Большая Советская энциклопедия

    (от греч. pýr — огонь и Металлургия

    совокупность металлургических процессов, протекающих при высоких температурах. П.— основная и старейшая область металлургии. С древних времён до конца 19 в. производство металлов базировалось почти исключительно на пирометаллургических процессах. На рубеже 19 и 20 вв. промышленное значение приобрела др. крупная ветвь металлургии — Гидрометаллургия, однако П. продолжает сохранять главенствующее положение как по масштабам производства, так и по многообразию процессов. В начале 20 в. наряду с пламенными способами нагрева в металлургии начали применяться различные виды электрического нагрева (дуговой, индукционный и др.); примерно в это же время в промышленность был внедрён Электролизрасплавленных химических соединений (производство алюминия и др. цветных металлов). Во 2-й половине 20 в. получили распространение плазменная плавка металлов (см. Плазменная металлургия), Зонная плавкаи Электроннолучевая плавка. Металлургические процессы, основанные на использовании электрического тока, можно выделить в самостоятельную область П.— электрометаллургию (См. Электрометаллургия). В современной металлургии П. занимает ведущее место в производстве чугуна и стали, свинца, меди, никеля и др. важнейших металлов.

    По технологическим признакам выделяют следующие виды пирометаллургических процессов: Обжиг, Плавка, Конвертирование, Рафинирование, Дистилляция. Обжиг характеризуется тем, что материал сохраняет твёрдое состояние при изменении состава и некотором укрупнении частиц; проводится в кипящего слоя печах (См. Кипящего слоя печь) (эффективный процесс, широко применяемый в цветной металлургии), многоподовых печах (например, производство меди, ферромолибдена), трубчатых печах (магнетизирующий обжиг железных концентратов), на агломерационных машинах (см. Агломерация), в муфельных печах (металлургия редких металлов). Плавка характеризуется полным расплавлением шихты и разделением расплава обычно на 2 слоя (металл и Шлак или металл и Штейн); проводится в шахтных печах (См. Шахтная печь) (например, Доменное производство, производство свинца, никеля, меди), отражательных печах (См. Отражательная печь)(Мартеновское производство, отражательная плавка медных концентратов), электропечах (производство стали, ферросплавов, меди, никеля), циклонных камерах (переработка медно-цинкового сырья) и др. агрегатах. В особую группу плавок выделяют так называемые металлотермические процессы (см. Металлотермия), основанные на реакциях восстановления металлов из их соединений химически более активными металлами (реакции протекают с выделением значительного количества тепла). Конвертирование, которое можно рассматривать как разновидность плавки, заключается в продувке воздухом или кислородом расплавленных материалов (чугун, штейн) с присадкой Флюсов и небольшого количества сырья (лом, богатые концентраты); конвертирование основано на использовании тепла экзотермических реакций и осуществляется в Конвертерах(Конвертерное производство, производство меди, никеля). Рафинирование — обработка расплавленных черновых металлов с помощью присадок (солей, щелочей, металлов), наведением специальных шлаков, окислением примесей, вакуумированием расплава и т.д. (иногда рафинирование проводят в процессе кристаллизации жидкого металла); агрегатами для рафинирования могут служить отражательные печи (производство меди, цинка, золота), котлы (производство свинца, олова). Дистилляция заключается в переводе восстанавливаемого металла в парообразное состояние с последующей конденсацией; осуществляется в ретортных печах (производство цинка), шахтных печах (производство свинца, цинка, олова), печах с кипящим слоем (производство титана).

    Лит.: Есин О. А., Гельд П. В., Физическая химия пирометаллургических процессов, 2 изд., ч. 1—2, Свердловск, 1962— 1966; Вольский А. Н., Сергиевская Е. М., Теория металлургических процессов, М., 1968; Зеликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973; Ванюков А. В., Зайцев В. Я., Теория пирометаллургических процессов, М., 1973.

    Н. В. Гудима.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Словарь форм слова

    1. пи́рометаллурги́я;
    2. пи́рометаллурги́и;
    3. пи́рометаллурги́и;
    4. пи́рометаллурги́й;
    5. пи́рометаллурги́и;
    6. пи́рометаллурги́ям;
    7. пи́рометаллурги́ю;
    8. пи́рометаллурги́и;
    9. пи́рометаллурги́ей;
    10. пи́рометаллурги́ею;
    11. пи́рометаллурги́ями;
    12. пи́рометаллурги́и;
    13. пи́рометаллурги́ях.
  3. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  4. Большой энциклопедический словарь

    ПИРОМЕТАЛЛУРГИЯ (от греч. pyr - огонь и металлургия) - совокупность металлургических процессов, протекающих при высоких температурах (обжиг, плавка, конвертирование, рафинирование, дистилляция). Основа производства чугуна и стали, свинца, меди, цинка и других важнейших металлов.

  5. Источник: Большой Энциклопедический словарь. 2000.



  6. Словарь металлургических терминов

    Pyrometallurgy — Пирометаллургия.

    Высокотемпературное извлечение или очистка металлов.

  7. Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО "Профессионал", НПО "Мир и семья"; Санкт-Петербург, 2003 г.



  8. Современная энциклопедия

    ПИРОМЕТАЛЛУРГИЯ (от греческого pyr - огонь и металлургия), общее наименование металлургических процессов, протекающих при высоких температурах (обжиг, плавка, рафинирование и др.). Основа производства чугуна и стали, свинца, меди, цинка и других металлов.

  9. Источник: Современная энциклопедия. 2000.



  10. Большой англо-русский и русско-английский словарь

    pyrometallurgy

  11. Источник: Большой англо-русский и русско-английский словарь



  12. Англо-русский словарь технических терминов

    pyrometallurgy

  13. Источник: Англо-русский словарь технических терминов



  14. Химическая энциклопедия

    (от греч. ру-огонь и металлургия), совокупность высокотемпературных процессов получения и рафинирования металлов и их сплавов. До кон. 19 в. металлы получали только с помощью пирометаллургич. процессов; в настоящее время, несмотря на быстрый прогресс новых направлений - гидрометаллургии и электрометаллургии, П. сохраняет ведущее положение. В крупнейших по объему выпускаемой продукции произ-вах чугуна и стали используют только пирометаллургич. переделы. Пирометаллургич. способом получают осн. часть Cu, Pb, Ni, Ti и др. важнейших металлов, а, кроме того, во мн. технол. схемах пирометаллургич. процессы сочетаются с гидро- и электрометаллургическими.

    По целевому признаку пирометаллургич. процессы можно разделить на подготовительные, концентрирозание и очистку от осн. массы примесей, получение металлов из их соед., глубокую очистку металлов (рафинирование).

    Наиб. распространенная подготовительная операция-обжиг, к-рый проводят при т-ре ниже т-р плавления сырья и продукта с целью изменения состава, удаления вредных примесей или(и) укрупнения пылевидных материалов (агломерирующий обжиг, или агломерация). По назначению и характеру протекающих процессов различают: окислит. обжиг, приводящий к получению оксидов или сульфатов (сульфатизирующий обжиг) при взаимод. сульфидных материалов с кислородом воздуха (напр., обжиг медных и молибденовых концентратов, сульфатизирующий обжиг цинковых концентратов); восстановит. обжиг для получения низших оксидов или металлов путем взаимод. исходных материалов с углем или др. восстановителями (напр., магнетизирующий обжиг железных руд с добавкой угля для перевода Fe2O3 в Fe3O4 перед электромагн. обогащением); кальцинирующий обжиг для получения оксидов металлов из их гидратов, карбонатов или др. соед., разлагающихся при высокой т-ре; обжиг с добавками твердых или жидких реагентов (напр., спекание вольфрамовых концентратов с содой для получения р-римого в воде Na2WO4, сульфатизация концентратов и пром. продуктов, содержащих Nb, Та и др. редкие металлы, с использованием H2SO4) и др. способы обжига.

    Концентрирование металлов достигается переводом их и осн. массы пустой породы в разные легко отделяющиеся одна от другой фазы. Важнейший способ концентри-рования - плавка, осуществляемая при т-ре, достаточной для расплавления (полного или осн. части) исходного материала и продуктов. При плавке образуются два или более несмешивающихся жидких слоя, различающихся по плотности,-металлический, шлак (сплав оксидов), штейн (сплав сульфидов), расплавы солей и т. д. Восстановит. плавку проводят с использованием восстановителя, чаще всего твердого угле-родсодержащего (кокс, уголь). Продукты восстановит. плавки-металлич. расплав и шлак, иногда и др. фазы. Распределение металлов и примесей между слоями зависит от легкости их восстановления. При восстановит. плавке железных руд (доменный процесс), свинцовых, оловянных и др. концентратов извлекаемый металл переходит в металлич. фазу, примеси-в шлак или штейн, в то время как при плавке ильменитового концентрата (FeTiO3) целевым продуктом является шлак с высоким содержанием Ti, а в металлич. расплав переходит осн. примесь-Fe.

    В основе окислит. плавки (окислитель - кислород) сульфидных руд, концентратов и пром. продуктов (отражательная, шахтная и электроплавка медных и медно-никелевых концентратов и руд на штейн, конвертирование никелевых и медно-никелевых штейнов и др.) лежит различие в сродстве металлов к кислороду и сере. При недостатке S в штейне концентрируются Cu, Ni, Со и др. цветные металлы, а осн. часть Fe, Ca, Si, Al, Mg и др. переходят в шлак. На этом же различии основана восстановительно-сульфидирующая плавка окисленных никелевых руд.

    Др. группа процессов концентрирования основана на отделении металла в виде пара (или летучего соед.) от осн. массы исходного материала, находящегося в твердом или жидком состоянии. Осн. примеры: фьюминг-процесс-отгонка Pb, Zn, Cd, SnS и SnO при продувке жидких шлаков смесью воздуха с угольной пылью; вельц-процесс - отгонка Zn из смешанного с коксом дисперсного материала при т-ре, исключающей плавление; хлорирование титановых шлаков, лопаритового и цирконового концентратов с получением летучих TiCl4, NbOCl3, TaCl5, ZrCl4.

    Для очистки от основной массы примесей применяют дистилляцию и др. процессы, основанные на разл. летучести соед. целевого металла и примесей (дистилляция MoO3, TiCl4, возгонка ZrCl4, вакуумная дистилляция Mg и MgCl2 из титановой губки и др.). Различия в летучести увеличивают избират. восстановлением, окислением или др. приемами (напр., избират. восстановление ZrCl4 в смеси с HfCl4 до нелетучего ZrCl3, избират. восстановление NbCl5 в смеси с TaCl5 до нелетучего NbCl3). Наиб. эффективный способ разделения в-в с разной т-рой кипения - ректификация (напр., очистка TiCl4 от SiCl4, разделение TaCl5 и NbCl5 и т. д.).

    Получение металлов из соед. осуществляют разл. методами. Если соед. металла имеет достаточно низкую термич. устойчивость, металл из него можно получить без применения восстановителей-термич. диссоциацией. Этим способом получают, напр., Fe, Ni, Со и др. металлы из их карбонилов, W и Mo-из их хлоридов. Металлы с небольшим сродством к кислороду производят окислением их сульфидов (конвертирование медного штейна на черновую медь, получение Hg при окислит. обжиге HgS). В остальных случаях применяют электролиз в расплаве солей (напр., произ-во Al из Al2O3, Mg из MgCl2, Та из Ta2O5, Zr из K2ZrF6) или используют восстановители. С помощью восстановителей металлы чаще всего получают из оксидов и галогенидов. При произ-ве металлов из оксидов применяют СО, CH4, продукты неполного сжигания или взаимод. с водяным паром угля или прир. газа (восстановление оксидов Fe), H2 (восстановление оксидов W, Mo, Fe, Cu), углерод (получение Ni, Fe, W). Самые устойчивые оксиды восстанавливают углеродом (карботермич. способ) в вакууме (напр., получение Nb и Та) или металлами (см. Металлотермия), имеющими наибольшее сродство к кислороду (алюминотер-мич. способ получения Nb и Та, восстановление оксидов Ti и Zr кальцием или CaH2, оксидов U кальцием или Mg и т. д.). Галогениды восстанавливают металлами или H2 (восстановление TiCl4 и ZrCl4 магнием или натрием, BeF2 магнием, UF4 магнием или кальцием, натриетермич. восстановление K2TaF7, K2NbF7, K2ZrF6 и т. д.).

    При рафинировании металлов используют различия в их хим. св-вах, в коэф. распределения между твердой фазой и расплавом, в летучестях металлов и примесей или их соединений. На избират. окислении примесей (С, Si, Mn, P, S и др.) основано получение стали из чугуна (см. Железа сплавы )-при окислении кислородом воздуха или обогащенного им дутья (конвертерные процессы) или оксидами, содержащимися в руде или скрапе (мартеновский процесс), примеси из металлич. расплава переходят в шлак или газы. Высокое сродство Cu к S используют при тонком рафинировании Pb-после добавления небольшого кол-ва элементарной S на пов-сть расплавленного Pb всплывает твердый сульфид Cu2S.

    В основе ликвационной очистки металлов лежит выделение примесей из расплава при понижении т-ры. Примерами могут служить очистка Pb от Cu, Sn от Fe и др. Дистилляц. очистке подвергают металлы, имеющие достаточно высокую летучесть (Hg, Cd, As, Zn и др.). В ряде случаев дистилляцию проводят в вакууме (Li, Rb, Cs и др.).

    При очистке от примесей, более летучих, чем основной металл, последний переплавляют в вакууме. Этот метод применяют в металлургии W, Mo, Nb, Та, Ti, Zr и др. Глубокую очистку металлов обеспечивают химические транспортные реакции (р-ции переноса) - обратимые р-ции, сопровождающиеся переносом основного металла из одной температурной зоны в другую в результате образования и разложения промежут. газообразных соед. (напр., очистка Ni в виде тетракарбонила, Ti и Zr в виде тетраиодидов). Самые чистые металлы получают с помощью направленной кристаллизации и зонной плавки-процессов, основанных на обогащении выделившихся из расплава кристаллов примесями, повышающими т-ру плавления металла, а расплава - примесями, понижающими ее. Эти способы очистки применяют при получении монокристаллов W, Mo, Ga, Al, Sn и др.

    Пирометаллургич. процессы осуществляют в печах разл. типа с использованием разнообразных видов нагрева (см. Печи). В последние годы развиваются автогенные процессы, в к-рых требуемая т-ра поддерживается благодаря выделяющемуся теплу экзотермич. р-ций, напр. обжиг сульфидных концентратов в кипящем слое, плавка во взвешенном состоянии на кислородном или горячем воздушном дутье, процессы "Норанда" и "Мицубиси", плавка в жидкой ванне и др. (см. Медь).

    Важное направление совершенствования пирометаллур-гич. процессов-снижение их вредного воздействия на окружающую среду, связанное с внедрением безотходных технологий, с сокращением и обезвреживанием отходов и выбросов.

    Лит.: Ванюков А. В., Зайцев В. Я., Теория пирометаллургических процессов, M., 1973; Севрюков H. H., Кузьмин Б. А., Челищев E. В., Общая металлургия, 3 изд., M., 1976; Зеликман A. H., Металлургия редких металлов, M., 1980; Ванюков А. В., Уткин H. И., Комплексная переработка медного и никелевого сырья, Челябинск, 1988. Г. M. Вольдман.

  15. Источник: Химическая энциклопедия



  16. Энциклопедический словарь

    пирометаллу́рги́я

    (от греч. pýr — огонь и металлургия), совокупность металлургических процессов, протекающих при высоких температурах (обжиг, плавка, конвертирование, рафинирование, дистилляция). Основа производства чугуна и стали, свинца, меди, цинка и других важнейших металлов.

    * * *

    ПИРОМЕТАЛЛУРГИЯ

    ПИРОМЕТАЛЛУРГИ́Я (от греч. pyr — огонь и металлургия(см. МЕТАЛЛУРГИЯ)), совокупность металлургических процессов, протекающих при высоких температурах (обжиг, плавка, конвертирование, рафинирование, дистилляция). Основа производства чугуна и стали, свинца, меди, цинка и других важнейших металлов.

  17. Источник: Энциклопедический словарь



  18. Большой энциклопедический политехнический словарь

    (от греч. руг - огонь и металлургия) - совокупность процессов получения и очистки металлов и сплавов, протекающих при высоких темп-pax. П. - осн. и древнейшая область металлургии. В совр. классификации П. противопоставляется гидрометаллургии - совокупности т. н. мокрых процессов получения металлов, осуществляемых при невысоких темп-pax. Примерами пирометаллургич. процессов могут служить доменная плавка, мартеновская плавка, плавка в конвертерах, дуговых и индукц. печах. Почти 100% мирового произ-ва чугуна, стали, свинца, ок. 95% меди, св. 60% цинка получают методами П.

  19. Источник: Большой энциклопедический политехнический словарь



  20. Большая политехническая энциклопедия

    ПИРОМЕТАЛЛУРГИЯ — см. металлургия (3).

  21. Источник: Большая политехническая энциклопедия



  22. Русско-английский политехнический словарь

    pyrometallurgy

    * * *

    пирометаллурги́я ж.

    pyrometallurgy

    * * *

    pyrometallurgy

  23. Источник: Русско-английский политехнический словарь



  24. Dictionnaire technique russo-italien

    ж.

    pirometallurgia f

  25. Источник: Dictionnaire technique russo-italien



  26. Русско-украинский политехнический словарь

    техн.

    пірометалургі́я

  27. Источник: Русско-украинский политехнический словарь



  28. Русско-украинский политехнический словарь

    техн.

    пірометалургі́я

  29. Источник: Русско-украинский политехнический словарь



  30. Большой Энциклопедический словарь

  31. Источник: