«Приближение и интерполирование функций»

Приближение и интерполирование функций в словарях и энциклопедиях

Значение слова «Приближение и интерполирование функций»

Источники

    Большая Советская энциклопедия

    раздел теории функций, посвященный изучению вопросов приближённого представления функций.

    Приближение функций — нахождение для данной функции fфункции g из некоторого определённого класса (например, среди алгебраических многочленов заданной степени), в том или ином смысле близкой к f, дающей её приближённое представление. Существует много разных вариантов задачи о приближении функций в зависимости от того, какие функции используются для приближения, как ищется приближающая функция g, как понимается близость функций f и g. Интерполирование функций — частный случай задачи приближения, когда требуется, чтобы в определённых точках (узлах интерполирования) совпадали значения функции f и приближающей её функции g, а в более общем случае — и значения некоторых их производных.

    Для оценки близости исходной функции f и приближающей её функции g используются в зависимости от рассматриваемой задачи метрики (См. Метрика) различных функциональных пространств. Обычно это метрики пространств непрерывных функций С и функций, интегрируемых с р-й степенью, Lp, р1, в которых расстояние между функциями f и g определяется (для функций, заданных на отрезке [а, b]) по формулам

    и

    Наиболее часто встречающейся и хорошо изученной является задача о приближении функций полиномами, т. е. выражениями вида

    akφk (x),

    где (φ1,..., φn—заданные функции, a a1,..., an произвольные числа. Обычно это алгебраические многочлены

    akxk

    или тригонометрические полиномы

    а0 + ak coskx+bk sinkx).

    Рассматриваются также полиномы по ортогональным многочленам (См. Ортогональные многочлены), по собственным функциям краевых задач и т.п. Другим классическим средством приближения являются рациональные дроби P(x)/Q(x), где в качестве Р и Q берутся алгебраические многочлены заданной степени.

    В последнее время (60—70-е гг. 20 в.) значительное развитие получило приближение т. н. сплайн-функциями (сплайнами). Характерным их примером являются кубические сплайн-функции, определяемые следующим образом. Отрезок [a, b] разбивается точками a=x0 x1 ...xn =b, на каждом отрезке [xk, xk+1] кубическая сплайн-функция является алгебраическим многочленом третьей степени, причём эти многочлены подобраны так, что на всём отрезке [а, b] непрерывны сама сплайн-функция и её первая и вторая производные. Оставшиеся свободными параметры могут быть использованы, например, для того чтобы сплайн-функция интерполировала в узлах xk приближаемую функцию. Улучшение приближения достигается за счёт увеличения числа узлов xkправильного их расположения на отрезке [а, b]. Сплайн-функции оказались удобными в вычислительной математике, с их помощью удалось решить также некоторые задачи теории функций.

    Приближённые представления функций, а также сами функции на основе их приближённых представлений изучает теория приближений функций (употребляются также названия теория аппроксимации функций и конструктивная теория функций). К теории приближений функций обычно относят также задачи о приближении элементов в банаховых и общих метрических пространствах.

    Теория приближений функций берёт начало от работ П. Л. Чебышева. Он ввёл одно из основных понятий теории — понятие наилучшего приближения функции полиномами и получил ряд результатов о наилучших приближениях. Наилучшим приближением непрерывной функции f(x)полиномами akφk (x) в метрике С называется величина

    En(f)c= min || f - kφk (x)||c,

    где минимум берётся по всем числам а1,..., an. Полином, для которого достигается этот минимум, называется полиномом наилучшего приближения (для других метрик определения аналогичны). Чебышев установил, что наилучшее приближение функции xn+1 на отрезке [—1, 1] в метрике С алгебраическими многочленами степени n равно 1/2n, а многочлен наилучшего приближения таков, что для него

    xn+1 - n) cos (n+ 1) arccosx.

    Следующая теорема Чебышева указывает характеристическое свойство полиномов наилучшего приближения в пространстве непрерывных функций: алгебраический многочлен f в метрике С [—1, 1], если существуют n+ 2 точки -1 ≤ x1 <>x2 <>xn+2 ≤ 1, в которых разность f(x)—2

    Одним из первых результатов теории приближений является также теорема Вейерштрасса, согласно которой каждую непрерывную функцию можно приблизить в метрике С как угодно хорошо алгебраическими многочленами достаточно высокой степени.

    С начала 20 в. началось систематическое исследование поведения при n→ ∞ последовательности En(f)— наилучших приближений функции f алгебраическими (или тригонометрическими) многочленами. С одной стороны, выясняется скорость стремления к нулю величин En(f) в зависимости от свойств функции (т. н. прямые теоремы теории приближений), а с другой — изучаются свойства функции по последовательности её наилучших приближений (обратные теоремы теории приближений). В ряде важных случаев здесь получена полная характеристика свойств функций. Приведём две такие теоремы.

    Для того чтобы функция f была аналитической на отрезке (т. е. в каждой точке этого отрезка представлялась степенным рядом, равномерно сходящимся к ней в некоторой окрестности этой точки), необходимо и достаточно, чтобы для последовательности её наилучших приближений алгебраическими многочленами выполнялась оценка

    En(f)cAq n,

    где q А — некоторые положительные числа, не зависящие от n (теорема С. Н. Бернштейна).

    Для того чтобы функция f периода 2π имела производную порядка r, r= 0, 1,2,..., удовлетворяющую условию

    |f(r)(x+h) - f(r)(x)| ≤ M|h|α,

    0 М —некоторое положительное число, или условию

    |f(r)(x+h) - 2f(r)(x) + f(r)(x - h)| ≤ M|h|α

    (в этом случае α = 1), необходимо и достаточно, чтобы для наилучших приближений функции f тригонометрическими полиномами была справедлива оценка

    Еп(f)cА/n r+α,

    где А — некоторое положительное число, не зависящее от n. В этом утверждении прямая теорема была в основном получена Д. Джексоном (США), а обратная является результатом исследований С. Н. Бернштейна, Ш. Ж. Ла Валле Пуссена и А. Зигмунда (США). Характеристика подобных классов функций, заданных на отрезке, в терминах наилучших приближении алгебраическими многочленами оказалась невозможной. Её удалось получить, привлекая к рассмотрению приближение функций с улучшением порядка приближения вблизи концов отрезка.

    Возможность характеризовать классы функций с помощью приближений их полиномами нашла приложение в ряде вопросов математического анализа. Развивая исследования по наилучшим приближениям функций многих переменных полиномами, С. М. Никольскийпостроил теорию вложений важных для анализа классов дифференцируемых функций многих переменных, в которой имеют место не только прямые, но и полностью обращающие их обратные теоремы.

    Для приближений в метрике L2 полином наилучшего приближения может быть легко построен. Для других пространств нахождение полиномов наилучшего приближения является трудной задачей и её удаётся решить только вотдельных случаях. Это привело к разработке разного рода алгоритмов для приближённого нахождения полиномов наилучшего приближения.

    Трудность нахождения полиномов наилучшего приближения отчасти объясняется тем, что оператор, сопоставляющий каждой функции её полином наилучшего приближения, не является линейным: полином наилучшего приближения для суммы f+g не обязательно равен сумме полиномов наилучшего приближения функций f и g. Поэтому возникла задача изучения (по возможности простых) линейных операторов, сопоставляющих каждой функции полином, дающий хорошее приближение. Например, для периодической функции f(x) можно брать частные суммы её ряда Фурье Sn (f, х). При этом справедлива оценка (теорема А. Лебега)

    ||f - Sn (f)||c≤ (Ln + 1) En(f)c,

    где Ln числа, растущие при n∞ как (4/π2) lnn. Они получили название констант Лебега. Эта оценка показывает, что полиномы Sn(f) доставляют приближение, не очень сильно отличающееся от наилучшего. Подобная оценка имеет место и для приближений интерполяционными тригонометрическими полиномами с равноотстоящими узлами интерполирования, а также для приближений интерполяционными алгебраическими многочленами на отрезке [-1, 1] с узлами , k=1, 2,..., n, т. е. в нулях полинома Чебышева cosn arccosx. Для основных встречающихся в анализе классов функций известны такие линейные операторы, построенные с помощью рядов Фурье или на основе интерполяционных полиномов, что значениями этих операторов являются полиномы, дающие на классе тот же порядок убывания приближений при n→ ∞, что и наилучшие приближения.

    А. Н. Колмогоров начал изучение нового вопроса теории приближений — задачи о нахождении при фиксированном n такой системы функций φ1,..., φn, для которой наилучшие приближения функций заданного класса полиномами

    Теория приближений функций является одним из наиболее интенсивно разрабатываемых направлений в теории функций. Идеи и методы теории приближений являются отправной точкой исследования в ряде вопросов вычислительной математики. С 1968 в США издаётся специализированный журнал «Journal of Approximation Theory».

    См. также Приближение функций комплексного переменного.

    Лит.: Монографии. Ахиезер Н. И., Лекции по теории аппроксимации, 2 изд., М., 1965; Гончаров В. Л., Теория интерполирования и приближения функций, 2 изд., М., 1954; Натансон И. П., Конструктивная теория функций, М. — Л., 1949; Никольский С. М., Приближение функций многих переменных и теоремы вложения, М., 1969; Тиман А. Ф., Теория приближения функций действительного переменного, М., 1960.

    Обзоры. Математика в СССР за тридцать лет. 1917—1947, М. — Л., 1948, с. 288—318; Математика в СССР за сорок лет. 1917—1957, т. 1, М., 1959, с. 295—379; История отечественной математики, т. 3, К., 1968, с. 568—588.

    С. А. Теляковский.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.