороформе и разбавляется большим количеством спирта. В осадке будет филлоксантин. При обработке кислотами филлоксантин переходит в филлоцианин. Последний же, выпаренный с соляной кислотой, дает филлотаонин. Филлотаонин удобнее, впрочем, получать следующим образом. Зеленые листья кипятят около двух часов с алкогольным раствором едкого натра. Через отфильтрованный зеленый раствор пропускается ток хлороводорода. Раствор делается светлее и, наконец, становится пурпуровым. Через несколько дней из раствора осаждаются красивые игольчатые кристаллы филлотаонина. Формула его: С40Н38N6О5(ОН). При нагревании филлотаонина с алкогольным раствором едкого кали в течение нескольких часов при 190°, разбавлении затем водой и взбалтывании с эфиром, последний окрашивается в пурпурово-красный цвет. При выпаривании эфира получается осадок, который по очистке дает темные красно-фиолетовые кристаллы филлопорфирина — C16H18N2O. Эти исследования получают еще тот интерес, что из пигмента крови гемоглобина был получен гематопорфирин такого состава: C16H18N2O3. Близость состава заставляет предполагать, что гематопорфирин представляет собой диоксифиллопорфирин.

    Фиг. 2. 1 — филлопорфирин в эфире; 2 — гематопорфирин в эфире; 3 — филлопорфирин в соляной кислоте; 4 — гематопорфрин в соляной кислоте.

    Оба тела имеют замечательно сходные спектры, как видно на фиг. 2, только линии гематопорфирина по сравнению с линиями филлопорфирина немного сдвинуты в сторону красных лучей. Следовательно X., выдающийся синтетик, является близким родственником гемоглобина — величайшего аналитика. Близким родственником им оказывается также пигмент желчи билирубин — Cl6Н16N2О3. Если нагревать филлотоанин в пробирке, и в отделяющихся парах поместить смоченные соляной кислотой еловые опилки, то последние краснеют, что указывает на присутствие пиррола. Ту же реакцию дает гематопорфирин, который при восстановлении дает гемопиррол C8H13N, производное пиррола — C4H5N. Из продуктов изменения X. заслуживает внимания также протофиллин, получаемый при действии водорода in statu nascendi. Это вещество в растворе желтого или красного цвета в зависимости от концентрации в высшей степени легко окисляется и дает X. В этиолированных листьях находится сходное вещество — протохлорофилл.

    В. Палладин.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    (от греч. chlorós — зелёный и phýllon — лист)

    зелёный пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют Фотосинтез. Локализован в особых клеточных структурах — хлоропластах или хроматофорах (См. Хроматофоры) и связан с белками и липидами мембран. Основу структуры молекулы Х, составляет магниевый комплекс порфиринового цикла; в IV пиррольном кольце к остатку пропионовой кислоты присоединён высокомолекулярный спирт Фитол, который придаёт Х. способность встраиваться в липидный слой мембран хлоропластов.

    Высшие растения и зелёные водоросли содержат Х. а и в, бурые и диатомовые водоросли — а и с, красные водоросли — Х. а и d. В фотосинтезирующих бактериях присутствуют близкие аналоги Х. — Бактериохлорофиллы. По своему строению Х. близок к др. природным комплексам порфиринов (с железом) — дыхательным пигментам — цитохромам (См. Цитохромы), красящему веществу крови — Гему, а также простетическим группам некоторых ферментов — пероксидазы, каталазы.

    Название «Х.» было дано французскими химиками П. Пельтье и Ж. Каванту зелёному спиртовому раствору смеси растительных пигментов в 1817. Впервые Х. а и в разделил в начале 20 в. рус. учёный М. С. Цвет с помощью разработанного им хроматографического метода. Химическую структуру Х. выяснили немецкие учёные Р. Вильштеттер, А. Штоль (1913), Х. Фишер (1930—40). Полный синтез Х. осуществил американский химик Р. Вудворд. Роль Х. в фотосинтезе доказана классическими работами К. А. Тимирязева. Пути биосинтеза Х. выяснены в трудах американских учёных Д. Шемина, С. Граника и др.; большой вклад в изучение Х. внесли советские учёные Т. Н. Годнев и А. А. Шлык.

    Основной путь биосинтеза Х. определяется конденсацией двух молекул δ-аминолевулиновой кислоты с образованием порфобилиногена — производного пиррола, который в результате ряда ферментативных превращений даёт соединение, содержащее порфириновое ядро — протопорфирин IX. Из протопорфирина образуется непосредственный предшественник Х. — протохлорофиллид, уже содержащий атом магния. Путём последующих реакций восстановления и присоединения фитола из этого предшественника образуется Х. Стадия восстановления протохлорофиллида осуществляется у высших растений на свету, у низших растений — в темноте.

