Большая Советская энциклопедия

    сформулированное Н. Бором положение, сыгравшее важную роль в становлении квантовой механики (См. Квантовая механика), согласно которому получение экспериментальных данных об одних физических величинах, описывающих микрообъект (например, электрон, протон, атом), неизбежно связано с изменением таких данных о величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата и импульс частицы. Д. п. содержится в принципе неопределённостей, математическим выражением которого являются неопределённостей соотношения (См. Неопределённостей соотношение).

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ДОПОЛНИТЕЛЬНОСТИ принцип - сформулированный Н. Бором принцип, согласно которому при экспериментальном исследовании микрообъекта могут быть получены точные данные либо о его энергиях и импульсах, либо о поведении в пространстве и времени. Эти 2 взаимоисключающие картины: энергетически-импульсная и пространственно-временная, получаемые при взаимодействии микрообъекта с соответствующими измерительными приборами, "дополняют" друг друга. Дополнительный принцип сыграл важную роль при формировании квантовой механики.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП

    сформулированное дат. физиком Н. Бором принципиальное положение квант. механики, согласно к-рому получение эксперим. информации об одних физ. величинах, описывающих микрообъект (элем. ч-цу, атом, молекулу), неизбежно связано с потерей информации о нек-рых др. величинах, дополнительных к первым. Такими взаимно дополнит. величинами явл., напр., координата ч-цы и её скорость (или импульс). В общем случае дополнительными друг к другу явл. физ. величины, к-рым соответствуют операторы, не коммутирующие между собой, напр. направление и величина момента кол-ва движения, кинетич. и потенц. энергии, напряжённость электрич. поля в данной точке и число фотонов.

    С физ. точки зрения, Д. п. часто объясняют (следуя Бору) влиянием измерит. прибора (к-рый всегда явл. макроскопич. объектом) на состояние микрообъекта. При точном измерении одной из дополнит. величин (напр., координаты ч-цы) с помощью соответствующего прибора др. величина (импульс) в результате вз-ствия ч-цы с прибором претерпевает полностью неконтролируемое изменение. Такое толкование Д. п. подтверждается анализом простейших экспериментов (напр., измерение координаты ч-цы с помощью микроскопа и т. п.), однако с более общей точки зрения оно наталкивается на возражения филос. хар-ра. С позиций совр. квант. теории измерений роль прибора заключается в «приготовлении» нек-рого состояния системы. Состояния, в к-рых взаимно дополнит. величины имели бы одновременно точно определённые значения, принципиально невозможны, причём если одна из таких величин точно определена, то значения другой полностью неопределённы. Т. о., фактически Д. п. отражает объективные св-ва квант. систем, не связанные с существованием наблюдателя.

