«Кибернетика биологическая»

Кибернетика биологическая в словарях и энциклопедиях

Значение слова «Кибернетика биологическая»

Источники

    Большая Советская энциклопедия

    биокибернетика, научное направление, связанное с проникновением идей, методов и технических средств кибернетики (См. Кибернетика) в биологию. Зарождение и развитие К. б. связаны с эволюцией представления об обратной связи (См. Обратная связь) в живой системе и попытками моделирования особенностей ее строения и функционирования (П. К. Анохин, Н. А. Бернштейн и др.). Эффективность математического и системного подходов к исследованию живого показали и многие работы в области общей биологии (ДЖ. Холдейн, Э. С. Бауэр, Р. Фишер, И. И. Шмальгаузен и др.). Процесс «кибернетизации» биологии осуществляется как в теоретической, так и в прикладной областях. Основная теоретическая задача К. б. — изучение общих закономерностей управления, а также хранения, переработки и передачи информации (См. Информация) в живых системах.

    Всякий организм — это система, способная к саморазвитию и управлению как внутренними взаимосвязями между органами и функциями, так и соотношениями с факторами среды. Стремясь понять природу живого, ученые часто старались отыскать в организме то, что можно было исследовать изолированно. Цель К. б. — изучение организма с учетом основных взаимосвязей начиная с клеточного, тканевого, органного уровня и кончая организменным. Живая система характеризуется не только обменом вещества и энергии, но и обменом информации. К. б. рассматривает сложные биологические системы во взаимодействии со средой именно с точки зрения теории информации. Одним из важнейших методов К. б. является моделирование структуры и закономерностей поведения живой системы; оно включает конструирование искусственных систем, воспроизводящих определенные стороны деятельности организмов, их внутренние связи и отношения (см. Моделирование). К. б. рассматривает живой организм как многоцелевую «иерархическую» систему управления, осуществляющую свою интегративную деятельность на основе функционального объединения отдельных подсистем, каждая из которых решает «частную» локальную задачу. Особенность организма как сложной динамической системы — единство централизованного и автономного управления. Саморегуляция, характерная для всех уровней управления живой системы, обеспечивается автономными механизмами, пока не возникают такие возмущения, которые требуют вмешательства центральных механизмов управления.

    В последнее время всё большее внимание биологов привлекают функциональные характеристики биологических систем управления, обусловленные периодическими (ритмическими, циклическими) процессами. Живые организмы с высокой точностью способны «измерять» время («Биологические часы»). Это выражается в периодических изменениях дыхания, температуры тела и др. процессов жизнедеятельности. Природа биологических ритмов (См. Биологические ритмы) ещё во многом неясна, но есть все основания полагать, что периодичность — фундаментальная характеристика функционирования биологической системы и процессов управления в ней. Процессы, происходящие на каждом из уровней живой системы, характеризуются своей специфической периодичностью, определяемой как внутренними, так и внешними факторами. А между периодической активностью отдельных уровней в нормально функционирующем организме существуют определенные фазовые сдвиги (сдвиги во времени), обусловленные специфической организацией управления на каждом из уровней. Нарушение этих нормальных фазовых сдвигов может вызвать нарушение работы всей живой системы или ее части. Это ведет к сбоям в работе системы управления и накоплению ошибок, что можно описывать как появление «шумов». Коррекция сбоев требует внутренней перенастройки системы (ее алгоритма) либо внешних управляющих воздействий за счёт включения механизмов управления более высокого уровня.

    Живые существа объединяются в системы разного порядка (популяции (См. Популяция), Биоценозы и т.д.), образуя своеобразную иерархию живых систем. Во всех этих надорганизменных системах, как и в жизни клетки, развитии организма, эволюции органического мира в целом, имеются внутренние механизмы регуляции, для изучения которых также применимы принципы и методы К. б.