    В хлоропластах и хроматофорах большая часть Х. (содержание его обычно составляет 0,5—1,5% на сухую массу) находится в виде светособирающей «антенны» и меньшая часть — в реакционных центрах, непосредственно участвующих в работе цепи фотосинтетического переноса электрона. Поглощая квант света, молекула Х. переходит в возбуждённое состояние (длительность жизни синглетного возбуждённого состояния около 10-9 сек), которое может переходить в долгоживущее триплетное возбуждённое состояние с длительностью жизни до 10-3 сек. Возбуждённые светом молекулы Х. способны переносить электрон от молекулы-донора к молекуле-акцептору. Механизм этих реакций в модельных системах выяснен в работах советских учёных А. А. Красновского, В. Б. Евстигнеева и др. Способность возбуждённого Х. к переносу электрона обеспечивает функционирование реакционных центров фотосистем цепи фотосинтетического переноса электрона. Применение спектральной техники и низких температур показало, что в первичном фотоакте бактериохлорофилл, а возможно, и Х. активного центра отдают свой электрон молекуле-акцептору (убихинон, ферредоксин). Этот первичный фотопроцесс сопряжён с цепью энзиматических реакций, ведущих к образованию восстановленных пиридиннуклеотидов и аденозинтрифосфата, обеспечивающих работу углеродного цикла. Т. о., свет, поглощённый Х., преобразуется в потенциальную химическую энергию органических продуктов фотосинтеза и молекулярного кислорода. Свет, поглощаемый Х., вызывает в клетках также др. фотобиологические явления: индуцирует генерацию электрического потенциала на мембранах хлоропластов, влияет на движение одноклеточных организмов (фототаксис) и т.д.

    Исследованию свойств Х. на разных уровнях молекулярной организации уделяется большое внимание, т.к. эти свойства тесно связаны с фундаментальным явлением преобразования энергии света в химическую энергию при фотосинтезе.

    Лит.: Тимирязев К. А., Солнце, жизнь и хлорофилл, Избр. соч., т. 1, М., 1948; Годнев Т. Н., Строение хлорофилла и методы его количественного определения, Минск, 1952; Хлорофилл. Сб. ст., Минск, 1974; Красновский А. А., Преобразование энергии света при фотосинтезе. Молекулярные механизмы, М., 1974 (Баховские чтения, 29); Vernon L. P., Seel у G. R., The chlorophylls, N. Y.— L., 1966.

    А. А. Красновский.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. хлорофи́лл;
    2. хлорофи́ллы;
    3. хлорофи́лла;
    4. хлорофи́ллов;
    5. хлорофи́ллу;
    6. хлорофи́ллам;
    7. хлорофи́лл;
    8. хлорофи́ллы;
    9. хлорофи́ллом;
    10. хлорофи́ллами;
    11. хлорофи́лле;
    12. хлорофи́ллах.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Ожегова

    ХЛОРОФИ́ЛЛ, -а, муж. (спец.). Зелёный пигмент растений.

    | прил. хлорофилловый, -ая, -ое.

  7. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  8. Малый академический словарь

    , м.

    Зеленый пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез.

    В центре этого прибора профессор поместил спрепарированную часть листа. Видны были органы дыхания, устьица и зерна хлорофилла — этой зеленой крови растений. Короленко, С двух сторон.

    [От греч. χλωρός — зеленый и φύλλον — лист]

  9. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  10. Толковый словарь Ушакова

    ХЛОРОФИ́ЛЛ, хлорофилла, мн. нет, муж. (от греч. chloros - зеленый и phyllon - лист) (бот.). Зеленое красящее вещество листьев и других органов растений, обусловливающее возможность усвоения растениями углерода.

  11. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  12. Толковый словарь Ефремовой

    м.

    Зеленый пигмент растений, поглощающий световую энергию и превращающий её в химическую (от присутствия которого зависит окраска листьев и побегов).

  13. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  14. Большой англо-русский и русско-английский словарь

    муж.;
    бот. chlorophyllм. chlorophyll.

  15. Источник: Большой англо-русский и русско-английский словарь



  16. Большой немецко-русский и русско-немецкий словарь

    хлорофилл м бот. Chlorophyll ( k l o - ] n 1, Blattgrün n 1

  17. Источник: Большой немецко-русский и русско-немецкий словарь



  18. Большой немецко-русский и русско-немецкий словарь

    хлорофиллChlorophyll

  19. Источник: Большой немецко-русский и русско-немецкий словарь



  20. Большой немецко-русский и русско-немецкий словарь

    м бот.

    Chlorophyll n, Blattgrün n

  21. Источник: Большой немецко-русский и русско-немецкий словарь



  22. Большой французско-русский и русско-французский словарь

    м. бот.

    chlorophylle f

  23. Источник: Большой французско-русский и русско-французский словарь



  24. Большой испано-русский и русско-испанский словарь

    м. бот.

    clorofila f

  25. Источник: Большой испано-русский и русско-испанский словарь



  26. Большой итальяно-русский и русско-итальянский словарь

    м. бот.

    clorofilla f

  27. Источник: Большой итальяно-русский и русско-итальянский словарь



  28. Сельскохозяйственный словарь-справочник

    сложное вещество, окрашивающее раст. в зеленый цвет, имеет большое значение в жизни раст. Посредством X. раст. усваивают необходимый для них углерод из углекислоты воздуха после расщепления ее на солнечном свете. В состав X. входят: углерод, водород, кислород, азот и магний. У нек-рых раст. (сине-зеленые и красные водоросли) присутствие X. маскируется синими и красными красящими веществами.

  29. Источник: Сельскохозяйственный словарь-справочник



  30. Научно-технический энциклопедический словарь

    ХЛОРОФИЛЛ, группа зеленых пигментов, содержащихся в ХЛОРОПЛАСТАХ растений и ВОДОРОСЛЕЙ, которые поглощают свет, необходимый для ФОТОСИНТЕЗА. Есть пять типов хлорофилла: «а» содержится во всех фотосинтезирующих организмах, кроме бактерий, «b» - в растениях и ХЛОРОФИТАХ, а «с», «d» и «е» - в некоторых водорослях. По строению хлорофилл близок к ГЕМОГЛОБИНУ, но атом железа в нем замещен атомом магния.

  31. Источник: Научно-технический энциклопедический словарь



  32. Энциклопедический словарь

    ХЛОРОФИ́ЛЛ -а; м. [от греч. chlōros - бледно-зелёный и phyllon - лист] Зелёный пигмент растений, поглощающий световую энергию и преобразующий её в химическую. Зёрна хлорофилла.

    Хлорофи́лловый; Хлорофи́льный, -ая, -ое. Х-ые зёрна.

    * * *

    хлорофи́лл

    (от греч. chlōrós — зелёный и phýllon — лист), зелёный пигмент растений, содержащийся в хлоропластах. В процессе фотосинтеза поглощает световую энергию и превращает её в энергию химических связей органических соединений. По химическому строению сложное циклическое соединение — порфирин, содержащий атом Mg. Существуют различные (близкие по структуре) типы хлорофилла.

    * * *

    ХЛОРОФИЛЛ

    ХЛОРОФИ́ЛЛ (от греч. chloros — зеленый и phyllon — лист), зеленый пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез(см. ФОТОСИНТЕЗ), т. е. превращают солнечную энергию в энергию химических связей органических соединений. Содержится и в фотосинтезирующих организмах других видов — водорослях и бактериях. С точки зрения химического строения хлорофилл неоднороден. Существуют различные типы хлорофиллов. Основой химического строения всех хлорофиллов является сложное циклическое соединение — порфирин, содержащий центральный атом Mg и многоатомный гидрофобный спиртовый остаток.

    * * *

    ХЛОРОФИ́ЛЛ, (от греческого chloros — зеленый и phyllon — лист), зеленый пигмент растений, с помощью которого они улавливают энергию солнечного света и осуществляют фотосинтез. В высших растениях и водорослях хлорофилл локализован в особых клеточных структурах — хлоропластaх(см. ХЛОРОПЛАСТЫ) и связан с белками(см. БЕЛКИ (органические соединения)) и липидами(см. ЛИПИДЫ) этих структур. Хлоропласты высших растений и зеленых водорослей содержат два типа хлорофиллов, близких по структуре молекул, — хлорофиллы a и b.

    Другие фотосинтезирующие водоросли и фотосинтезирующие бактерии имеют иной набор пигментов. Например, бурые и диатомовые водоросли, криптомонады и динофлагелляты содержат хлорофиллы a и c, красные водоросли — хлорофиллы а и d. Следует отметить, что реальность существования хлорофилла d в красных водорослях оспаривается некоторыми исследователями, которые полагают, что он является продуктом деградации хлорофилла а. В настоящее время достоверно установлено, что хлорофилл d — основной пигмент некоторых фотосинтезирующих прокариотов(см. ПРОКАРИОТЫ). Среди прокариотов цианобактерии (сине-зеленые водоросли(см. СИНЕЗЕЛЕНЫЕ ВОДОРОСЛИ)) содержат только хлорофилл a, прохлорофитные бактерии — хлорофиллы a, b или c. Другие бактерии содержат аналоги хлорофилла — бактериохлорофиллы, которые локализованы в хлоросомах и хроматофорах. Известны бактериохлорофиллы а, b, c, d, e и g. Основу молекулы всех хлорофиллов составляет магниевый комплекс порфиринового макроцикла (см. Порфирины(см. ПОРФИРИНЫ)), к которому присоединен высокомолекулярный спирт, обладающий гидрофобными свойствами, который придает хлорофиллам способность встраиваться в липидный слой фотосинтетических мембран. Главная роль в улавливании и трансформации солнечной энергии в биосфере принадлежит хлорофиллу a.

    Физико-химические свойства

    Mолекулярный вес хлорофилла a 893,52. В изолированном состоянии хлорофилл образует черно-голубые микрокристаллы, которые плавятся с образованием жидкости при 117—120°С. Хлорофилл а легко растворяется в диэтиловом эфире, этаноле, ацетоне, хлороформе, бензоле, пиридине. Растворы хлорофилла а имеют сине-зеленую окраску и обладают сильной красной флуоресценцией. Главные максимумы спектра поглощения разбавленных растворов хлорофилла а в диэтиловом эфире — 429 и 660 нм. По химической струкутре хлорофилл а относится к хлоринам (дигидропорфиринам), так как одно из его пиррольных колец (кольцо IV) гидрировано по С17-С18 связи. В IV пиррольном кольце к остатку пропионовой кислоты присоединен высокомолекулярный спирт фитол. Некоторые растения, вместо или наряду с хлорофиллом a, синтезируют его аналог, в котором этильная группа (—CH2—CH3) во II пиррольном кольце замещена винильной группой (—CH=CH2). Молекула такого хлорофилла имеет две винильных группы, одну в кольце I, другую — в кольце II.

    Хлорофилл b отличается от хлорофилла a тем, что боковым заместителем у углеродного атома C3 во II пиррольном кольце вместо метильной является альдегидная группа —Н—С=О. В молекуле хлорофилла с пиррольные кольца не гидрированы, т. е. этот пигмент является классическим порфирином. Хлорофилл d и бактериохлорофидды c, d, e и g также относятся к группе хлоринов, а бактериохлорофиллы а и b-группе бактериохлоринов (тетрагидропорфиринам), так как в их молекулах II и IV пиррольные кольца гидрированы по С7-С8 и С17-С18 связям. Указанные хлорофиллы различаются также структурой боковых заместителей и высокоатомного спирта, присоединенного к тетрапиррольному макроциклу.

    По химической структуре хлорофиллы родственны природным комплексам порфиринов(см. ПОРФИРИНЫ), содержащим железо цитохромам(см. ЦИТОХРОМЫ), красящему веществу крови — гему(см. ГЕМ), а также простетическим группам некоторых ферментов — пероксидаз(см. ПЕРОКСИДАЗЫ) и каталазы(см. КАТАЛАЗА).

    Исторический очерк

    Возможность экстракции зеленых пигментов листьев спиртом была известна уже французскому ученому Ж. Сенебье в 1782—1800 гг. В 1817 г. французские химики П. Пельтье и Ж. Кованту назвали зеленый спиртовый раствор смеси растительных пигментов хлорофиллом. Экспериментальные доказательства того, что поглощенный хлорофиллом свет приводит к фотосинтезу, были получены в параллельных исследованиях российского ученого К. А. Тимирязева(см. ТИМИРЯЗЕВ Климент Аркадьевич) и немецкого ученого Н. Мюллера в 1872—1876 гг. Это представление стало общепринятым после работ немецкого ученого Рейнке (1884—1885 гг.). Многие исследователи пытались найти способы очистки зеленых пигментов и определения их химической структуры. В частности, российский ботаник И. П. Бородин(см. БОРОДИН Иван Парфеньевич)в 1882 описал получение производного хлорофилла — кристаллического этилхлорофиллида при действии этанола на листья. Эти исследования были подтверждены и продолжены российским исследователем Н. А. Монтеверде в 1893. Задача выделения чистых зеленых пигментов была решена в 1906—1908 гг. российским ученым М. С. Цветом(см. ЦВЕТ Михаил Семенович) с помощью разработанного им хроматографического метода. Цвет показал, что зеленый пигмент растений является смесью двух пигментов, названных позже хлорофиллами а и b.

    Химическую структуру хлорофилла а выяснили немецкие ученые Р. Вильштеттер(см. ВИЛЬШТЕТТЕР Рихард Мартин), А. Штоль (1913) и Х. Фишер(см. ФИШЕР Ханс Эйген) (1940). Фишер начал работы по химическому синтезу хлорофилла, а полный синтез хлорофилла был выполнен американским химиком Р. Вудвордом в 1960.

    Способность хлорофиллов in vitro к обратимому переносу электрона под действием света была экспериментально установлена в работах российского ученого А. А. Красновского(см. КРАСНОВСКИЙ Александр Абрамович) в 1948—1950 гг. и последующих работах его школы. Обратимые фотопревращения хлорофилла в фотосинтезирующих клетках были первоначально обнаружены голландскими исследователями Л. М. Н. Дейзенсом (1952) на примере бактериохлорофилла пурпурных бактерий и затем Б. Коком на хлорофилле хлоропластов (1956—1957 гг.).< /P>

    Эти работы послужили основой для понимания функции хлорофилла в фотосинтетическом аппарате.

    Биосинтез

    Биосинтез хлорофилла осуществляется в полиферментных комплексах (так называемых центрах биосинтеза), локализованных, вероятно, в строме хлоропластов. Основной путь биосинтеза хлорофилла определяется конденсацией двух молекул 5-аминолевулиновой кислоты с образованием порфириногена — производного пиррола, который в результате ряда ферментативных превращений дает соединение, содержащее порфириновое ядро — протопорфирин IX. Из протопорфирина образуется содержащий атом магния протохлорофиллид, являющийся непосредственным предшественником хлорофилла. Путем последующих реакций восстановления и присоединения фитола из протохлорофиллида образуется хлорофилл. Стадия восстановления предшественника осуществляется у высших растений на свету, причем включает две последовательные фотохимические реакции, у низших растений — в темноте. Показано, что существуют два параллельных пути биосинтеза хлорофилла, приводящие к образованию моновинил- и дивинилхлорофиллов a.

    Состояние и функция в хлоропластах

    Общее содержание хлорофилла в хлоропластах обычно составляет около5% на сухую массу. Более 99% хлорофилла находится в составе светособирающих пигмент-белковых комплексов, которые выполняют функцию антенны, т. е. поглощают солнечную энергию или акцептируют ее от вспомогательных пигментов — каротиноидов или фикобилинов, а затем транспортируют к реакционным центрам (см. Фотосинтез(см. ФОТОСИНТЕЗ) ). Менее 1% хлорофилла находится в составе реакционных центров, которые осуществляют запуск цепи фотосинтетического транспорта электронов. У высших растений и водорослей существуют два типа реакционных центров, соответствующих двум фотосистемам хлоропластов (фотосистемы I и фотосистемы II). Реакционные центры ФС I содержат только хлорофилл а, реакционные центры ФС II — хлорофилл а и его безмагниевый аналог — феофитин. Хлорофиллы в и с не входят в состав реакционных центров, выполняя функцию светособирающих антенн. Спектральный анализ показывает, что состояние хлорофилла в фотосинтетическом аппарате существенно отличается от состояния изолированного хлорофилла в растворах из-за пигмент-пигментных и пигмент-белковых взаимодействий. Например, хлорофилл a образует в фотосинтетическом аппарате не менее 10 различных спектральных форм.

    Поглощая квант света, изолированная молекула хлорофилла переходит в возбужденное синглетное состояние (время жизни около 5 нс) и затем дезактивируется с испусканием кванта флуоресценции (квантовый выход — 20—40%) или заселением долгоживущего (время жизни 1—3 мс) триплетного состояния (квантовый выход — 40—60%). Возбужденные светом молекулы хлорофилла способны переносить электрон от молекулы донора на молекулу акцептора. В растворах хлорофилла этот процесс происходит, главным образом, за счет активности триплетного состояния, так как время жизни и концентрация триплетных молекул в растворах значительно больше, чем синглетных. В фотосинтетическом аппарате за счет наличия организованной структуры энергия возбуждения хлорофилла антенны эффективно захватывается хлорофиллом реакционных центров. Первичными акцепторами возбуждения служат пигменты P680 в реакционных центрах ФС II и P700 — в реакционных центрах ФС I, которые, по-видимому, являются специально организованными димерами хлорофилла. Возбужденные молекулы этих димеров отдают электрон соответствующим акцепторам, включенным в структуру реакционных центров, и тем самым запускают процесс фотосинтетического транспорта электрона. Скорость захвата энергии возбуждения хлорофиллом реакционных центров и ее трансформации в энергию разделенных зарядов очень велика, и поэтому завершается за очень короткое время — 10—50 пс. Вследствие этого разделение зарядов осуществляется синглетно-возбужденными молекулами хлорофилла, а образование триплетных состояний, как значительно более медленный процесс, подавлено примерно на 2 порядка величины. Однако триплетные молекулы хлорофилла образуются в результате обратной рекомбинации разделенных зарядов в реакционных центрах при их перегрузке, т. е. при отсутствии достаточно быстрого оттока электронов из реакционных центров в электрон-транспортную цепь. Кроме хлорофилла антенны и реакционных центров, существует также свободный хлорофилл, который не включен в процессы фотосинтетического транспорта энергии и заряда и эффективно образует триплетное состояние при фотовозбуждении. Концентрация этого хлорофилла составляет несколько десятых долей процента.

    В результате запускаемого хлорофиллом электронного транспорта высшие растения, водоросли, цианобактерии и прохлорофитные бактерии осуществляют фоторазложение воды с выделением в атмосферу газообразного кислорода, образование АТФ и фиксацию СО 2 с образованием углеводов. Таким образом свет, поглощенный хлорофиллом, преобразуется в потенциальную химическую энергию органических продуктов фотосинтеза и молекулярного кислорода.

    Применение

    Производные хлорофилла используются в медицине и ветеринарии для фотодинамической терапии рака. Эффект основан на том, что при введении этих соединений в кровь больных раком людей или животных пигменты в большей степени накапливаются в раковых опухолях, чем в окружающих тканях. При освещении в аэробных условиях пигменты передают энергию кислороду, переводя его в возбужденное синглетное состояние. Синглетный кислород, обладая высокой реакционной способностью, разрушает липидные и белковые компоненты раковых клеток, приводя к их уничтожению. Описано бактерицидное и антиоксидантное действие хлорофилла, а также применение хлорофилла для окраски мыла, масел, жиров, кремов, алкогольных и безалкогольных напитков, косметики, одеколона, духов, в качестве дезодоранта и в других целях.

  33. Источник: Энциклопедический словарь



  34. Начала современного естествознания

    (от греч.chloros — зеленый +phyllon — лист) — зеленый пигмент растений, от присутствия которого зависит цвет, окраска растений (листьев, побегов и т. д.). По химическому строению сложное циклическое соединение, содержащее атомы магния. В процессе фотосинтеза хлорофилл поглащает световую энергию и превращает ее в энергию химических связей органических соединений.

  35. Источник: Начала современного естествознания



  36. Геологическая энциклопедия

    — зеленый пигмент растений (в т. ч. некоторых бактерий), при помощи которого в растении осуществляется синтез орг. соединений из атмосферной углекислоты с использованием энергии солнечной радиации (фотосинтез). Структурно родственны X. гемоглобин и ряд др. природных пигментов (биохромов), играющих первостепенно важную роль в реакциях биосинтеза. При разрушении орг. вещества в осадках азотсодер. ядро биохромов иногда фоссилизируется. См. Порфирины.

  37. Источник: Геологическая энциклопедия



  38. Энциклопедический словарь нанотехнологий

    Термин
    хлорофилл

  39. Источник: Энциклопедический словарь нанотехнологий



  40. Русско-английский политехнический словарь

    chlorophyll

  41. Источник: Русско-английский политехнический словарь



  42. Dictionnaire technique russo-italien

    м.

    clorofilla f

  43. Источник: Dictionnaire technique russo-italien



  44. Естествознание. Энциклопедический словарь

    (от греч. сhlоros - зелёный и phyllon - лист), зелёный пигмент р-ний, содержащийся в хлоропластах. В процессе фотосинтеза поглощает световую энергию и превращает её в энергию хим. связей органич. соединений. По хим. строению сложное циклич. соед.- порфирин, содержащий атом Mg. Существуют разл. (близкие по структуре) типы X.

  45. Источник: Естествознание. Энциклопедический словарь