  5. Источник: Физическая энциклопедия



  6. Философская энциклопедия

    ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП

    методологич. принцип, выдвинутый дат. физиком Н. Бором в связи с интерпретацией квантовой механики. Он формулируется так: в процессе познания для воспроизведения целостности объекта необходимо применять взаимоисключающие, "дополнительные" классы понятий, каждый из к-рых применим в своих особых условиях. Д. п. часто отождествлялся с соотношением неопределенности Гейзенберга. Такое рассмотрение имело, напр., основание в том, что при определенности координаты микрочастицы имеет место неопределенность импульса, и наоборот. Тем самым открывалась возможность использовать эти две характеристики микрообъекта как взаимоисключающие. Однако содержание Д. п. значительно шире, и к этому принципу Бор подошел независимо от соотношения неопределенностей еще на ранних этапах развития квантовой физики. Для объяснения устойчивости атомов и особенностей их излучения Бор ввел свои известные постулаты. Благодаря им удалось непоследовательно соединить в одной модели классич. и квантовые представления о движении электрона. Но применение классич. представлений к области малых квантовых чисел (типично квантовым явлениям) не давало адекватных результатов. Необходимо было философски осмыслить данную ситуацию. Бор выдвигает идею новой формы связи классических и квантовых понятий. Новая идея, получившая в дальнейшем название "дополнительности", устанавливала эту связь, механически перенося старые понятия на новую область, в результате чего классические понятия "дополнялись" квантовыми. В последующем развитии квантовой теории возникли, казалось, непреодолимые гносеологические трудности (о физической природе микрочастиц, о возможности соединения в одной картине их взаимоисключающих сторон). Одной из попыток разрешения этих трудностей и явилась детальная разработка Бором Д. п. Свое название "Complementarity" эта идея получила в период формулировки основных принципов квантовой механики. Осенью 1927 на международном конгрессе физиков в Комо (Швейцария) Бор говорил, что "при описании атомных явлений квантовый постулат выдвигает перед нами задачу развития некоторой теорий „дополнительности“" ("Atomic theory and the description of nature", Camb., 1934, p. 55). Ее осн. требование – необходимость применения взаимоисключающих неадекватных (классич.) понятий в виде "дополнительных пар" для анализа противоречивых свойств квантовых объектов. Бор указывал в докладе "Свет и жизнь" (1932): "Пространственная непрерывность нашей картины распространения света и атомизм световых эффектов являются дополнительными аспектами в. том смысле, что они одинаково объясняют важные черты световых явлений, которые никогда не могут быть приведены в непосредственное противоречие друг с другом, так как их глубокий анализ в терминах механики требует взаимоисключающих экспериментальных устройств" ("Atomic physics and human knowledge", Ν. Υ., [1958], p. 5). Правильно вскрывая противоречивую природу света, противоположность волновых и корпускулярных свойств, Бор, однако, не видел возможности их внутреннего единства и выдвинул мысль о двух эквивалентных аспектах описания: л и б о корпускула, л и б о волна с последующим в н е ш н и м соположением обоих аспектов (физич. картины микроявлений), что и составляет методологич. суть Д. п. В этом наглядно сказывается непоследовательность филос. позиции Бора. В 30–40-х гг. Бор дал позитивистскую интерпретацию Д. п., выдвинув представление, что Д. п. служит для того, "чтобы символизировать фундаментальное ограничение объективного существования явления независимо от средств наблюдения" (там же, р. 7), и выступив с требованием "радикального пересмотра взглядов на проблему физической реальности" ("Квантово-механическое описание физической реальности", в журн.: "Успехи физ. наук", т. 16, вып. 4, 1936, с. 448). Гейзенберг усматривает прямую связь Д. п. с соотношением неопределенностей. Это приводит его к противопоставлению категорий пространства и времени категории причинности: "Пространственно-временное описание процессов, с одной стороны, и классический закон причинности – с другой, представляют дополнительные, исключающие друг друга черты физических процессов" ("Физические принципы квантовой теории", М.–Л., 1932, с. 51). В последующем Бор придает Д. п. всеобъемлющий характер, выходящий далеко за пределы физич. явлений. "Цельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур, представляют черты целостности, отображение которых требует типично дополнительного способа описания" ("Квантовая физика и философия", в журн.: "Успехи физ. наук", т. 67, вып. 1, 1959, с. 42). В работах ряда ученых, разделявших крайне позитивистские взгляды (П. Иордан, Ф. Франк, Г. Рейхенбах и др.), Д. п. использовался для пропаганды "краха причинности", "свободы воли" электрона и пр. Ошибочно абсолютизируя роль измерит. прибора, трактуя ее как "неконтролируемое взаимодействие", "приготовление субъектом физической реальности", они не смогли научно объяснить специфику познания микромира. Невозможность одноврем. определения координаты и импульса обусловлена, по их мнению, не противоречивой, корпускулярно-волновой природой микрообъектов, а использованием двух взаимоисключающих классов приборов: одного – для определения пространственно-временных характеристик, другого – импульсно-энергетических. Т.о., специфика процесса познания микроявлений объясняется ими не особенностями познаваемого объекта, а, наоборот, его природа рассматривается как следствие специфики познания. Среди понятий или ситуаций, требующих "дополнительного способа описания", указываются, напр., такие, как разум и инстинкт, свобода воли и детерминизм в психологии; понятие и звуковой фон в лингвистике; механицизм и витализм в биологии; личная свобода и социальное равенство в социологии; правосудие и милосердие в юриспруденции и др. При конкретном анализе этих противоречий с позиции Д. п. иногда обнаруживается внешнее сходство с диалектикой. На этом основании в зап. лит-ре, в частности в швейцарском журнале "Dialectika", стало модным отождествление диалектич. противоположностей с "дополнительностями" (взаимоисключающими сторонами познаваемого объекта) и, соответственно, диалектики с методом "дополнительности". Это отождествление необоснованно. Д. п. предполагает механистический разрыв противоположностей, а затем их внешнее рядоположение, в то время как для диалектики характерны не только взаимоисключение, но и объективная взаимосвязь, взаимопроникновение противо-положностей. Концепция "дополнительности" была подвергнута критическому анализу со стороны ряда советских и зарубежных ученых: П. Ланжевена, С. И. Вавилова, В. А. Фока, Луи де Бройля, Д. И. Блохинцева, М. Э. Омельяновского, И. В. Кузнецова, С. Г. Суворова, Л. Яноши и др. Этот критический анализ способствовал расчищению пути для дальнейшего развития физической теории. Тем не менее нек-рые рациональные выводы из методологической концепции Бора, в к-рой стихийно отразились элементы диалектики, могут в силу этого оказаться полезными при разрешении некоторых трудностей в развитии современной физики, напр. в построении теории "элементарных" частиц.

    Таким образом, методологическая роль Д. п. изменяется с развитием квантовой физики, его значение уменьшается в ходе развития физической теории. Концепция, выдвинутая Бором, сыграла положительную вспомогательную роль на ранних этапах построения и интерпретации квантовой теории. Однако последующая абсолютизация "дополнительного способа описания" и неправомерное возведение его в ранг метода исследования не соответствовали требованиям адекватного, все более углубляющегося познания. Рациональный смысл идеи "дополнительности" и ее первоначальное значение оказались утраченными, когда с ней стали связывать агностицизм, различные субъективистские взгляды на физическую реальность, на проблему причинности и т.п. Но объективное содержание исследований Бора и выводы, логически следующие из них, в известной мере способствовали обогащению научных представлений о диалектическом характере процессов природы. Они показывают необходимость сознательного применения адекватного метода познания – аналога диалектических процессов действительности.

    Лит.: Блохинцев Д. И., Основы квантовой механики, 2 изд., М.–Л., 1949; его же, Критика философских воззрений так называемой "копенгагенской школы" в физике, в сб.: Философские вопросы современной физики, М., 1952; Александров А. Д., Против идеализма и путаницы в понимании квантовой механики, "Вестн. ЛГУ", 1949, No 4; Кузнецов И. В., Вернер Гейзенберг и его философские позиции в физике, в кн.: Гейзенберг В., Философские проблемы атомной физики, пер. Η. Φ. Овчинникова, М., 1953; Омельяновский М. Э., Философские вопросы квантовой механики, М., 1956; Φок В. Α., Критика взглядов Бора на квантовую механику, в сб.: Философские вопросы современной физики. Под редакцией И. Кузнецова и М. Омельяновского, М., 1958; Сачков Ю. В., О материалистическом истолковании квантовой механики, М., 1959; Философские вопросы современной физики. Сб. [Под редакцией И. В. Кузнецова и М. Э. Омельяновского], М., 1959; Проблема причинности в современной физике. [Под редакцией И. В. Кузнецова и др.], М., I960.

    А. Познер. Москва.

  7. Источник: Философская энциклопедия



  8. Энциклопедический словарь

    дополни́тельности при́нцип

    сформулированный Н. Бором принцип, согласно которому при экспериментальном исследовании микрообъекта могут быть получены точные данные либо о его энергиях и импульсах, либо о поведении в пространстве и времени. Эти 2 взаимоисключающие картины — энергетически-импульсная и пространственно-временна́я, получаемые при взаимодействии микрообъекта с соответствующими измерительными приборами, «дополняют» друг друга. Дополнительный принцип сыграл важную роль при формировании квантовой механики.

    * * *

    ДОПОЛНИТЕЛЬНОСТИ ПРИНЦИП

    ДОПОЛНИ́ТЕЛЬНОСТИ ПРИ́НЦИП, сформулированный Н. Бором принцип, согласно которому при экспериментальном исследовании микрообъекта могут быть получены точные данные либо о его энергиях и импульсах, либо о поведении в пространстве и времени. Эти 2 взаимоисключающие картины: энергетически-импульсная и пространственно-временная, получаемые при взаимодействии микрообъекта с соответствующими измерительными приборами, «дополняют» друг друга. Дополнительный принцип сыграл важную роль при формировании квантовой механики.

  9. Источник: Энциклопедический словарь



  10. Естествознание. Энциклопедический словарь

    сформулированное Н. Бором (1927) принцип. положение квантовой механики, согласно к-рому получение эксперим. информации об одних физ. величинах, описывающих микрообъект (напр., молекулу, атом), неизбежно связано с потерей информации о нек-рых др. величинах, дополнит. к первым. Такими взаимно дополнит. величинами являются, напр., координата частицы и её импульс (или скорость), кинетич. и потенц. энергии. Д. п. часто объясняют влиянием измерит. прибора (к-рый всегда является макрообъектом) на состояние микрообъекта. Д. п. сыграл важную роль при формировании квантовой механики.

  11. Источник: Естествознание. Энциклопедический словарь



  12. Большой Энциклопедический словарь

  13. Источник: