«Наследственность»

Наследственность в словарях и энциклопедиях

Значение слова «Наследственность»

Источники

  1. Словарь Брокгауза и Ефрона
  2. Большая Советская энциклопедия
  3. Словарь форм слова
  4. Толковый словарь Ожегова
  5. Малый академический словарь
  6. Толковый словарь Ушакова
  7. Толковый словарь Ефремовой
  8. Большой энциклопедический словарь
  9. Современная энциклопедия
  10. Психологический словарь
  11. Сексологическая энциклопедия
  12. Строительный словарь
  13. Большой англо-русский и русско-английский словарь
  14. Англо-русский словарь технических терминов
  15. Русско-английский словарь биологических терминов
  16. Русско-английский словарь математических терминов
  17. Большой немецко-русский и русско-немецкий словарь
  18. Большой немецко-русский и русско-немецкий словарь
  19. Большой французско-русский и русско-французский словарь
  20. Большой испано-русский и русско-испанский словарь
  21. Большой итальяно-русский и русско-итальянский словарь
  22. Сельскохозяйственный словарь-справочник
  23. Научно-технический энциклопедический словарь
  24. Медицинская энциклопедия
  25. Биологический энциклопедический словарь
  26. Русско-китайский словарь: пресса, интернет, радио, телевидение
  27. Энциклопедия Кольера
  28. Философская энциклопедия
  29. Энциклопедический словарь
  30. Начала современного естествознания
  31. Сводная энциклопедия афоризмов
  32. Русско-английский политехнический словарь
  33. Русско-украинский политехнический словарь
  34. Русско-украинский политехнический словарь
  35. Естествознание. Энциклопедический словарь
  36. Энциклопедия социологии
  37. Социологический словарь
  38. Толковый словарь по социологии
  39. Большой Энциклопедический словарь

    Словарь Брокгауза и Ефрона

    (физиол.) — Под Н. разумеется способность организмов передавать свои свойства и особенности от одного поколения в другое, покуда длится самый процесс размножения. До сих пор нет не только удовлетворительной теории Н., которая объясняла бы механически самый процесс передачи наследственных свойств, но доселе не установлено с точностью, какие особенности организма передаются потомству, какие нет. Одни ученые принимают, что не только особенности, приобретенные путем упражнения органов или точнее под влиянием их более или менее продолжительной функции (откуда эти особенности и называются функциональными), но даже и чисто механические повреждения организма родителей передаются по наследству потомству; другие безусловно отрицают передачу не только механических повреждений, но и функциональных особенностей, а также и большинства тех изменений, которые совершаются под влиянием климата и других внешних воздействий. Так как опытные данные почти отсутствуют, то для ознакомления с современным состоянием вопроса о Н. наиболее удобным приемом будет изложение главнейших гипотез, предложенных для объяснения явлений Н., в их исторической последовательности. Уже в греческую эпоху, когда физиологии почти не существовало, имелись два противоположных объяснения явлений Н. Гиппократ думал, что "семя", как тогда выражались, как мужское, так и женское, собирается со всех частей животного, и что дефекты, вызванные, например, давлением на черепе, вследствие этого могут передаваться по наследству. С аналогичной идеей мы встретимся у Дарвина. Аристотель отвергает эту гипотезу и полагает, что сходство детей с родителями есть неизбежное следствие некоей непонятной причины и что уклонение от этого сходства — результат внешних влияний.

    В XVII и XVIII вв., после того как было установлено, что зародыш берет начало, с одной стороны, от яйца ("все живое из яйца", — провозгласил Гарвей), а с другой стороны, было открыто (студентом де Гаммом и Левенгуком) присутствие "семенных животных" (animalcula), как тогда называли живчика в семени человека, гипотезы для объяснения Н. должны были принять другую окраску. С одной стороны, целая школа ученых, как Сваммердам, Мальпиги, Левенгук, Галлер, Бонне, Спаланцани, защищала гипотезу заранее преформированных зародышей, согласно коей все отдельные части будущего организма уже заранее уготованы в зародыше, содержащем в себе зародыши будущих поколений, также вложенными друг в друга в готовом виде. Развитие по этому представлению есть не более как развертывание или эволюция ряда вложенных одно в другое поколений. Вопрос сводится к тому, где вложены эти зародыши: в яйце или в живчике? Овулисты, как Галлер, говорили, что зародыши вложены в яйце (ovum), a анималькулисты, пораженные произвольной подвижностью живчиков и их внешним сходством с животным организмом, думали, что яйцо есть не более как питательный субстрат, в котором развиваются живчики (animalcula). Зародыши, следовательно, вложены в живчиках. В то время как Галлер и другие преформисты или иначе эволюционисты утверждали, что "ни одна часть тела животного не создана раньше другой, а все были созданы сразу", К. Ф. Вольф и его последователи защищали учение, получившее название эпигенезиса и гласившее, что все части организма постепенно развиваются из вещества зародыша, первоначально однородного. Если мы не видим вложенных в яйцо или живчик зародышей, то, следовательно, они не существуют. Учение это оказалось наиболее плодотворным: если зародыши не созданы заранее, то, следовательно, надлежит посмотреть, как они постепенно формируются, следовательно, создается эмбриология или наука о развитии, отцом которой и считают К. Ф. Вольфа.

    Затем, мало-помалу, начинают проникать в науку из философии взгляды, что животный организм изменчив и потому возникает вопрос, под влиянием чего изменяются организмы в течение веков, или, иначе, какие из этих изменений наследственны. Здесь мы видим несколько направлений. Одни, как Бюффон, Ж. Сент-Илер и др., говорят, что прямое воздействие климатических условий может заставить животное измениться. Бюффон, пораженный сходством американской фауны с таковой Старого Света, считал население Америки за "выродившееся" (dénaturé), под влиянием новых условий, потомство населения Старого Света. Эразм Дарвин и Ламарк полагали, что нужды организма заставляют упражнять и развивать его органы, и результаты такого усиленного упражнения, например удлинение шеи жирафа, вытягивавшейся для доставания высоко сидящей кроны пальмовых деревьев, передаются потомству и укрепляются за ним. Впрочем, Ламарк, помимо изменений вследствие упражнения, признавал особый высший план, который в общих чертах осуществляется развивающимся организованным миром, но не все условия, по его мнению, этим планом предусмотрены. Также и Эразм Дарвин признавал за живой материей "способность совершенствоваться в силу своей собственной врожденной деятельности". Блюменбах пошел еще далее; он полагал, что организмам свойственно некое формирующее стремление (nisus formativus), заставляющее бесструктурные вещества принимать определенную форму и являющееся причиной регенерации, или способности животного возобновлять утерянные части. С этой идеей — идеей, так сказать, одухотворения зародышевого вещества, мы встречаемся до известной степени у Гёте, видевшего в природе стремление осуществлять некий идеальный первообраз. "Форма в тайне хранит первообраз", — говорит он. С аналогичной же идеей мы встретимся позже и у Негели. Успехи эмбриологии в XIX в. создали возможность более научных гипотез. Было доказано, что как живчик, так и яйцо представляют вполне равнозначащие клетки, а еще позже было доказано, что оплодотворение сводится к слиянию двух клеток, т. е. их плазмы и их ядер.

    Чарльз Дарвин первый пытался объяснить явления наследственности своей гипотезой пангенезиса. Причину явлений наследственности Дарвин ищет уже в молекулярном составе половых клеток, предполагая, что половые клетки суть комплекс мельчайших частиц, отделившихся от всех клеток организма. Если каждая подобная частица есть носительница всех свойств той клетки, от которой она произошла, то половая клетка будет носить в себе в скрытом состоянии свойства всех клеток организма. Эта гипотеза, на которую Дарвин смотрел как на временную, в настоящее время имеет только историческое значение. Можно доказать, что незначительная величина половых клеток прямо противоречит этой гипотезе, хотя бы каждая предполагаемая частица не превосходила своей величиной минимальной белковой молекулы. Что касается вопроса о том, какие особенности наследуются, то Дарвин допускал, что не только изменения функциональные и климатические, но даже в исключительных случаях механические повреждения наследуются, но всем этим факторам он отводил второстепенное значение. Главную роль он приписывал мелким, колеблющимся изменениям, которые возникают частью под непосредственным воздействием внешних условий, а частью под влиянием этих же условий, но действующих косвенно, через половую систему. Эти изменения и дают материал для деятельности подбора, когда переживают особи с изменениями, наиболее полезными для вида, и вымирают особи с изменениями, невыгодными для вида. Первоначальный импульс к развитию, по Дарвину, лежит все-таки вне самих организмов — во внешних условиях. Организмы не обладают никаким стремлением к прогрессу, ибо изменения происходят то в одну, то в другую сторону безразлично.

    Обратимся к гипотезе известного ботаника Негели, пытавшегося также объяснить явления прогресса в органическом мире молекулярно-физиологическими изменениями плазмы. Чрезвычайное несоответствие в величине мужских и женских клеток, нисколько не влияющее на одинаково постоянную и в общем равносильную передачу особенностей как отца, так и матери, заставило Сакса и Негели сделать допущение, что не вся плазма половой клетки есть носительница наследственных свойств, а только некоторая часть ее. Негели назвал эту часть идиоплазмой, а прочую часть, имеющую значение питательного запаса — стереоплазмой. Если идиоплазма носительница наследственных свойств организма, то каждое такое свойство стоит в причинной связи с определенным молекулярным построением самой идиоплазмы. Негели представляет идиоплазму в виде сети параллельных рядов микроскопически невидимых телец или мицелл, причем каждое изменение в расположении мицеллярных рядов соответствует тому или другому наследственному изменению свойств организма. Чем выше организм, чем разнообразнее и многочисленнее его наследственные свойства, тем сложнее строение идиоплазматической сети. Внешние условия влияют на организм, но чаще всего изменения, возникшие под их влиянием, существуют только, покуда существуют сами условия. Правда, внешние влияния при известной степени напряжения и концентрации в течение долгого времени могут вызвать наследственные изменения, но эти наследственные изменения носят всегда характер приспособления к среде и условиям жизни. Главный же импульс прогрессивных изменений лежит, вопреки Дарвину, в самих организмах, в свойстве идиоплазмы к прогрессивному совершенствованию под влиянием внутреннего побуждения. Для объяснения передачи изменений, происходящих в организме по наследству, Негели допускает, что все части идиоплазмы организма находятся в непрерывной связи, так что всякое, даже строго локализированное изменение мицеллярных рядов произведет перетасовку мицелл во всем организме, а следовательно, и в половых клетках. Поэтому всякое изменение мицеллярных рядов неизбежно вызовет изменение свойств следующего поколения, хотя иногда эти изменения могут долгое время, даже в течение нескольких поколений, оставаться в скрытом, летаргическом состоянии, но при благоприятных обстоятельствах могут проявляться со всей силой. Оплодотворение, т. е. смешение мицеллярных рядов отца и матери, а равно и скрещивание, т. е., смешение мицеллярных рядов двух видов, особенно способствуют проявлению зачатков, находившихся в скрытом состоянии. Самый рост организма есть процесс внедрения новых мицелл без изменения в расположение рядов, и поэтому не ведет к изменению свойств следующего поколения. Но малейшее изменение в расположении выражается в появлении или исчезновении того или другого признака; а так как это изменение распространяется каждый раз на все клетки организма, то потенциально каждая клетка последнего может произвести новую особь или новую часть тела. Главнейшее отличие биологической стороны этой теории от таковой Дарвина лежит в принципе внутреннего импульса к прогрессу, тогда как внешние влияния вызывают только явления приспособления, а борьба за существование имеет чисто отрицательное значение в смысле фактора, способствующего вымиранию промежуточных стадий. Молекулярная сторона теории Негели отличается от Дарвиновой допущением потенциальной идентичности свойств всех клеток организма при условии их взаимной связи.