    Механизмы управления определяют течение жизненных процессов не только в норме, но и в патологии (см. Кибернетика медицинская). Клетка — сложная саморегулирующаяся система. Она обладает многими регуляторными механизмами, одним из которых являются колебания её структуры, связанные с деятельностью Митохондрии и совпадающие с колебаниями окислительно-восстановительных процессов. Синтез белков (См. Белки) в клетке управляется генетически детерминированными механизмами, связанными с процессами хранения, переработки и передачи генетической информации (См. Генетическая информация). Изучение жизнедеятельности организма в целом и его разных функций, а также механизмов, управляющих работой отдельных органов и систем — это та область, где К. б. оказалась наиболее результативной. В связи с этим сформировались самостоятельные направления — физиологическая кибернетика и нейрокибернетика, изучающие механизмы поддержания Гомеостаза; принципы саморегуляции функций организма и протекания в нем переходных процессов; закономерности нервной и гуморальной регуляции в их единстве и взаимодействии; принципы организации и функционирования нейронов и нервных сетей; механизмы осуществления актов поведения и др. проблемы. Изучая закономерности работы человеческого мозга, в основе которой лежит комплекс алгоритмов, т. е. правил преобразования информации, К. б. позволяет моделировать (в том числе и на ЭВМ) различные формы работы мозга, выявляя при этом новые закономерности его деятельности. Созданы, например, программы для ЭВМ, обеспечивающие возможность обучения, игры в шахматы, доказательства теорем и др. Развивается так называемое эвристическое программирование, когда исследуют и моделируют правила обработки информации в мозге при тех или иных творческих процессах.

    Анализ механизмов индивидуального развития и процессов управления в популяциях и сообществах, включающих хранение, переработку и передачу информации от особи к особи, — также сфера исследований К. б. На уровне биогеоценозов, включая и биосферу (См. Биосфера) в целом, К. б. пытается использовать метод моделирования для целей оптимизации биосферы, в частности для определения путей наиболее рационального вмешательства человека в жизнь природы.

    Вопросы эволюции с позиций К. б. были впервые рассмотрены И. И. Шмальгаузеном, который отметил иерархичность управления, выделил основные каналы связи между особями, популяцией и биоценозом, определил возможности потери информации и ее искажений и описал эволюционный процесс в терминах теории информации. С этих же позиций исследуются механизмы различных форм отбора.

    Примером применения К. б. в прикладных целях может служить создание устройств для автоматического управления биологическими функциями (так называемое биопротезирование), автоматических устройств для оценки состояния человека во время трудовой или спортивной деятельности, при творческой работе, в субэкстремальных и экстремальных условиях.

    Использование методов и средств кибернетики для сбора хранения и переработки информации получаемой в ходе биологических исследований позволяет вскрывать новые количественные и качественные закономерности изучаемых процессов и явлений.

    Большую роль в деле развития К. б. в СССР сыграли конференции совещания и симпозиумы по биологическим аспектам кибернетики по биоэлектрическому управлению, нейрокибернетике. Вопросы К. б. освещаются в ряде советских и зарубежных журналов.

    Лит.: Анохин П. К., Физиология и кибернетика, в кн.: Философские вопросы кибернетики, М., 1961; Биологические аспекты кибернетики. Сб. работ, М., 1962; Эшби У. Р., Конструкция мозга, пер. с англ., М., 1962; Джордж Ф., Мозг как вычислительная машина, пер. с англ., М., 1963; Винер Н., Кибернетика, или Управление и связь в животном и машине, пер. с англ., М.,1968; Бернштейн Н. А., Очерки по физиологии движений и физиологии активности, М., 1966; Анохин П. К. [и др.], Биологическая и медицинская кибернетика, в кн.: Кибернетику — на службу коммунизму, т.5, М., 1967; Брайнес C. Н., Свечинский В. Б., Проблемы нейрокибернетики и нейробионики, М., 1968; Шмальгаузен И. И., Кибернетические вопросы биологии, Новосибирск, 1968; Ларин В. В., Баевский Р. М., Геллер Е. С., Процессы управления в живом организме, в кн.: Философские вопросы биокибернетики, М., 1969; Аптер М., Кибернетика и развитие, пер. с англ., М., 1970; Hassenstein B., Biologische Kybernetik, Hdlb., 1970.

    В. В. Парин, Е. С. Геллер.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Медицинская энциклопедия

    (син. биокибернетика)

    раздел кибернетики, изучающий закономерности управления и переработки информации в биологических системах.

  3. Источник: Медицинская энциклопедия



  4. Биологический энциклопедический словарь

    КИБЕРНЕТИКА БИОЛОГИЧЕСКАЯ

    биокибернетика (от греч. kubernetike — искусство управления), научное направление, связанное с применением идей и методов кибернетики в биологии. Исторически зарождение и развитие К. б. связаны с эволюцией представлений об обратной связи в живых системах (А. А. Богданов, П. К. Анохин и др.). В дальнейшем в связи со становлением кибернетики её биол. направление сформировалось в науку об общих закономерностях управления и связи в биологических системах, о процессах хранения, передачи и переработки информации в этих системах и способах её кодирования (Н. Винер, А. А. Ляпунов, И. И. Шмальгаузен). Дифференциация биологических наук привела к делению К. б. на ряд самостоят, разделов (нейрокибернетика, физиологическая кибернетика, математическая генетика, математическая экология, математическая биофизика и т. п.). Естественная иерархия живых систем определяет иерархию объектов, изучаемых К. б. Со структурно-функциональной и информационной точки зрения всё многообразие живого может быть подразделено на 4 главных уровня: молекулярно-генетический (клеточный), онтогенетический (организменный), популяционно-видовой и биогеоценотический, или биосферный. Для каждого из этих уровней характерны свои способы кодирования и переработки информации, свои системы управления и связи и их иерархии. На молекулярно-генетическом уровне осн. внутриклеточные управляющие системы (хромосомы и нек-рые др. органоиды) осуществляют ауторепродукцию клеток и передают наследственную информацию от поколения к поколению. Расшифровка наследственной информации и её реализация происходят на следующем уровне— онтогенетическом. Онтогенез организмов определяется согласованной реализацией наследственной информации за счёт работы управляющих систем особи. На популя-ционном уровне происходит процесс изменения и закрепления наследственной информации, приводящей к образованию пусковых механизмов эволюции, дифференциации, возникновению адаптации, видообразованию и в конечном счёте — к эволюционному прогрессу. На биогео-ценотическом уровне популяции разных видов образуют сообщества, находящиеся в сложных взаимоотношениях как между собой, так и со средой. Т. о., биосфера — это иерархически организованная система объектов разных уровней организации, каждый из к-рых может быть расчленён на объекты более низкого уровня; между всеми объектами системы происходит объединяющий их обмен энергией, веществом и информацией. Для рассмотрения конкретных биол. систем как кибернетических необходимо специфическое имитационное моделирование, при к-ром следует отвлечься от многих спец. свойств системы (размеров, способов формирования сигналов и т. п.), но отразить в модели такие типичные для данной системы особенности, к-рые связаны с её функционированием, структурой, передачей и преобразованием информации. Поэтому для К. б. особенно существенны понятия структуры, законов функционирования и критериев функционирования системы, причём её структура определяется характером связей между элементарными единицами системы. Описание функционирования системы задаётся функциями, определяющими изменения состояния её элементов, задающими выходные сигналы и команды на изменения структуры. И, наконец, поскольку К. б. имеет дело с управляющими системами, необходимо задать критерий (или цель) управления. Это может быть поддержание гомеостаза системы, оптимизация некоторой её функции или приспособление к меняющейся среде. Необходимо заметить, что для многих биологических систем понятие цели управления не определено (напр., что является целью эволюции?). Поэтому зачастую задание критерия или цели управления является лишь удобным приёмом, позволяющим построить замкнутую модель при недостатке конкретной информации. Исследование простых систем может быть проведено средствами классической математики. Для сложных систем, с к-рыми обычно приходится иметь дело в биологии, эти методы оказываются, как правило, непригодными. Эффективное исследование таких систем, состоящих из большого количества элементов с разнообразными и нерегулярными связями между собой, не сводящимися к простым закономерностям, классическими дедуктивными методами оказывается невозможным. Поэтому в качестве основного метода исследования сложных систем в К. б. используют метод вычислительных экспериментов на ЭВМ, к-рый с сер. 20 в. стал новым методом научного познания. Вычислительный эксперимент основан на использовании т. н. имитационных моделей, являющихся переложением на машинный язык описаний моделируемых процессов. Во многих случаях (напр., при исследовании экологических систем) этот метод единственно возможен, т. к. натурные эксперименты часто неосуществимы или неоправданно рискованны. В последние годы термин «биологическая кибернетика» употребляется реже, в основном по отношению к процессам управления в живых системах. Многие проблемы, к-рые ранее рассматривали в рамках К. 6., стали относить к сфере системного анализа или информатики (в приложении к биологии). (см. БИОЛОГИЧЕСКИЕ СИСТЕМЫ).

    .

  5. Источник: Биологический энциклопедический словарь