    Чтобы убедиться в неудобстве воззрений Негели, стоит приложить их к какому-нибудь конкретному случаю. Вейсман берет для примера группу китов, имевших несомненно предками наземные формы. Нет ни одной системы органов у китов, которая не несла бы очевидных черт приспособления к водной жизни. Стоит нам мысленно отнять у китов эти характерные черты, вызванные приспособлением, получается "не более как общая схема млекопитающего; но ведь она была представлена и ранее появления китов их предками". Отсюда должно заключить, что внутреннее стремление к совершенствованию не принимало никакого участия в создании китообразных, а последнее всецело относится на долю внешних условий и приспособление к ним. В животном царстве крайне многочисленны случаи ретроградации или упрощения животных, особенно под влиянием паразитизма, — явление, возможное только при условии приостановки деятельности этого внутреннего импульса. Допущение этой внутренней силы вносит большую путаницу в понимание отдельных фактов и также мало помогает общему разумению прогресса, как и старое натурфилософское воззрение на этот предмет Ламарка, Эразма Дарвина и Блюменбаха. С другой стороны, для торжества гипотезы Негели необходимо доказать взаимную связь всех клеточных элементов животного организма, тогда как целый ряд соображений говорит за то, что идиоплазма Негели представлена ядерным веществом. Если же допустить, что идиоплазма представлена ядерным веществом, то отсутствие всякой связи между отдельными участками идиоплазмы, то есть ядрами клеток, делается очевидным, и очевидна также бездоказательность одного из главных положений Негели. В настоящее время большинство биологов склоняется именно к тому мнению, что носителем наследственных свойств является красящееся вещество ядра или хроматин. Самый процесс оплодотворения сводится к слиянию хроматина мужского и женского. Точно так же рядом наблюдений доказано, что яйцо перед оплодотворением выделяет часть своего хроматина в виде редукционных пузырьков, а равно и живчик появляется с неполным количеством хроматина. Дело в том, что хроматин в ядре расположен в виде особых палочек или хромосом, которые при делении клетки путем весьма сложного процесса делятся пополам. Таким образом, если яйцо содержало 4 такие хромосомы, то все клетки организма, как производные яйца — этой исходной клетки — будут содержать тоже по 4 хромосомы. Таким образом число хромосом является более или менее постоянным для данного вида. Но яйцо после выделения руководящих пузырьков, а равно и каждый живчик имеют вдвое меньшее число хромосом, чем яйцо оплодотворенное. При оплодотворении, когда мужские и женские хромосомы сливаются, число их доводится до нормального. Если бы не было редукции хроматина, тогда понятно, что количество хромосом при каждом оплодотворении увеличивалось вдвое и возросло бы в течение ряда поколений до бесконечности. Опираясь на эти данные, Вейсманн и построил свою гипотезу, но при этом надо упомянуть, что ранее его Гальтон высказал предположение, что половые клетки, дающие при развитии организм, плюс содержащиеся в этом организме половые клетки нового поколения, которые опять дадут организм, плюс половые клетки следующего поколения и т. д., являются как бы бессмертной нитью, связующей ряды смертных поколений. Стоит допустить, как это делает Вейсман, что ядерное вещество половых клеток, являющееся носителем наследственных свойств, передается из одного поколения в другое без коренного изменения, и станет понятен механизм передачи наследственных свойств. Известное постоянство молекулярного строения ядерного вещества половой клетки, или зародышевой плазмы, по терминологии Вейсманна, есть необходимое условие постоянства наследственной формы. Не надо смешивать понятия идиоплазмы Негели с зародышевой плазмой Вейсманна. Последняя есть идиоплазма половых клеток, а идиоплазма прочих клеток организма, хотя и есть производное той же зародышевой плазмы, но является значительно упрощенной. Зародышевая плазма заключает в себе свойства идиоплазмы всех будущих клеток организма. Свойства эти распределяются впоследствии между отдельными клетками организма, что обуславливается распределением между этими клетками различных частиц зародышевой плазмы. Приобретенные под влиянием внешних воздействий признаки, по Вейсманну, вовсе не передаются. Тысячелетия отдельные народности говорят все тем же, хотя и изменяющимся языком, однако, дети остаются все-таки одинаково и безразлично восприимчивы к изучению языка своего или иноземного. Тысячелетия самки многих животных из поколения в поколение лишаются девственной плевы, однако, потомство по-прежнему родится с нею. Толчок к возникновению новых особенностей дается перетасовкой молекул при оплодотворении, т. е. при слиянии двух зародышевых плазм.

    Возьмем конкретный случай кажущейся передачи признаков, приобретенных долговременным упражнением, например, сильно развитого крыла птицы. Казалось бы, тут имеем пример передачи признака, не унаследованного от родителей. Но, по Вейсманну, в силу указанной перетасовки молекул при оплодотворении, появляются в потомстве данной пары особи с наклонностью к дальнейшему развитию крыла рядом с особями, лишенными этой наклонности, или даже с особями, склонными к ослаблению крыла. Между тем борьба за существование делает свое дело. Первые особи выживают, вторые и третьи гибнут, и так из поколения в поколение, а в результате — постепенное, но неуклонное развитие крыла. Возьмем обратный пример. Крыло птицы при одомашнении слабеет. Этой судьбе подвержены все органы, остающиеся без употребления. По толкованию Вейсманна, здесь происходит обратное явление. Родятся особи с более сильными и с более слабыми крыльями, как это имело место и в натуральных условиях, но там борьба за существование устраняла последних. При одомашнении этот могучий фактор перестает действовать. Переживают одинаково особи со слабыми и с сильными крыльями, одинаково успешно скрещиваются и плодятся. Отсюда постепенное ослабление крыла у потомства, ослабление, кажущееся на первый взгляд вызванным неупотреблением, а на самом деле обусловленное приостановкой борьбы за существование. Этот последний принцип, объясняющий атрофию органов, получил название панмиксии. Возьмем еще один пример. Известно, что у муравьев, пчел и других, кроме самцов и самок, имеются рабочие особи, т. е. самки с недоразвитыми половыми органами, нормально не дающие потомства. Тем не менее существенная роль в жизни общины принадлежит именно рабочим. Есть некоторые инстинкты, например рабовладельческий, которые по самой своей сущности могли возникнуть только после обособления в общине рабочей стазы. Но эти инстинкты весьма часто распространяются только на рабочих и могли возникнуть только у рабочих. Как эти инстинкты могли передаться потомству, в воспроизведении коего рабочие не принимают участия? Что они не передаются через подражание, это доказывается случаями основания новой общины иногда одной самкой, как показал Леббок, самкой, которая, сама будучи лишена многих из этих инстинктов, дает потомство, обладающее ими. По Вейсманну, означенные инстинкты суть результат молекулярного изменения зародышевой плазмы, которое распространяется и на самцов, и на самок, и на рабочих. Но у половых особей эти инстинкты остаются в скрытом, летаргическом состоянии, а у рабочих получают полное развитие. Всякое изменение зародышевой плазмы, ведущее к полезному для вида изменению инстинкта отдельных рабочих особей, дает перевес данному виду в борьбе за существование и, следовательно, дает шансы на переживание потомства, обладающего именно этими изменениями.

    Вейсманн вместе с большинством биологов принимает, что клетка не есть конечная единица организованного мира. Клетка состоит из комплекса гипотетических единиц, способных к питанию, раздражению и размножению делением, а именно из биофор. Из таких же биофор составлено и ядерное вещество клетки, но так как они определяют наследственные свойства клетки, то Вейсманн называет их детерминантами. На основании разного рода соображений Вейсманн принимает, что детерминанты складываются в иды, а иды в иданты, каковые и представлены хромосомами. При удалении части идантов во время редукции хроматина могут произойти весьма разнообразные комбинации их, чем и обуславливается несходство между собой детей одной и той же пары. Когда детерминанты отца и матери соединяются в оплодотворенном яйце, то между ними возникает своего рода борьба, и потомок проявляет особенности отца или матери, смотря по тому, на стороне каких детерминантов окажется перевес. Точно так же при редукции хроматина могут возникнуть такие комбинации, когда дедовские или прадедовские детерминанты окажутся преобладающими в сравнении с родительскими, и тогда возникают условия для проявления атавизма, т. е. сходства с прародительскими формами. Таким образом, оплодотворение, по Вейсманну, является источником тех вариаций, которые необходимы для деятельности подбора. Гипотеза Вейсманна является в сущности преформистской: свойства зародыша заранее предопределены находящимися в оплодотворенном яйце детерминантами, а равно предопределены и все особенности будущего поколения.

    Весьма сильные возражения вызвала гипотеза Вейсманна со стороны Спенсера и Гертвига. Спенсер восстал главным образом на защиту наследственного характера функциональных особенностей. Вейсманн совершенно отрицает передачу по наследству механических повреждений, объясняя имеющиеся в литературе данные неточностью наблюдения или случайным совпадением. Опыты, произведенные Вейсманном в течение ряда поколений над крысами, которым он резал хвосты, не показали возможности подобной передачи. Точно так же Вейсманн, как мы видели, отрицает возможность наследования функциональных особенностей, а из климатических, по его мнению, передаются потомству лишь те, которые влияют на самые половые клетки. По мнению Спенсера, в пользу передачи функциональных особенностей говорит развитие сопряженных признаков, т. е. таких, развитие коих должно идти всегда параллельно. Увеличение веса рогов у оленя неизбежно должно сопровождаться утолщением стенки черепа, увеличением крепости затылочной связки и более сильным развитием мускулатуры, ибо иначе рога оказались бы непосильной тяжестью, а это изменение стоит, в свою очередь, в связи с более сильным развитием остистых отростков шейных позвонков, к которым мышцы и связки прикрепляются и т. д. Очевидно, что вариация, в желательном для интересов животного направлении, одного из перечисленных органов ровно ни к чему не приведет. Необходимо их одновременное изменение и в одном и том же направлении. А такое изменение, по мнению Спенсера, возможно только при допущении Н. функциональных особенностей: стенки черепа стали толще оттого, что рога стали тяжелее, и увеличение тяжести головы вызвало усиленную функцию связок и мышц, обусловившую более сильное их развитие, и т. д., причем все эти изменения передались по наследству. Вейсманн думает, что и эти признаки могут быть объяснены подбором и борьбой за существование, но не между отдельными особями, а между отдельными клетками организма. Идея подобной борьбы была разработана немецким биологом Ру (Roux), и чтобы выяснить ее, возьмем конкретный случай, например соотношение между мускулами и гребнями на костях, к которым они прикрепляются. Расположение гребней, конечно, обуславливается развитием тех мышц, которые к ним прикрепляются. Действие мускула на кость в том месте, где эти органы соприкасаются, имеет, вероятно, раздражающий характер, что и вызывает усиленный рост кости в данном месте, т. е. образование гребня. Точно так же мышца, чаще упражняемая, сильно растет и увеличивается. Более сильное развитие мышцы вызывает более сильное развитие гребня. По Спенсеру, передается по наследству результат усиленного упражнения мускулов и образование гребней на костях. По Вейсманну — ни то, ни другое; наследственной оказывается способность костной ткани отвечать известным образом на раздражение, вызываемое мускулом, и способность самих мускулов отвечать на упражнение усиленным ростом. Но в каждом отдельном случае усиленный рост мускула вызывается действующим на него раздражением и в свою очередь вызывает разрастание гребня. Все признаки, представляющие известное соответствие с другими признаками или кажущуюся целесообразность, могут быть объяснены при помощи этого принципа. Так, например, то целесообразное строение костей, которое было констатировано Германом Мейером, находит себе объяснение на этой почве. Губчатое вещество, выполняющее кости, расположено по определенному архитектурному принципу, а именно: костные перекладины в этой губчатой массе расположены так, чтобы при наименьшей затрате материала придать кости наибольшую прочность по направлению наибольшего сопротивления. Раз действует на клетки какое-нибудь раздражение, в данном случае давление, то преобладание получают именно те клетки, которые под влиянием данного раздражения будут наиболее энергично питаться, а следовательно, расти и размножаться. Вследствие этого эти элементы и их потомки будут неизбежно скопляться в тех местах и по тем направлениям, где давление действует наиболее сильно. Наследственны во всех этих случаях не детали костной структуры, а способность ткани реагировать так, а не иначе на данное раздражение. Вейсманн потом пошел еще далее: кроме борьбы между клетками, он предполагает существование борьбы между идами, идантами и детерминантами. Возражения Гертвига были построены на иной почве. Одновременно с Вейсманном разработал свою гипотезу Де-Фрис, назвав ее межклеточным пангенезисом. Мы не будем излагать ее, но отметим, что главной идеей этой гипотезы является идея, которую принимал и Негели, а именно, что все клетки каждого организма совершенно тожественны между собой и если они образуют различные ткани и органы, то потому, что одни клетки проявляют одни свойства, а другие клетки — другие, смотря по условиям, а на самом деле все клетки тожественны между собой и с половыми. Наследственные свойства организмов представлены в половых клетках группами почек или пангенн. Пангенны могут быть в деятельном или летаргическом состоянии и находятся в ядре, но, выходя из ядра в плазму, определяют ее свойства. Это последнее допущение принимается и Вейсманном. Изменения организма обусловливаются или изменением числа пангенн, если изменения индивидуальны, или образованием новых пангенн, если эти изменения касаются видовых признаков. Перенесения пангенн из клеток тела в половые Де-Фрис безусловно отрицает.

    О. Гертвиг обратил внимание именно на основную идею этого воззрения и на факты, доказывающие тожество всех клеток организма. Кроме Гертвига и другие защитники этой тожественности, как Дриш, Гербст и др., собрали значительное число фактов в пользу своего воззрения, хотя, строго говоря, оно, так же, как и предположение Ру и Вейсманна, не является доказанным, т. е. мы не можем еще утверждать, что все клетки организма у каждого вида однородны, и равно не можем утверждать, что при каждом делении яйца происходит всегда обособление клеток с различными детерминантами, т. е. образование клеток разнородных, как думают Вейсманн и Ру. Различным исследователям удавалось, однако, получить, удаляя части разделившегося яйца, целое животное из1/2и1/4яйца, наконец удалось получить животное из1/8и даже1/16яйца! Следовательно, эта1/16обладала теми же свойствами, как и все яйцо, и следовательно, все16/16в сущности тожественны. Клетка эпидермиса бегонии, например, может произвести целое растение, следовательно, она сохраняет все способности половой клетки. Защитники однородности клеток организма, ставя развивающиеся яйца в искусственные условия, делали то, что одни и те же клетки производили в различных условиях различные органы — следовательно, не свойства клетки, говорят они, определяют ее судьбу, а её положение и окружающие условия. Всего понятнее подобные явления при опытах не развития из яйца, а при опытах над восстановлением органов. Известно, что у некоторых растений мы можем обрезок ствола заставить произвести наверху листья, а внизу корень. Но стоит перевернуть отрезок, и прежний верхний конец, став нижним, дает корни, а прежний нижний, став верхним, дает листья. Точно так же, если взять колонию нижних полипов, отрезать участок ее ствола и посадить в аквариуме в песок, то, в зависимости от положения этого ствола, верхний конец всегда начнет образовывать полипы, а нижний — корневидные придатки, служащие для прикрепления к почве. И это будет наблюдаться даже и в том случае, если верхний конец отрезка был у цельного животного нижним, а нижний — верхним. Точно так же у одиночных полипов и некоторых других животных, гораздо более высоко организованных (например, у асцидий), можно вызвать искусственным надрезом образование нового рта, с окружающими его щупальцами или другими придатками там, где этого рта нормально не полагается. Эти явления, получившие название гетероморфоза, показывают, по мнению Гертвига и др., что те или другие клетки дают начало полипам, корневидным придаткам, околоротовым щупальцам вовсе не потому, что они для этой цели предопределены заранее, а в силу условий, в которые они поставлены. Надо отметить, однако, что все животные, у которых наблюдаются явления гетероморфоза, принадлежат к числу таких, которые могут размножаться почками, т. е. отделять от себя участки тканей, дающие новых животных, а у таких животных Вейсманн допускает существование во всех клетках тела придаточной зародышевой плазмы, т. е. таких элементов, которые могут воспроизводить целый организм. Следовательно, явления гетероморфоза для теории Вейсманна не являются непреодолимыми.

    Эти факты, равно как и некоторые другие, приводимые защитниками однородности всех клеток организма, не стоят в прямом противоречии с гипотезой Вейсманна, но они требуют таких надстроек и осложнений к этой и без того слишком хитроумной махинации, что преимущества противоположного воззрения невольно бросаются в глаза. Очень может быть, что истина окажется на середине между обоими противоположными воззрениями и придется допустить, что на первых стадиях развития организмов происходят клетки совершенно однородные, а по мере дальнейшей дифференциации клеток наступает и такое деление их, при котором появляются клетки разнородные. Вопросы эти — вопросы будущего. Если, по воззрениям Гертвига и других, все дело сводится к условиям развития, то что же определяется наследственными свойствами клеток? Если все приходится на долю эпигенеза, то что же приходится на долю предобразования? На долю наследственных особенностей выпадает определить то, каким образом клетки отвечают на внешние условия и раздражения, ими вызываемые. Если на образование у растений корня внизу, а листьев наверху отрезка — влияет, очевидно, сила тяжести, как это можно доказать опытом, то от специфического строения вещества того или другого растения зависит, например, форма корня, распростирается ли он на поверхности, устремляется ли вглубь, растет ли он быстро или медленно, ветвится ли он так или иначе и т. п. К колонии полипов одинаково применимо это же рассуждение: свойства самого вещества полипа обусловливают то, что характеризует его, как такового, т. е. как индивида того или другого вида, подобно тому как свойства яйца или, лучше, его ядра определяют заранее вид животного, которое должно из этого яйца выйти. Такова попытка Гертвига и др. примирить два противоположных направления: эволюции и эпигенеза, заранее предопределенного развития и развития, стоящего в зависимости от условий, но и эта попытка не может считаться доказанной.

    Для полноты упомянем еще гипотезы Гааке и Эмери. Гааке является последователем чистого эпигенеза. Вопреки большинству биологов, он принимает, что наследственные свойства передаются не ядром, а плазмой, и так как большинство клеток организма в связи между собой, то возможна передача наследственных свойств, приобретенных организмом в течение жизни, половым клеткам, а следовательно, и потомству. Плазма клеток, по совершенно произвольному предположению Гааке, состоит будто бы из мельчайших кристаллов, названных им почками (die Gemmen) и складывающихся в комплексы — геммарии. Когда под влиянием внешних условий происходит смещение почек в геммариях, то оно распространяется и на другие клетки организма, и, распространившись на половые, становится наследственным. Эмери обратил внимание на то обстоятельство, что многие части организма, помимо своей непосредственной функции, выделяют в организм вещества, влияющие так или иначе на другие органы. Так, например, известно, что кастрация вызывает у человека приостановку роста бороды и усов, изменение голосовых связок, а у оленя прекращение периодической смены рогов. Удаление щитовидной железы вызывает ряд болезненных явлений, а удаление поджелудочной железы вызывает диабет. Но если мы животному, лишенному поджелудочной или щитовидной железы, перенесем часть этой или другой железы от другой особи, то болезненные явления исчезают: очевидно, что эти перенесенные в чужой организм кусочки желез, хотя и не могут функционировать, как целые железы, но все-таки они выделяют какие-то вещества, которые препятствуют развитию болезненных явлений, как семенники выделяют вещества, влияющие на волосы, рога и т. п. Подобные вещества могут влиять и на половые клетки. Известно, например, что противоболезненные прививки бактериальных ядов передаются по наследству, причем одни говорят, что только со стороны матери, а другие — и со стороны отца. Эмери считает свою гипотезу не более, как дополнением учения Вейсманна. Допуская, что организмы могут изменяться вследствие изменения зародышевой плазмы и изменений в комбинациях их, он считает нужным допустить присутствие в организмах цимоплазм различных сортов, т. е. жидких веществ, выделяемых органами и действующими химически на половые клетки, а именно на зародышевую плазму, но проявляется это действие только впоследствии, при дальнейшем развитии яйца.

    Таким образом, если механические повреждения родителей не передаются потомству, как это высказал еще Кант, то вопрос о передаче функциональных особенностей — далек от окончательного решения, а равно и не распутан вопрос об изменениях под влиянием климата. Мы имеем целый ряд гипотез, пытающихся объяснить передачу наследственных свойств, но ни одна из них не может считаться доказанной. Весьма вероятно, что будущая теория Н. примирит учение преформистское и эпигенетическое, как это пытается сделать О. Гертвиг.

    В. Шимкевич.

    Наследственность (псих.). — Н. физиологическая, как подлежащая непосредственному, сравнительно легкому наблюдению и даже опыту, в известных пределах не подлежит сомнению. Сходство черт лица, интонации голоса, походки детей и родителей, причем во всяком есть нечто индивидуальное, — общеизвестный факт. Передача совокупности характерных особенностей организма из рода в род, т. е. сохранение типа, свойственного целой расе, иногда многомиллионной, есть тоже факт везде и всегда наблюдаемый и бесспорный [Особенности, свойственные некоторым семействам, например, плодовитость (иногда в продолжение 5—6 поколений), долговечность и многие другие, приводятся часто в пример. В Англии общества страхования жизни собирают сведения о продолжительности жизни предков и их клиентов.]. Труднее было установить факты Н. психической, и мнения о ней еще до сих пор не имеют полной определительности. Известный Бокль, в своей "Истории цивилизации в Англии", не принимает Н. даже болезней (помешательства, самоубийства), а не только талантов. В прошедшем столетии Локк и Гельвециус (см.), в особенности последний, и не помышляли о наследственной передаче способностей; Гельвеций прямо полагал, что все люди способны достигнуть высшего развития, в зависимости от воспитания и других условий. В противоположность тому, многие думают, что талант, как и пороки, врожденные, что люди родятся поэтами, математиками, преступниками (Ломброзо, см.) и что воспитание бессильно изменить природные наклонности.

    Однако идея о Н. способностей мало-помалу возникла и развилась, и в недавнее время англичанин Гальтон (см.), приложив статистический метод к решению вопроса о Н., решил его в утвердительном смысле настолько основательно, что приобрел многих сторонников. Позднее его Декандоль во Франции, идя тоже статистическим путем, подкрепил выводы о Н. способностей по крайней мере в мире ученых. Материал для исследований Гальтон брал из лучших биографических словарей (между ними "Словарь современников" Ротледжа, "Жизнь судей" — Фосса); выбор людей выдающихся был сделан по возможности критически. Ограничиваясь лишь теми из англичан-современников, которым более 50 лет от роду, и сравнивая их число с числом остальных англичан (мужчин) того же возраста, автор нашел, что число избранной части выдающихся современников составляет 250 на 1000000 всех англичан того же возраста (что составит1/40%). Что касается до наиболее выдающихся или знаменитых людей, — таких он принимает только 1 на миллион и даже на несколько миллионов. Составляя списки таких людей и талантливых их предков, Гальтон руководился их репутацией, причем высказывает такое положение, что вообще какие бы то ни было препятствия не могут помешать даровитости выдвинуться, приводя примеры тому, что многие известные люди получили в молодости воспитание крайне неудовлетворительное или не соответствовавшее роду их таланта. Гальтон прежде всего занимается статистикой английских судей, принимая, что должность судьи в Англии есть достаточная гарантия даровитости человека, занимающего ее; его исследования простираются на промежуток времени с 1660 по 1865 г. Из 109 судей около1/3имели 1 или 2 выдающихся родственников, другая — от 2 до 4 и около трети же — 4 и более родственников и вообще близких; из этого он заключает, что отличительные качества судей (проницательность, находчивость, практичность) часто переходят в потомство, но в числе родственников находятся также поэты, врачи, военные. Ближайшие родственники весьма выдающихся судей сами более замечательны, чем родственники, более отдаленные. Замечено правильное повышение даровитости в поколениях, достижение высшей ее степени и затем постепенное понижение ее в последующих поколениях. После трех последовательных смешений с посторонними элементами потомство судей того же фамильного рода как бы утрачивает, по-видимому, способность подняться на большую высоту. Исследование относительно 35 английских и 13 иностранных государственных людей дали подобные же результаты; тип дарований выше, чем у судей, но и он передается по наследству. Относительно полководцев выводы еще решительнее. Допуская, что чем выше и сильнее даровитость человека, тем многочисленнее его даровитые родственники, Гальтон заключает, что даровитость полководца выше, чем государственного человека, а последнего выше, чем судей. Большая энергия производит и большие последствия. Род Карла Великого очень знаменит дарованиями, еще более род Александра Великого; также Тюреннь и его предки. Таблица писателей также обнаруживает Н. литературного таланта, но среди поэтов мало родоначальников больших и выдающихся семейств. Гальтон, а за ним и другие авторы приписывают это особенностям психической организации поэтов, слишком чувственному темпераменту и неправильному образу жизни многих. Поэт, однако, должен отличаться серьезным отношением к жизни не менее тех людей, которые по темпераменту не слишком поддаются искушениям, а в то же время выражение чувств и симпатий есть его задача. Такие свойства не передаются регулярно по наследству: уступчивость соблазнам наследуется, а талант — в слабой степени. Музыканты ведут тоже рассеянную, не совсем правильную жизнь, однако, Н. музыкальных способностей не только несомненна, но в некоторых случаях даже необычайно замечательна. Мендельсон и Мейербер представляют исключение в том смысле, что родственники их преуспевали в других сферах деятельности, помимо музыкальной, зато род Бахов замечателен музыкальными дарованиями, обнаружившимися впервые в 1550 г., достигшими наибольшей силы в Себастьяне Бахе (1685—1750; 6-й по генеалогической таблице) и погасшими с Региной Сусанной, жившей еще в 1800 г. [Последний из рода Бахов, тоже музыкант, умер в 1845 г. (см. это имя).]. В 8 поколениях этого рода было более 20 выдающихся музыкантов. Обыкновенно выдающиеся родственники знаменитых музыкантов, как и поэтов, состоят с ними в близкой степени родства; обще тем и другим также отсутствие даровитости в женском колене. Замечательно, что ни в какой профессии таланты не развиваются так рано, как в музыкальной. У живописцев Н. способностей также несомненна: таковы французские живописцы Верне (отец Жозеф, сын Шарль, внук Орас), семейство Бонёр, состоящее из двух женщин и двоих мужчин (отец семейства также художник). В таблицах Гальтона названы 42 художника Италии и Нидерландов. Художественные дарования передаются, как у музыкантов и поэтов, только ближайшим родственникам. Между живописцами можно найти много примеров стремления именно к живописи, несмотря на большие препятствия, даже со стороны их организма. Был французский художник, рожденный без рук (Дюкорней, 1806—56; писал ногой), русский — без рук до локтей (Беляков (см.); писал соединенными локтями). Рибо замечает, что нельзя сделаться музыкантом без особенно тонкой организации уха, или живописцем — без тонкого ощущения форм и тонов через посредство зрения, и потому психологическая Н. здесь более явно связана с физиологической, чем можно усмотреть в случае поэтического таланта. По этой причине случаи Н. музыкальной и художественной легче понимаются, чем Н. поэтического таланта. Н. научных способностей доказывается Гальтоном в той же мере, как и в других случаях, но он думает, что влияние матерей, вообще существующее, оказывается именно здесь весьма ощутительным. Из 43 случаев в 8 — мать оказывается более способной, чем отец (Бюффона, Кювье, Кондорсе, Ватта, Даламбера и др.). Несмотря на громадную природную даровитость математиков, однако, число выдающихся их родственников незначительно. Впрочем, род Бернулли представляет 9 механиков и математиков, с 1654 г.; фамилия эта сохранилась до нашего времени (см.). С другой стороны, из 26 имеющихся в списках Гальтона сыновей ученых, только 4 прославились на ином поприще, чем их отцы.

    К общим заключениям Гальтона надо отнести следующие. В потомстве и роде даровитых людей выдающиеся сыновья почти постоянно многочисленнее выдающихся братьев, которые, в свою очередь, только немного многочисленнее выдающихся отцов. Во второй степени родства (деды, дяди, племянники, внуки) выдающихся личностей меньше, и число их еще раз и быстро уменьшается среди родственников третьей степени. Суждения о том, насколько участвует женская линия в передаче дарований, по-видимому, недостаточно обоснованы, хотя и существует мнение, что у многих великих людей были замечательные матери. Не разрешен также вопрос о том, бесплодны ли гениальные мужчины и женщины вообще и что имеют ли гениальные люди обыкновенно слабую физическую организацию, хилы и малорослы. Общий численный вывод таков, что в 17 случаях из 24 можно сказать, что на 10 знаменитых людей, имеющих родственников, чем-либо выдающихся, приходится выдающихся 3 или 4 отца, 4 или 5 братьев и 5 или 6 сыновей. Наконец, на вопрос: если известно некоторое лицо, что оно — брат, отец или какой-либо другой родственник знаменитого человека, то как велики шансы и этому лицу быть причисленным к выдающимся лицам, Гальтон отвечает: ровно половина из числа наиболее знаменитых людей имеет одного или нескольких выдающихся родственников. Вероятность, что рассматриваемое лицо сделается выдающимся, зависит поэтому от возраста этого лица, от полного числа родственников знаменитого лица и еще некоторых условий. Влияние способных матерей надо отнести, вероятно, частью и к воспитанию; талантливый сын талантливого отца может избегнуть необходимости пробовать свои силы бесполезным и требующим времени образом, если он получает должное направление, т. е. воспитание. Способность вообще размышлять и понимать свойственна человеку, следовательно, наследственна; доказательства Н. способностей устремлены лишь на их интенсивность и род. Память — свойство психобиологическое — многими признается вообще наследственной, но случаи такой Н. — редки. Рибо сближал Н. и память: что память есть для индивидуума, то Н. есть для рода, так что ее можно рассматривать как специфическую память. Подобно Н. памяти допускается и Н. твердой воли и других душевных качеств: постоянство характера нации служит, с одной стороны, доказательством Н. в индивидуумах, а с другой — результат психологической Н. в большем числе их, т. е. в массах. Несмотря на много сомнительных случаев и спорных толкований признают, что личность (т. е. я), управляющая всем духовным материалом, передаваема в известной мере потомству. Но все подобные выводы суть результаты наблюдений и не могут быть выведены a priori, а причины Н. или объяснения ее в настоящее время недоступны биологии (Спенсер).

    Рядом с Н. идет эволюция физиологическая и психологическая: совершаясь в индивидуумах, она путем Н. сообщается расе. У древних народов существование каст, делавших наследственными должности и определенного рода деятельность, вместе с тем устанавливало насильственным образом Н. соответственных качеств; в более слабой степени то же можно сказать и о позднейших классах общества, как строго раздельных между собой. В наше время эта раздельность ослабела, по крайней мере, в некоторых странах, но как это повлияло на Н. способностей — еще не ясно. Если признать, что Н. идет рядом с эволюцией, то нельзя не признать, что последняя идет рядом с воспитанием. Если гении и идиоты не подчиняются или мало подчиняются влиянию воспитания, то и для гения соответствующее ему воспитание — благоприятно. Воспитание есть целая система координированных внушений, а внушение (говорит Гюйо), создает искусственные инстинкты, способные подавить наследственные инстинкты. Внушение общественное или социальное составляется из суммы частных внушений, иногда взаимно содействующих, иногда противодействующих. Гений совмещает в себе наибольшие последствия плодотворной Н., но воспитание может и должно направлять не только средние, но и высшие натуры, тем более что люди не рождаются добродетельными по наследству. Хотя внушение (см. это слово и Гипнотизм) и может быть признано искусством (Гюйо) изменять личность, в которую она вводит новые мотивы деятельности, и есть много поразительных примеров полезной силы внушения, но с другой стороны, известно также, что и совокупность продолжительных и постоянных внушений — воспитание — во многих случаях только на время может задушить наследственный темперамент. Так, один дикарь с детских лет тщательно и, по-видимому, солидно воспитанный в духе цивилизации, придя в возраст, убежал к своим соотечественникам диким. Вообще разграничение роли Н. и воспитания затруднительно, тем более что известны примеры высокой даровитости в некотором определенном направлении, причем ни воспитанию, ни Н. нельзя приписать никакой видимой роли; отсюда произошла мысль о врожденности таланта, как резком противоположении идеи о Н. Ни закон Н., ни существование врожденности не подлежат сомнению, но один случай врожденности, не будучи связан с другим, допускает всяческое разнообразие и все проявления ее будут аномалией — результат комплекса причин, в которых разобраться при настоящем состоянии психологии и физиологии не представляется возможным.

    Источниками для этой статьи служили: Galton, "Hereditary Genius" (1869; в русском переводе: "Наследственность таланта", 1875); Th. Ribot, "L'hérédité psychologique" (1882; переведено на русский язык); Guyot, "Education et hérédité" (в русском переводе: "Воспитание и наследственность", 1891). В сочинении Рибо много библиографических указаний по предмету Н. О физиологических гипотезах Н. см. выше статью профессора В. М. Шимкевича; см. также Наследственное помешательство.

    Ф. П.

  1. Источник: Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона



  2. Большая Советская энциклопедия

    I

    Насле́дственность

    присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым Н. обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или Онтогенеза. Как общебиологическое явление Н. — важнейшее условие существования дифференцированных форм жизни, невозможных без относительного постоянства признаков организмов, хотя оно нарушается Изменчивостью — возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, Н. проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.

    Иногда термин «Н.» относят к передаче от одного поколения другому инфекционных начал (так называемая инфекционная Н.) или навыков обучения, образования, традиций (так называемая социальная, или сигнальная, Н.). Подобное расширение понятия Н. за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную Н. от нормальной затруднительно. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль Н. в скорости закрепления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную Н. входит компонент биологической Н.

    Попытки объяснения явлений Н., относящиеся к глубокой древности (Гиппократ, Аристотель и др.), представляют лишь исторический интерес. Только вскрытие сущности полового размножения позволило уточнить понятие Н. и связать её с определёнными частями клетки. К середине 19 в. благодаря многочисленным опытам по гибридизации растений (И. Г. Кёльрёйтер и др.) накапливаются данные о закономерностях Н. В 1865 Г. Мендель в ясной математической форме обобщил результаты своих экспериментов по гибридизации гороха. Эти обобщения позднее получили название Менделя законов (См. Менделя законы) и легли в основу учения о Н. — Менделизма. Почти одновременно были сделаны попытки умозрительно понять сущность Н. В книге «Изменения домашних животных и культурных растений» Ч. Дарвин (1868) предложил свою «временную гипотезу пангенезиса», согласно которой от всех клеток организма отделяются их зачатки — геммулы, которые, двигаясь с током крови, оседают в половых клетках и образованиях, служащих для бесполого размножения (почки и др.). Т. о., получалось, что половые клетки и почки состоят из громадного количества геммул. При развитии организма геммулы превращаются в клетки того же типа, из которых они образовались. В гипотезе Пангенезиса объединены неравноценные представления: о наличии в половых клетках особых частиц, определяющих последующее развитие особи; о переносе их из клеток тела в половые. Первое положение было плодотворным и привело к современным представлениям о корпускулярной Н. Второе, дававшее основание для представления о наследовании приобретённых признаков, оказалось неверным. Умозрительные теории Н. развивали также Ф. Гальтон, К. Негели, Х. Де Фриз.

    Наиболее детализированную спекулятивную теорию Н. предложил А. Вейсман (1892). Основываясь на накопившихся к тому времени данных по оплодотворению (См. Оплодотворение), он признавал наличие в половых клетках особого вещества — носителя Н. — зародышевой плазмы. Видимые образования клеточного ядра — Хромосомы — Вейсман считал высшими единицами зародышевой плазмы — идантами. Иданты состоят из ид, располагающихся в хромосоме в виде зёрен в линейном порядке. Иды состоят из детерминант, определяющих при развитии особи сорт клеток, и биофор, обусловливающих отдельные свойства клеток. Ида заключает в себе все детерминанты, нужные для построения тела особи данного вида. Зародышевая плазма содержится лишь в половых клетках; соматические, или клетки тела, лишены её. Чтобы объяснить это коренное различие, Вейсман предполагал, что в процессе дробления оплодотворённого яйца основной запас зародышевой плазмы (а значит, и детерминант) попадает в одну из первых клеток дробления, которая становится родоначальной клеткой так называемого зародышевого пути (См. Зародышевый путь). В остальные клетки зародыша в процессе «неравнонаследственных делений» попадает лишь часть детерминант; наконец, в клетках останутся детерминанты одного сорта, определяющие характер и свойства именно этих клеток. Существенное свойство зародышевой плазмы — её большое постоянство. Теория Вейсмана оказалась ошибочной во многих деталях. Однако его идея о роли хромосом и о линейном расположении в них элементарных единиц Н. оказалась верной и предвосхитила хромосомную теорию Н. (см. ниже). Логический вывод из теории Вейсмана — отрицание наследования приобретённых признаков. Во всех умозрительных теориях Н. можно обнаружить отдельные элементы, нашедшие в дальнейшем подтверждение и более полное развитие в сложившейся в начале 20 в. генетике (См. Генетика). Важнейшие из них: а) выделение в организме отдельных признаков или свойств, наследование которых может быть проанализировано соответствующими методами; б) детерминация этих свойств особыми дискретными единицами Н., локализованными в структурах клетки (ядра) (Дарвин называл их геммулами, Де Фриз — пангенами, Вейсман — детерминантами). В современной генетике общепринятым стал предложенный В. Иогансеном (1909) термин Ген.

    Особняком стояли попытки установления закономерностей Н. статистическими методами. Один из создателей биометрии (См. Биометрия) — Ф. Гальтон применил разработанные им методы учёта корреляции и регрессии для установления связи между родителями и потомками. Он сформулировал следующие законы Н. (1889): регрессии, или возврата к предкам, и так называемой анцестральной Н., т. е. доли Н. предков в Н. потомков. Законы носят статистический характер, применимы лишь к совокупностям организмов и не раскрывают сущности и причин Н., что могло быть достигнуто только с помощью экспериментального изучения Н. разными методами и, прежде всего гибридологическим анализом (См. Гибридологический анализ), основы которого были заложены ещё Менделем. Так были установлены закономерности наследования качественных признаков: моногибридное — различие между скрещиваемыми формами зависит лишь от одной пары генов, дигибридное — от двух, полигибридное — от многих. При анализе наследования количественных признаков отсутствовала чёткая картина расщепления, что давало повод выделять особую, так называемую слитную Н. и объяснять её смешением наследственных плазм скрещиваемых форм. В дальнейшем гибридологический и биометрический анализ наследования количественных признаков показал, что и слитная Н. сводится к дискретной, но наследование при этом полигенное (см. Полимерия). В этом случае расщепление трудно обнаружить, так как оно происходит по многим генам, действие которых на признак осложняется сильным влиянием условий внешней среды. Т. о., хотя признаки можно разделять на качественные и количественные, термины «качественная» и «количественная» Н. не оправданы, так как обе категории Н. принципиально одинаковы.

    Развитие цитологии (См. Цитология) привело к постановке вопроса о материальных основах Н. Впервые мысль о роли ядра как носителя Н. была сформулирована О. Гертвигом (1884) и Э. Страсбургером (1884) на основании изучения процесса оплодотворения. Т. Бовери (1887) установил индивидуальность хромосом и развил гипотезу о их качественном различии. Он же, а также Э. ван Бенеден (1883) установили уменьшение количества хромосом вдвое при образовании половых клеток в Мейозе. Американский учёный У. Сеттон (1902) дал цитологическое объяснение закону Менделя о независимом наследовании признаков. Однако подлинное обоснование хромосомной теории Н. было дано в работах Т. Моргана и его школы (начиная с 1911), в которых было показано точное соответствие между генетическими и цитологическими данными. В опытах на дрозофиле было установлено нарушение независимого распределения признаков — их сцепленное наследование. Это явление было объяснено сцеплением генов, т. е. нахождением генов, определяющих эти признаки, в одной определённой паре хромосом. Изучение частоты рекомбинаций (См. Рекомбинация) между сцепленными генами (в результате Кроссинговера) позволило составить карты расположения генов в хромосомах (см. Генетические карты хромосом). Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории Н. были получены при изучении наследования, сцепленного с полом. Ранее цитологи открыли в хромосомных наборах ряда видов животных особые, так называемые Половые хромосомы, которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы (XX), а самцы — разные (XY), в других — самцы — 2 одинаковые (XX, или ZZ), а самки — разные (XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным, с разными — гетерогаметным. Женский пол гомогаметен, а мужской гетерогаметен у некоторых насекомых (в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение — у птиц и бабочек. Ряд признаков у дрозофилы наследуется в строгом соответствии с передачей потомству Х-хромосом. Самка дрозофилы, проявляющая рецессивный признак (см. Рецессивность), например белую окраску глаз, в силу гомозиготности по этому гену, находящемуся в Х-хромосоме, передаёт белую окраску глаз всем сыновьям, так как они получают свою Х-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передаёт его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки — XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою Х (= Z) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения Х-хромосом концами; тогда самки передают сцепленные Х-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии — от отца к сыну (такое наследование называется голандрическим). Хромосомная теория Н. вскрыла внутриклеточные механизмы Н., дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений Н., т. е. изменчивости.

    Первенствующая роль ядра и хромосом в Н. не исключает передачи некоторых признаков и через цитоплазму, в которой обнаружены структуры, способные к самовоспроизведению (см. Наследственность цитоплазматическая). Единицы цитоплазматической (нехромосомной) Н. отличаются от хромосомных тем, что они не расходятся при мейозе. Поэтому потомство при нехромосомной Н. воспроизводит признаки только одного из родителей (чаще матери). Т. о., различают ядерную Н., связанную с передачей наследственных признаков, находящихся в хромосомах ядра (иногда её называют хромосомной Н.), и в не ядерную, зависящую от передачи самовоспроизводящихся структур цитоплазмы. Ядерная Н. реализуется и при вегетативном размножении (См. Вегетативное размножение), но не сопровождается перераспределением генов, что наблюдается при половом размножении, а обеспечивает константную передачу признаков из поколения в поколение, нарушаемую только соматическими мутациями (См. Соматические мутации).

    Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению Н. на молекулярном уровне и бурному развитию молекулярной генетики (См. Молекулярная генетика). Впервые Н. К. Кольцов (доложено в 1927, опубликовано в 1928, 1935) выдвинул и обосновал представление о молекулярной основе Н. и о матричном способе размножения «наследственных молекул». В 40-х гг. 20 в. была экспериментально доказана генетическая роль дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК), а в 50—60-х гг. установлена её молекулярная структура и выяснены принципы кодирования генетической информации (см. Генетический код).

    По мере изучения Н. на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных признаков ген постулировался как элементарная неделимая единица Н., а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген — входящий в состав хромосомы участок молекулы ДНК, способный к самовоспроизведению и имеющий специфическую структуру, в которой закодирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер) было показано, что каждый ген состоит из ряда различных участков, которые могут мутировать и между которыми может происходить кроссинговер. Так подтвердилось представление о сложной структуре гена, развивавшееся ещё в 30-х гг. А. С. Серебровским (См. Серебровский) и Н. П. Дубининым на основе данных генетического анализа.

    В 1967—69 был осуществлен синтез вирусной ДНК вне организма, а также химический синтез гена дрожжевой аланиновой транспортной РНК. Новой областью исследования стала Н. соматических клеток в организме и в культурах тканей. Открыта возможность экспериментальной гибридизации соматических клеток разных видов. В связи с достижениями молекулярной биологии (См. Молекулярная биология) явления Н. приобрели ключевое значение для понимания ряда биологических процессов, а также для многих вопросов практики. Ещё Дарвину было ясно значение Н. для эволюции организмов. Установление дискретной природы Н. устранило одно из важных возражений против дарвинизма: при скрещивании особей, у которых появились наследственные изменения, последние должны якобы «разбавляться» и ослабевать в своём проявлении. Однако, в соответствии с законами Менделя, они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в определённых условиях. В Популяциях явления Н. предстали как сложные процессы, основанные на скрещиваниях между особями, отборе, мутациях (См. Мутации), генетико-автоматических процессах (См. Генетико-автоматические процессы) и др. На это впервые указал С. С. Четвериков (1926), экспериментально доказавший накопление мутаций внутри популяции. И. И. Шмальгаузен (1946) выдвинул положение о «мобилизационном резерве наследственной изменчивости» как материале для творческой деятельности естественного отбора (См. Естественный отбор) при изменении условий внешней среды. Показано значение разных типов изменений Н. в эволюции. Эволюция понимается как постепенное и многократное изменение Н. Вида. В то же время Н., обеспечивающая постоянство видовой организации, — это коренное свойство жизни, связанное с физико-химической структурой элементарных единиц клетки, прежде всего её хромосомного аппарата, и прошедшее длительный период эволюции. Принципы организации этой структуры (генетический код), по-видимому, универсальны для всех живых существ и рассматриваются как важнейший атрибут жизни.

    Под контролем Н. находится и онтогенез, начинающийся с оплодотворения яйца и осуществляющийся в конкретных условиях среды. Отсюда различие между совокупностью генов, получаемых организмом от родителей, — Генотипом и комплексом признаков организма на всех стадиях его развития — Фенотипом. Роль генотипа и среды в формировании фенотипа может быть различна. Но всегда следует учитывать генотипически обусловленную норму реакции (См. Норма реакции) организма на влияния среды. Изменения в фенотипе не отражаются адекватно на генотипической структуре половых клеток, поэтому традиционное представление о наследовании приобретённых признаков отвергнуто, как не имеющее фактической основы и неправильное теоретически. Механизм реализации Н. в ходе развития особи, по-видимому, связан со сменой действия разных генов во времени и осуществляется при взаимодействии ядра и цитоплазмы, в которой происходит синтез тех или иных белков на основе программы, записанной в ДНК и передающейся в цитоплазму с информационной РНК.

    Закономерности Н. имеют огромное значение для практики сельского хозяйства и медицины. На них основываются выведение новых и совершенствование существующих сортов растений и пород животных. Изучение закономерностей Н. привело к научному обоснованию применявшихся ранее эмпирически методов селекции и к разработке новых приёмов (экспериментальный Мутагенез, Гетерозис, Полиплоидия и др.). Данные генетики человека (См. Генетика человека) показали, что довольно часты гены, определяющие развитие разнообразных уродств и наследственных заболеваний (См. Наследственные заболевания); наследственных болезней обмена, психических и др. (см. «Молекулярные болезни», Хромосомные болезни, Медицинская генетика (См. Генетика медицинская)). Уменьшению вероятности появления в семьях наследственно больных детей призваны способствовать медико-генетические консультации (См. Медико-генетическая консультация). Ранняя диагностика наследственных заболеваний позволяет применить необходимые методы лечения. Существенно важен учёт Н. в реакции разных людей на лекарства и др. химические вещества, а также в иммунологических реакциях. Бесспорна роль молекулярно-генетических механизмов в этиологии злокачественных опухолей.

    Явления Н. предстают в разной форме в зависимости от уровня жизни, на котором они изучаются (молекула, клетка, организм, популяция). Но в конечном счёте Н. обеспечивается самовоспроизведением материальных единиц Н. (генов и цитоплазматических элементов), молекулярная структура которых известна. Закономерный матричный характер их ауторепродукции нарушается мутациями отдельных генов или перестройками генетических систем в целом. Всякое изменение в ауторепродуцирующемся элементе наследуется константно.

    Лит.: Вильсон Э., Клетка и ее роль в развитии и наследственности, пер. с англ., т. 1—2, М. — Л., 1936—40; Морган Т., Избранные работы по генетике, пер. с англ., М. — Л., 1937; Сэджер Р., Райн Ф., Цитологические и химические основы наследственности, пер. с англ., М., 1964; Сталь Ф., Механизмы наследственности, пер. с англ., М., 1966; Лобашев М. Е., Генетика, 2 изд., Л., 1967; Гайсинович А. Е., Зарождение генетики, М., 1967; Уотсон Дж. Д., Молекулярная биология гена, пер. с англ., М., 1967; Успехи современной генетики. Сб. ст., в. 1—4, М., 1967—72; Классики советской генетики. Сб. ст., Л., 1968; Дубинин Н. П., Общая генетика, М., 1970; Ичас М., Биологический код, пер. с англ., М., 1971; Меттлер Л., Грегг Т., Генетика популяций и эволюция, пер. с англ., М., 1972; Weber Е., Mathematische Grundlagen der Genetik, Jena, 1967; Sinnott Е., Dunn L., Dobzhansky Th., Principles of genetics, N. Y., 1958.

    См. также лит. при статьях Генетика, Дарвинизм, Менделизм, Молекулярная генетика.

    П. Ф. Рокицкий.

    II

    Насле́дственность

    структуры в металлах, сохранение формы и кристаллографической ориентации каких-либо элементов структуры после прямого (при охлаждении) и обратного (при нагреве) полиморфного превращения (см. Полиморфизм). При обратном превращении могут восстанавливаться контуры исходных (перед прямым превращением) кристаллов (границы зерна), ориентация решётки кристаллов, местоположение дислокаций (См. Дислокации) и дефектов упаковки в них, а иногда даже макроскопическая форма изделия, если при его пластической деформации образовывался Мартенсит («эффект памяти»). Наследование кристаллографической ориентации и дефектов решётки обеспечивается упорядоченной перестройкой одной решётки в другую при сдвиговом полиморфном превращении, а восстановление формы зерна — также сохранением химической неоднородности (сегрегаций примеси и включений на месте старых границ). Н. структуры в легированной стали мешает измельчению зерна при отжиге отливок и поковок. Наследование дислокаций, внесённых наклёпом, используют для повышения прочности стали термомеханической обработкой (См. Термомеханическая обработка). Из сплавов с «эффектом памяти» делают детали приборов, меняющие форму при нагреве.

    Лит.: Бернштейн М. Л., Штремель М. А., О «наследственном» влиянии наклепа на свойства стали, «Физика металлов и металловедение», 1963, т. 15, в. 1; Садовский В. Д., Структурная наследственность в стали, М., 1973.

    М. А. Штремель.

  3. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  4. Словарь форм слова

    1. насле́дственность;
    2. насле́дственности;
    3. насле́дственности;
    4. насле́дственностей;
    5. насле́дственности;
    6. насле́дственностям;
    7. насле́дственность;
    8. насле́дственности;
    9. насле́дственностью;
    10. насле́дственностями;
    11. насле́дственности;
    12. насле́дственностях.
  5. Источник: Полная акцентуированная парадигма по А. А. Зализняку»



  6. Толковый словарь Ожегова

    НАСЛЕ́ДСТВЕННОСТЬ, -и, жен. Свойства организмов повторять от поколения к поколению сходные природные признаки. Материальные носители наследственности (гены).

  7. Источник: Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949-1992.



  8. Малый академический словарь

    , ж.

    1.

    Свойство живых существ передавать свои основные признаки и качества потомству.

    Что надо понимать под наследственностью? Конечно, также и те характерные особенности, которые отличают, скажем, одни породы свиней от других пород свиней же, одни породы собак от других. Агапов, Взбирается разум.

    || биол.

    Присущее всем организмам свойство сохранять и передавать от поколения к поколению одинаковые признаки и особенности развития, что обеспечивает существование различных видов и форм жизни.

    2.

    Совокупность природных свойств организма, передаваемых от поколения к поколению.

    3. устар.

    То же, что наследование (во 2 знач.).

    В начале XIII в. наследственность княжений по нисходящей линии не была ни общим фактом, ни общепризнанным правилом. Ключевский, Курс русской истории.

  9. Источник: Малый академический словарь. — М.: Институт русского языка Академии наук СССР. Евгеньева А. П.. 1957—1984.



  10. Толковый словарь Ушакова

    НАСЛЕ́ДСТВЕННОСТЬ, наследственности, мн. нет, жен. (книжн.).

    1. Способность живых существ передавать свои физические или психические особенности потомству. Явления наследственности. Теория наследственности.

    2. Качества здоровья, особенности состояния организма, передающиеся от родителей к детям. В их семье плохая наследственность. Туберкулезная наследственность.

    3. отвлеч. сущ. к наследственный. Наследственность болезней.

  11. Источник: Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.



  12. Толковый словарь Ефремовой

    ж.

    Природное свойство организмов сохранять и передавать в ряде поколений характерную совокупность общих родительских черт, повторяя сходные типы обмена веществ и индивидуальность развития в целом, за счёт самовоспроизведения генов.

  13. Источник: Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000.



  14. Большой энциклопедический словарь

    НАСЛЕДСТВЕННОСТЬ - свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивается самовоспроизведением материальных единиц наследственности - генов, локализованных в специфических структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью наследственности обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

  15. Источник: Большой Энциклопедический словарь. 2000.



  16. Современная энциклопедия

    НАСЛЕДСТВЕННОСТЬ, свойство организмов повторять в ряду поколений признаки и особенности развития. Обеспечивается самовоспроизведением материальных единиц наследственности - генов, локализованных в специфических структурах ядра клетки (хромосомах) и в цитоплазме. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

  17. Источник: Современная энциклопедия. 2000.



  18. Психологический словарь

    Наследственность - эволюционный опыт предыдущих поколений живых организмов, запечатленный в генетическом аппарате. Хранение, воспроизведение и передача наследственной информации происходит посредством дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) кислот, индивидуальная совокупность которых образовывает генотип. Под его контролем находятся морфологические, биохимические, физиологические признаки организма. Но проявление этих признаков в индивиде зависит от конкретных условий индивидуального развития.

  19. Источник: Психологический словарь



  20. Сексологическая энциклопедия

    свойство организмом повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивает постоянство и многообразие форм жизни; лежит в основе эволюции живой природы.

  21. Источник: Сексологическая энциклопедия



  22. Строительный словарь

    свойство материала, выражающееся в том, что равновесное состояние при заданной нагрузке зависит от этой нагрузки и от истории нагружения

    (Болгарский язык; Български) — наследственост

    (Чешский язык; Čeština) — -

    (Немецкий язык; Deutsch) — Vorgeschichte

    (Венгерский язык; Magyar) — anyag fáradékonysági «emlékezőképessége»

    (Монгольский язык) — удамшилг

    (Польский язык; Polska) — dziedziczność

    (Румынский язык; Român) — tensiune remanentă

    (Сербско-хорватский язык; Српски језик; Hrvatski jezik) — naslednost

    (Испанский язык; Español) — propiedad del material que se caracteriza por el estado de equilibrio alcanzado bajo una carga dada más el efecto de las cargas que actuaban anteriormente sobre él

    (Английский язык; English) — heredity

    (Французский язык; Français) — hérédité

    Источник: Терминологический словарь по строительству на 12 языках

  23. Источник: Строительный словарь



  24. Большой англо-русский и русско-английский словарь

    жен. fнаследственн|ость - ж. heredity;
    ~ый hereditary.

  25. Источник: Большой англо-русский и русско-английский словарь



  26. Англо-русский словарь технических терминов

    heredity

  27. Источник: Англо-русский словарь технических терминов



  28. Русско-английский словарь биологических терминов

    наследственность— heredity

  29. Источник: Русско-английский словарь биологических терминов. — Новосибирск: Институт Клинической Иммунологии. В.И. Селедцов. 1993—1999.



  30. Русско-английский словарь математических терминов

    f.heredity

  31. Источник: Русско-английский словарь математических терминов



  32. Большой немецко-русский и русско-немецкий словарь

    наследственность ж Erblichkeit f; Vererbung f с дурной наследственностью erblich belastet

  33. Источник: Большой немецко-русский и русско-немецкий словарь



  34. Большой немецко-русский и русско-немецкий словарь

    ж

    Erblichkeit f; Vererbung f

    с дурной наследственностью — erblich belastet

  35. Источник: Большой немецко-русский и русско-немецкий словарь



  36. Большой французско-русский и русско-французский словарь

    ж.

    hérédité f

  37. Источник: Большой французско-русский и русско-французский словарь



  38. Большой испано-русский и русско-испанский словарь

    ж.

    heredad f, heredamiento m, herencia f

    ге́ны - носи́тели насле́дственности — los genes son portadores de la herencia

  39. Источник: Большой испано-русский и русско-испанский словарь



  40. Большой итальяно-русский и русско-итальянский словарь

    ж.

    ereditarietà

  41. Источник: Большой итальяно-русский и русско-итальянский словарь



  42. Сельскохозяйственный словарь-справочник

    передача родителями потомству особенностей своего организма. Н. обусловлена тем, что через половые клетки потомству передается определенная структура, обусловливающая тип развития организма. В с. х-ве важное значение имеет Н. производственных качеств организма жив. (молочность, тонина шерсти, яйценоскость и пр.) и раст. (засухоустойчивость, скороспелость, урожайность и пр.). Научная постановка изучения Н. стала возможной сравнительно недавно, когда Менделю удалось в 1865 г. установить опытным путем нек-рые законы Н. Позднее работами генетиков и цитологов изучение явлений Н. было углублено и расширено. В настоящее время закономерности Н. все больше и больше кладутся в основу научной постановки разведения жив. и раст.

  43. Источник: Сельскохозяйственный словарь-справочник



  44. Научно-технический энциклопедический словарь

    НАСЛЕДСТВЕННОСТЬ, передача физических и других характеристик от одного поколения растений или животных к следующему. Такие характеристики, как синие глаза и рыжие волосы, могут быть индивидуальны, а другие, такие как вертикальная осанка и наличие наружных ушных раковин, могут быть типичны для всего вида организмов. Совокупность характеристик, которая делает организм отличным от других, находится в ГЕНЕТИЧЕСКОМ КОДЕ организма и передается от родителя(ей) к потомству. Первые исследования наследственности были проведены в XIX столетии Грегором МЕНДЕЛЕМ. см. также АЛЛЕЛЬ,ХРОМОСОМЫ,ГЕН,ПОЛОВОЕ РАЗМНОЖЕНИЕ.

  45. Источник: Научно-технический энциклопедический словарь



  46. Медицинская энциклопедия

    IНасле́дственность

    присущее всем организмам свойство обеспечивать в ряду поколений преемственность признаков и особенностей развития, т. е. морфологической, физиологической и биохимической организации живых существ и характера их индивидуального развития (онтогенеза). Явление Н. лежит в основе воспроизведения форм жизни по поколениям, что принципиально отличает живое от неживого.

    Знание законов Н. позволяет понять механизмы передачи наследственной информации от родителей детям, закономерности формирования наследственно обусловленных признаков и роль генов в сложных процессах жизнедеятельности организма (см. Ген). Разработка научно обоснованных методов уменьшения генетического груза наследственных аномалий должна способствовать сохранению наследственной природы человека.

    Различают хромосомную и внехромосомную Н. Хромосомная Н. связана с распределением носителей наследственности (генов) в хромосомах. Передача признаков потомству особенно четко прослеживается при наследовании менделирующих признаков, т.е. таких наследственных признаков, которые в потомстве, расщепляются по моногенному типу наследования в соответствии с законами Менделя — эмпирическими правилами наследования, устанавливающими численные соотношения, в которых отдельные признаки и их сочетания проявляются в гибридном потомстве при половом размножении.

    Внехромосомная, или цитоплазматическая, Н. заключается в наследовании признаков, которые контролируются факторами, локализованными у животных организмов в митохондриях, у растений — в митохондриях и пластидах, у бактерий — в плазмидах (Плазмиды). Цитоплазматические элементы, обладающие свойством передачи наследственной информации, распределяются между дочерними клетками случайно, поэтому четкого менделевского расщепления в этих случаях не наблюдается. Все системы внехромосомной Н. взаимодействуют с хромосомными генами или их продуктами.

    Углубленное изучение Н. началось в 19 в., а значительный прогресс в этой области был достигнут лишь в 20 в. После открытия Менделем (G. Mendel) основных законов Н. стало несомненным, что она определяется материальными факторами, позже получивших название генов. Однако еще в 1750 г. Мопертюи (P. L.М. Maupertuis) и в 1814 г. Адаме (J. Adams) описали некоторые особенности наследования отдельных признаков у человека. В 1875 г. Гальтон (F. Galton) предложил близнецовый метод для разграничения роли Н. и среды в развитии признаков у человека. Он обосновал генеалогический метод анализа и разработал ряд статистических методов, из которых особенно ценен метод вычисления коэффициента корреляции.

    В становлении представлений о природе Н. большое значение имело создание Морганом (Th. Morgan) и его школой хромосомной теории наследственности (см. Генетика), было выявлено, что ген представляет собой материальную структуру в хромосомах (Хромосомы) ядра клетки.

    В первой половине 20 в. была показана дробимость гена, установлены явление эффекта положения гена, связь генетических элементов с ДНК и сделан ряд других важных открытий. После открытия в 1953 г. структурной и функциональной природы молекул ДНК как носителей генетической информации (см. Нуклеиновые кислоты) начался современный этап изучения проблемы Н. Важнейшим достижением этого этапа является установление всеобщности материальных основ Н. на базе молекул ДНК и РНК.

    Основной целостной единицей жизни служит клетка, имеющая ядро и цитоплазму, причем ядру принадлежит основная роль в обеспечении преемственности признаков и особенностей развития. Ядро содержит нитевидные структуры — хромосомы, представляющие собой образования, состоящие из ДНК и белка.

    Основной формой воспроизведения организмов является половой процесс, когда отдельная особь появляется из оплодотворенной яйцеклетки, или зиготы. Самовоспроизведение организмов, в основном растений, может осуществляться при помощи вегетативного размножения. В этом случае потомки возникают из частей родительской особи. При половом размножении происходит расщепление признаков потомства в зависимости от генотипов, вследствие чего, например, при скрещивании гибридных или высокогетерозиготных растений часто наблюдаются возврат к диким формам и потеря ценных сортовых признаков. При вегетативном размножении длительное время удается сохранять генетические свойства сортов. Установлено, что любая растительная клетка, не потерявшая в ходе своей дифференцировки ядра и цитоплазмы, может в культуре превратиться в каллусную, или зиготоподобную, клетку и дать начало новому организму. В экспериментальной биологии широкое распространение получил инбридинг — скрещивание близкородственных особей.

    Наследственная информация, заключенная в генах каждой особи (совокупность всех генов, присущих данной особи), носит название генотип, идиотип, или генетическая конституция, является итогом исторического развития данного вида и материальной основой будущей эволюции. Явление Н. рассматривается как сложная молекулярная внутриклеточная система, обеспечивающая хранение и реализацию информации, в соответствии с которой осуществляются жизнь клетки, развитие особи и ее жизнедеятельности. Реализация наследственной информации, записанной с помощью генетического кода — чередования нуклеотидов в ДНК зиготы, происходит в результате непрерывных взаимовлияний ядра и цитоплазмы, межклеточных взаимодействий и гормональной регуляции активности генов.

    В ходе развития генотип постоянно взаимодействует со средой. Совокупность всех свойств и признаков особи, сформировавшаяся в результате взаимодействия генотипа с окружающей средой, получила название фенотипа. Соответствие фенотипа особи генотипу материнского организма, обусловленное передачей материнских генов через овоплазму, называется материнским эффектом, или материнской наследственностью. Некоторые наследственные признаки, например цвет глаз или группа крови, не зависят от условий среды. В то же время на развитие некоторых количественных признаков, таких как рост и вес тела, факторы окружающей среды оказывают большое влияние. Проявление эффектов генов, обусловливающих, например, тучность, во многом зависит от питания, поэтому при помощи соответствующей диеты можно в определенной степени бороться с наследственно обусловленной полнотой.

    Материальные носители Н. содержат информацию не только о нормальных, но и о патологических признаках. Так, различного рода мутации — генетический груз, накапливаемый в генофонде человека, являются причиной возникновения большого числа наследственных аномалий, от которых страдают сотни миллионов людей нашей планеты (см. Наследственные болезни). Болезни с доминантным типом наследования или сцепленные с полом обнаруживаются сравнительно легко. Труднее установить значение Н. в развитии таких широко распространенных полигенных болезней с наследственным предрасположением, как гипертоническая болезнь, атеросклероз, язвенная болезнь, шизофрения, бронхиальная астма и др. Частота возникновения и тяжесть течения этих болезней зависят от конкретного сочетания факторов окружающей среды и наследственного предрасположения.

    См. также Генетика, Изменчивость, Медицинская генетика.

    Библиогр.: Бердышев К.Д. и Криворученко И.Ф. Генетика человека с основами медицинской генетики, Киев, 1979: Бочков Н.П. Генетика человека, М., 1978: Гершензон С.М. Основы современной генетики, Киев, 1983; библиогр.: Конюхов Б.В. и Пашин Ю.В. Наследственность человека, М., 1971; Ленц В. Медицинская генетика, М., 1984.

    IIНасле́дственность

    свойство живой материи передавать потомству признаки и особенности развития родителей; обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ в ряду поколений.

    Насле́дственность внехромосо́мная — см. Наследственность цитоплазматическая.

    Насле́дственность внея́дерная — см. Наследственность цитоплазматическая.

    Насле́дственность неме́нделевская — см. Наследственность цитоплазматическая.

    Насле́дственность цитоплазмати́ческая (син.: Н. внехромосомная, Н. внеядерная, Н. неменделевская, Н. экстрануклеарная, Н. экстрахромосомная) — Н., обусловленная факторами, локализующимися в цитоплазме.

    Насле́дственность экстрануклеа́рная (лат. extra- вне + nucleus ядро) — см. Наследственность цитоплазматичеческая.

    Насле́дственность экстрахромосо́мная — см. Наследственность цитоплазматическая.

  47. Источник: Медицинская энциклопедия



  48. Биологический энциклопедический словарь

    НАСЛЕДСТВЕННОСТЬ

    свойство организмов обеспечивать материальную и функциональную преемственность между поколениями. Н. реализуется в процессе наследования или воспроизведения в ряду поколений специфич. характера обмена веществ и индивидуального развития в определ. условиях внеш. среды. Проявление Н. осуществляется в непрерывности живой материи при смене поколений. Поскольку организм развивается в результате взаимодействия генетич. факторов и условий существования, Н. может реализоваться в разл. вариантах в зависимости от особенностей генотипа и внеш. условий. Напр., у особей с разным генотипом Н. может выражаться в одинаковом фенотипе (см. ДОМИНАНТНОСТЬ), у организмов с одинаковым генотипом — в разных фенотипах ((см. МОДИФИКАЦИИ). Исторически возникло и развивалось представление о Н. как отражении существования материальной субстанции, обеспечивающей сходство организмов в ряду поколений. В связи с этим в генетич. лит-ре появился ряд терминов, связывающих Н. с определ. структурами клетки и объединяемых общим термином «генетический материал». После доказательства роли ядра в передаче признаков была сформулирована ядерная теория Н. В дальнейшем была разработана хромосомная теория наследственности, доказывающая, что наследств, факторы локализованы в хромосомах. По мере развития генетики выяснилось, что генетич. факторы могут находиться не только в ядре (хромосомах), но и в цитоплазме (нек-рые органоиды клетки, плазмиды). В связи с этим возникло представление о наследовании цитоплазматическом. Было также установлено, что генетич. информация хранится, воспроизводится и передаётся при размножении организмов в виде молекул нуклеиновых к-т (ДНК, РНК), являющихся материальными носителями всех видов Н. Особую роль в Н. играет точность воспроизведения молекул нуклеиновых к-т в процессах репликации и транскрипции и высокая степень точности синтеза белков в трансляции. Функц. преемственность между поколениями может обеспечиваться не только спец. материальными структурами, но и передачей информации от одного поколения другому в ходе обучения. Основа такого вида преемственности — условнорефлекторная деятельность высших организмов. Для обозначения этого свойства был предложен термин «сигнальная Н.». Особое значение эта преемственность приобретает у человека. В ходе возникновения и развития жизни на Земле Н. играла решающую роль, обеспечивая закрепление достигнутых эволюционных преобразований. Благодаря Н. стало возможным существование разнообразных групп организмов как относительно самостоятельных, целостных систем (популяции, виды), сохранение приспособленности к определ. условиям существования. Именно поэтому Н. является одним из гл. факторов эволюционного процесса. Представляя в определ. смысле консервативность живых систем, Н. выступает в неразрывной связи с изменчивостью, определяя её возможные границы либо в процессе существования отд. особей (модификационная, онтогенетическая изменчивость), либо группы организмов в ряду поколений (генотипич. изменчивость). Изучение закономерностей Н. имеет важное значение для практики с. х-ва и медицины. Нередко Н. определяют как процесс передачи наследств, информации. Такое понимание Н. нельзя признать правильным, поскольку при этом отождествляются понятия «свойство» (Н.) и «процесс» (наследование).

    .

    насле́дственность

    свойство (способность) живых организмов повторять в ряду поколений внешний облик, тип обмена веществ, особенности развития и другие признаки, характерные для каждого биологического вида. Наследственность осуществляется благодаря процессу наследования – повторяющегося в поколениях определённого способа передачи «вещества наследственности», или генетического материала. Начиная с Гиппократа, Аристотеля и других учёных античности, развитие биологии в значительной мере было связано с попытками найти ответы на вопросы о материальном носителе наследственных задатков, о механизмах их образования и передачи и, главное, о способах раскрытия, реализации наследственных задатков в те или иные признаки и свойства организма. Несмотря на издревле существовавший интерес к проблеме сходства и отличий между «родителями» и «детьми» у всех живых существ, наука о наследственности и изменчивости – генетика – сравнительно молода. Она родилась в нач. 20 в., когда были переоткрыты и стали широко известными сформулированные Г. Менделем закономерности наследования (см. Менделя законы). К этому времени уже были в главных чертах выяснены цитологические, или клеточные, основы наследственности: установлены механизмы митоза, мейоза и оплодотворения, изучено поведение хромосом в этих процессах, выдвинута и затем подтверждена ядерная гипотеза наследственности, связавшая наследование признаков с клеточным ядром. Сразу после переоткрытия законов Менделя был сделан следующий шаг в познании наследственности – менделевские «наследственные факторы» были помещены в хромосомы. Так, перейдя на более глубокий (субклеточный) уровень, начала формироваться хромосомная теория наследственности. Наконец, в 1950—1960-х гг. были раскрыты химические, или молекулярные, основы наследственности. «Веществом наследственности» оказались сложные биополимеры – нуклеиновые кислоты (ДНК и РНК). Раскрытие пространственной структуры ДНК позволило объяснить, как гены (участки ДНК) осуществляют свою функцию по хранению, воспроизведению и реализации наследственности. Процесс наследования стали рассматривать как процесс передачи генетической информации, которая заключена в химическом строении ДНК. Стали понятными также и такие фундаментальные качества наследственности, как её консервативность, устойчивость, с одной стороны, и способность претерпевать передающиеся в поколениях изменения – с другой. Первое свойство обеспечивает точность, постоянство воспроизведения и реализации генетического материала, а следовательно, и постоянство видовых признаков; второе свойство даёт возможность биологическим видам, изменяясь, приспосабливаться к условиям среды, эволюционировать. Таким образом, наследственность и изменчивость неразрывно связаны, т.к. в их основании лежат одни и те же материальные (клеточные и молекулярные) структуры.

    Наследственность всегда реализуется во взаимодействии генетических факторов и условий существования. При индивидуальном развитии организмов (их онтогенезе) наследственность определяет границы (норму реакции) изменчивости организма, т.е. набор тех возможных вариантов (фенотипов), которые допускает данный генотип при изменениях среды (модификационная, онтогенетическая изменчивость). При историческом развитии организмов (их филогенезе) наследственность, закрепляя изменения генетического материала (генотипическая изменчивость), создаёт предпосылки для эволюции организмов.

    Наряду с ядерной (хромосомной) наследственностью существует т.н. цитоплазматическая (нехромосомная) наследственность, обусловленная наличием генов у органоидов (митохондрий, хлоропластов и некоторых других), находящихся в цитоплазме клетки и способных независимо от клеточного ядра синтезировать необходимые им белки.

    .

  49. Источник: Биологический энциклопедический словарь



  50. Русско-китайский словарь: пресса, интернет, радио, телевидение

    遗传

  51. Источник: Русско-китайский словарь: пресса, интернет, радио, телевидение



  52. Энциклопедия Кольера

    присущее всем живым существам свойство быть похожим на своих родителей. Однако особи каждого вида, будучи в целом схожими, все же различны и имеют свои, индивидуальные особенности (признаки). Но и эти признаки наследуются - передаются от родителей к детям. Генетические основы наследственности и есть предмет настоящей статьи.

    НОСИТЕЛИ НАСЛЕДСТВЕННОСТИ

    ДНК. Многоклеточные организмы, как здания, сложены из миллионов кирпичиков - клеток. Основным "строительным" материалом клетки являются белки. У каждого типа белка - своя функция: одни входят в состав клеточной оболочки, другие - создают защитный "чехол" для ДНК, третьи передают "инструкции" о том, как производить белки, четвертые регулируют работу клеток и органов, и т.д. Каждая молекула белка представляет собой цепочку из многих десятков, даже сотен звеньев - аминокислот; такую цепь называют полипептидной. Сложные белки могут состоять из нескольких полипептидных цепей. В процессе жизнедеятельности белки расходуются, и потому регулярно воспроизводятся в клетке. Их полипептидные цепи строятся последовательно - звено за звеном, и эта последовательность закодирована в ДНК. ДНК - длинная двухцепочечная молекула; состоит из отдельных звеньев - нуклеотидов. Всего имеется четыре типа нуклеотидов, обозначаемых как А (аденин), Г (гуанин), Т (тимин), Ц (цитозин). Тройка нуклеотидов (триплет) кодирует одну аминокислоту согласно т.н. генетическому коду. ДНК хранится в ядре клетки в виде нескольких "упаковок" - хромосом.

    Гены. Участок ДНК, в котором закодирована определенная полипептидная цепь, называется геном. Скажем, его фрагмент "TЦT ТГГ" кодирует аминокислотное звено: "серин-триптофан". Основная функция генов - поддержание жизнедеятельности организма путем производства белков в клетке, координация деления и взаимодействия клеток между собой. Гены у разных индивидов даже одного вида могут различаться - в пределах, не нарушающих их функцию. Каждый ген может быть представлен одной или большим числом форм, называемых аллелями. Все клетки организма, кроме половых клеток, содержат по два аллеля каждого гена; такие клетки называют диплоидными. Если два аллеля идентичны, то организм называют гомозиготным по этому гену; если аллели разные, то - гетерозиготным. Аллели эволюционно возникли и возникают как мутации - сбои в передаче ДНК от родителей к детям. Например, если бы в указанной выше нуклеотидной последовательности "TЦT ТГГ" третий нуклеотид, Т, ошибочно передался бы ребенку как Ц, то вместо родительского "серин-триптофан" он бы имел фрагмент белка "аланин-триптофан", поскольку триплет TЦЦ кодирует аминокислоту аланин. Аллели, прошедшие апробацию отбором

    (см. ПОПУЛЯЦИОННАЯ ГЕНЕТИКА), и образуют то наследственное разнообразие, которое мы сейчас наблюдаем, - от цвета кожи, глаз и волос до физиологических и эмоциональных реакций.

    Хромосомы. ДНК защищена от внешних воздействий "упаковкой" из белков и организована в хромосомы, находящиеся в ядре клетки. В хромосоме регулируется активность генов, их восстановление при радиационном, химическом или ином типе повреждений, а также их репликация (копирование) в ходе клеточных делений - митоза и мейоза (см. КЛЕТКА). Каждый вид растений и животных имеет определенное число хромосом. У диплоидных организмов оно парное, две хромосомы каждой пары называются гомологичными. Среди них различают половые (см. ниже) и неполовые хромосомы, или аутосомы. Человек имеет 46 хромосом: 22 пары аутосом и одну пару половых хромосом; при этом одна из хромосом каждой пары приходит от матери, а другая - от отца. Число хромосом у разных видов неодинаково. Например, у классического генетического объекта - плодовой мушки дрозофилы - их четыре пары. У некоторых видов хромосомные наборы состоят из сотен пар хромосом; однако количество хромосом в наборе не имеет прямой связи ни со сложностью строения организма, ни с его эволюционным положением. Помимо ядра, ДНК содержится в митохондриях, а у растений - еще и в хлоропластах. Поэтому те гены, которые находятся в ядерной ДНК, называют ядерными, а внеядерные, соответственно, митохондриальными и хлоропластными. Внеядерные гены контролируют часть энергетической системы клеток: гены митохондрий отвечают в основном за синтез ферментов реакций окисления, а гены хлоропластов - реакций фотосинтеза. Все остальные многочисленные функции и признаки организма определяются генами, находящимися в хромосомах.

    Передача генов потомству. Виды поддерживают свое существование сменой одних поколений другими. При этом возможны различные формы размножения: простое деление, как у одноклеточных организмов, вегетативное воспроизводство, как у многих растений, половое размножение, свойственное высшим животным и растениям (см. РАЗМНОЖЕНИЕ). Половое размножение осуществляется с помощью половых клеток - гамет (сперматозоидов и яйцеклеток). Каждая гамета несет одинарный, или гаплоидный, набор хромосом, содержащий только по одному гомологу; у человека это 23 хромосомы. Соответственно, каждая гамета содержит только один аллель каждого гена. Половина гамет, производимых особью, несет один аллель, а половина - другой. При слиянии яйцеклетки со сперматозоидом - оплодотворении, - образуется одна диплоидная клетка, называемая зиготой. Из клеток, получающихся в результате митотических делений зиготы в процессе индивидуального развития (онтогенезе), формируется новый организм. В зависимости от того, какие аллели несет данная особь, у нее развиваются те или иные признаки. Отметим, что равновероятное распределение аллелей по гаметам было открыто Грегором Менделем в 1865 и известно как Первое правило Менделя. См. далее

    НАСЛЕДОВАНИЕ АУТОСОМНЫХ ПРИЗНАКОВ

  53. Источник: Энциклопедия Кольера



  54. Философская энциклопедия

    НАСЛЕДСТВЕННОСТЬ

    передача прямым потомкам родительских свойств. Осуществляется благодаря непрерывности зародышевой плазмы: в то время как из одной части ее образуется тело нового индивида, др. часть продолжает свое существование в зародышевых клетках (яйцеклетках и сперматозоидах) этого индивида; в новом поколении этот процесс происходит вновь, в результате чего опять образуется новое тело, и, т. д. В теле «развиваются» «задатки» зародышевой плазмы и через нее передаются от поколения к поколению (см. Ген, Изменчивость). Совокупность этих задатков и представляет собой то, что наследуется. Ламаркизм (см. Ланарк) делает упор на влияние среды на наследственность при длительных одинаково направленных воздействиях (см. Неоламаркизм). Вопрос о том, наследуются ли приобретенные индивидом свойства, все еще является спорным. Учение о наследовании (наследственности) берет свое начало с опытов Грегора Менделя (18221884), осуществленных еще в 60-х годах прошлого столетия, но объясненных только около 1900 (Корренс, Чермак, де Фриз).

  55. Источник: Философская энциклопедия



  56. Энциклопедический словарь

    НАСЛЕ́ДСТВЕННОСТЬ -и; ж.

    1. Свойство живых существ передавать свои основные признаки и качества потомству.

    2. Совокупность природных свойств организма, передаваемых от поколения к поколению. Плохая н. Какая у больного н.?

    * * *

    насле́дственность

    свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивается самовоспроизведением материальных единиц наследственности — генов, локализованных в специфических структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

    * * *

    НАСЛЕДСТВЕННОСТЬ

    НАСЛЕ́ДСТВЕННОСТЬ, свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом. Обеспечивается самовоспроизведением материальных единиц наследственности — генов, локализованных в специфических структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью наследственности обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

  57. Источник: Энциклопедический словарь



  58. Начала современного естествознания

    свойство организмов повторять в ряду поколений сходные признаки и свойства: типы обмена веществ, психологические особенности и типы индивидуального развития и т. д. Вместе с изменчивостью наследственность обеспечивает, согласно взглядам Дарвина, постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

  59. Источник: Начала современного естествознания



  60. Сводная энциклопедия афоризмов

    НАСЛЕДСТВЕННОСТЬ

    Порода сильнее пастбища.

    Джордж Элиот

    Родители — одновременно наследственность и среда.В наследственность тверже всего верят отцы, у которых красивые дети.У наших детей умные родители.

    Юзеф Булатович

    Все хорошее было у него от родителей, все плохое — от отца с матерью.

    Михаил Генин

    Все плохое наследуется от другого родителя.

    «Первый закон наследственности»

    Отцы обычно рады, когда сыновья похожи на них лицом, но не слишком рады, когда они похожи на них поведением.Что может быть утешительнее, чем обнаружить у своего отпрыска свои же дурные черты? Это почти отпущение твоих грехов.

    Ван Вик Брукс

    Вундеркинды, как правило, дети родителей с богатым воображением.

    Жан Кокто

    От матери я унаследовал способность сберегать деньги, а от отца — неспособность их зарабатывать.

    Лоренс Питер

    Бездетность в вашей семье может быть наследственной.

    Роберт Бунзен

    Чем дольше живешь, тем больше наследуешь от себя самого.

    Лешек Кумор

    (см. ДЕТИ И РОДИТЕЛИ)

  61. Источник: Сводная энциклопедия афоризмов



  62. Русско-английский политехнический словарь

    heredity

  63. Источник: Русско-английский политехнический словарь



  64. Русско-украинский политехнический словарь

    спадко́вість, -вості

    - наследственность структуры

  65. Источник: Русско-украинский политехнический словарь



  66. Русско-украинский политехнический словарь

    спадко́вість, -вості

    - наследственность структуры

  67. Источник: Русско-украинский политехнический словарь



  68. Естествознание. Энциклопедический словарь

    свойство организмов повторять в ряду поколений сходные типы обмена в-в и индивид. развития в целом Обеспечивается самовоспроизведением материальных единиц Н.- генов, локализованных и специфич. структурах ядра клетки (хромосомах) и цитоплазмы. Вместе с изменчивостью Н. обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы.

  69. Источник: Естествознание. Энциклопедический словарь



  70. Энциклопедия социологии

    - англ. heredity; нем. Vererbung /Erblichkeit. Свойство живых систем воспроизводить себе подобных в ряду поколений.

  71. Источник: Энциклопедия социологии



  72. Социологический словарь

    (HEREDITY) Основные принципы науки о наследственности — исследования передачи от родителей к детям дискретных единиц наследственности (генов) — были открыты в 1865 г. Г.И. Менделем (1822-1884) в ходе экспериментов с горохом. Эти исследования заложили основы генетики (термин, предложенный У. Бэтсоном в 1905 г. для обозначения науки о наследственности). На генетические законы наследственности в природном мире ссылался Ф. Гальтон (1822-1911), развивавший идею евгеники как науки об улучшении человеческого рода посредством определенной «генетической политики». Менделевские принципы наследственности или генетической передачи могут быть упрощенно выражены формулой «подобное порождает подобное». Несмотря на важное значение этой теории для биологии, ее применимость в области антропологии и социологии вызывала большие сомнения. В социологии XIX в. положения о генетической наследственности использовались при обосновании тезиса о том, что «преступники порождают преступников». С распространением социального дарвинизма появились утверждения о том, что людей, обладающих неблагоприятными генетическими характеристиками, следует убеждать не иметь детей, или им необходимо препятствовать в этом, поскольку их размножение связано с гибельными последствиями для общества. Социологи критически относились к таким утверждениям на том основании, что (1) очень трудно доказать верность менделевских законов в случае с человеческим населением; (2) в социальных группах культура имеет более важное значение, чем биологическая наследственность, а основной единицей передачи является символ, а не ген; (3) евгеника вызывает возражения морального порядка. См. также: Интеллект; Природа и воспитание; Расизм; Социобиология.

  73. Источник: Социологический словарь



  74. Толковый словарь по социологии

    - англ. heredity; нем. Vererbung /Erblichkeit. Свойство живых систем воспроизводить себе подобных в ряду поколений.

  75. Источник: Толковый словарь по социологии



  76. Большой Энциклопедический словарь

  77. Источник: