Большая Советская энциклопедия

    I

    Спектра́льное разложе́ние

    линейного оператора, представление линейного оператора А (См. Линейный оператор) в виде линейной комбинации операторов проектирования на взаимно перпендикулярные оси или (более общо) в виде специального интеграла, содержащего под знаком интегрирования семейство операторов проектирования, удовлетворяющее определённым условиям (так называемое разложение единицы, отвечающее оператору А). Изучение С. р. и их возможных обобщений для различных типов линейных операторов составляет основное содержание спектрального анализа (См. Спектральный анализ) линейных операторов.

    II

    Спектра́льное разложе́ние

    случайной функции, разложение случайной функции (См. Случайная функция) (в частности, случайного процесса (См. Случайный процесс)) в ряд или интеграл по той или иной специальной системе функций такое, что коэффициенты этого разложения представляют собой взаимно некоррелированные случайные величины. Наиболее известный класс С. р. случайных функций — представления стационарных случайных процессов (См. Стационарный случайный процесс) Х (t) в виде интеграла Фурье — Стилтьеса

    ,

    где Z(λ) — случайная функция с некоррелированными приращениями. Существование такого С. р. показывает, что стационарный случайный процесс всегда можно рассматривать как наложение некоррелированных друг с другом гармонических колебаний различных частот со случайными фазами и амплитудами. С. р. аналогичного вида, но с заменой гармонических колебаний n-мерными плоскими волнами, имеет место и для однородных случайных полей в n-мерном пространстве. Другой тип С. р. случайных функций — это разложение случайного процесса X(t), заданного на конечном отрезке оси (или, более общо, случайной функции X(t), заданной на ограниченной области n-мерного пространства), в ряд вида

    ,

    где φk(t) и λk — собственныеФункциии Собственные значения интегрального оператора в функциональном пространстве с ядром, равным корреляционной функции случайного процесса (или функции) X(t), a Zk, k = 1, 2,..., — последовательность попарно некоррелированных случайных величин единичной дисперсии. С. р. специального вида имеют место также для однородных и изотропных случайных полей в евклидовых пространствах и для однородных полей на пространствах с группой преобразований, отличных от евклидова пространства.

    Лит.: Яглом А. М., Спектральные представления для различных классов случайных функций, в кн.; Труды 4-го Всесоюзного математического съезда, т. 1, Л., 1963, с. 250—73: Гихман И. И., Скороход А. В., Теория случайных процессов, т.1, М., 1971.

    А. М. Яглом.

    III

    Спектра́льное разложе́ние

    функции, разложение функции в ряд по собственным функциям (См. Собственные функции) некоторого линейного оператора (См. Линейный оператор) (например, конечно-разностного, дифференциального или интегрального), действующего в функциональном пространстве, или одно из возможных обобщений такого разложения. Частным случаем С. р. является разложение функции, заданной на конечном отрезке, в Фурье ряд (т. е. гармонический анализ колебаний), а также разложения по другим известным полным системам функций (См. Полная система функций). В случае линейного оператора А, имеющего непрерывный спектр, собственные функции, понимаемые в обычном смысле, не существуют; тем не менее и здесь весьма часто удаётся определить эти функции (но только они уже не будут являться элементами того функционального пространства, в котором действует оператор А) и задать С. р. широкого класса функций как разложение в интеграл по системе функций, зависящей от непрерывно изменяющегося аргумента (пример С. р. этого типа — разложение в Фурье интеграл).Для несамосопряжённых операторов Анаряду с собственными функциями приходится рассматривать ещё и цепочки функций, присоединённых к собственным функциям; однако и для таких операторов в функциональных пространствах во многих случаях удаётся доказать теорему о полноте системы всех собственных и присоединённых функций и, исходя отсюда, получить С. р. широкого класса функций по всевозможным собственным и присоединённым функциям оператора А.

    С. р. функций широко используются для решения различных конечно-разностных, дифференциальных и интегральных уравнений и находят многочисленные приложения в задачах классической механики (особенно теории колебаний), электродинамики, квантовой механики, теории связи, теории автоматического управления и других разделах математической физики и прикладной математики.

    Лит.: Березанский Ю. М., Разложение по собственным функциям самосопряженных операторов, К., 1965; Титчмарш Э. Ч., Разложения по собственным функциям, связанные с дифференциальными уравнениями второго порядка, пер. с англ., т. 1—2, М., 1960—61; Наймарк М. А., Линейные дифференциальные операторы, 2 изд., М., 1969; Левитан Б. М., Capгсян И. С., Введение в спектральную теорию (самосопряженные обыкновенные дифференциальные операторы), М., 1970.

    А. М. Яглом.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой англо-русский и русско-английский словарь

    мат. spectral decomposition

  3. Источник: Большой англо-русский и русско-английский словарь



  4. Математическая энциклопедия

    случайной функции - 1) разложение случайной функции (в частности, случайного процесса) в ряд или интеграл по той или иной специальной системе функций такое, что коэффициенты этого разложения представляют собой взаимно некоррелированные случайные величины. Широкий класс С. р. комплекснозначных случайных функций X(t), с нулевым средним значением (т. е. таких, что может быть представлен в виде

    где L - нек-рое множество с заданной системой лизмеримых подмножеств

  5. Источник: Математическая энциклопедия



  6. Математическая энциклопедия

    линейного оператора - представление оператора в виде интеграла по спектральной мере( спектральной функции). Для любого самосопряженного оператора Тв гильбертовом пространстве Нсуществует такая спектральная функция что

    Это означает, что

    для любых Спектральная функция самосопряженного оператора Тможет быть вычислена через его резольвенту по формуле

    Из теоремы о С. р. самосопряженного оператора следует возможность реализации самосопряженных операторов операторами умножения и существование функционального исчисления на борелевских функциях.

    Используя С. р. самосопряженного оператора и теорию расширений с выходом из пространства (см. [2]), можно получить интегральное представление симметрического оператора через обобщенную спектральную функцию. Аналогично строится интегральное представление изометрических операторов. При этом аналогия между С. р. самосопряженных и унитарных операторов, с одной стороны, и интегральными представлениями симметрических и изометрических - с другой, далеко не полная (отсутствие единственности обобщенных спектральных функций, отсутствие сильной сходимости интегралов, сравнительная узость функционального исчисления и т. п.).

    Для любого ограниченного нормального оператора Т в гильбертовом пространстве Н существует такая счетно аддитивная в сильной операторной топологии самосопряженная спектральная мера на -алгебре борелевских подмножеств комплексной плоскости, что

    При этом Эта теорема допускает следующую удобную переформулировку: всякий ограниченный нормальный оператор унитарно эквивалентен оператору умножения на нек-рую существенно ограниченную функцию в пространстве причем мера может быть выбрана коночной, если пространство сепарабельно.

    Из теоремы о С. р. следует существование функционального исчисления от нормального оператора, т. е. гомоморфизма алгебры существенно ограниченных борелевских функций на в алгебру ограниченных операторов, удовлетворяющего условию id(T)=T и переводящего всякую ограниченную поточечно сходящуюся последовательность функций в сильно сходящуюся последовательность операторов. Образ этого гомоморфизма (т. е. множество всех функций от оператора Т)совпадает с множеством всех операторов, перестановочных с каждым оператором, перестановочным с Т. Поскольку из существования функционального исчисления, в свою очередь, следует теорема о С. р., этот результат можно считать одной из форм спектральной теоремы. Теорема о С. р. обобщается и на неограниченные нормальные операторы (см. [2]).

    Спектральная мера в случае С. р. унитарного оператора - частного случая нормального оператора - может быть задана на единичной окружности. С. р. унитарного оператора Vиногда записывается в виде

    где - спектральная функция, сосредоточенная на отрезке Таким образом, С. р. дает возможность представить унитарный оператор в виде ехр iA, где А- самосопряженный оператор. Этот результат обобщает теорема Стоуна: всякая сильно непрерывная однопараметрическая группа унитарных операторов представляется в виде

    где А - самосопряженный (возможно, неограниченный) оператор.

    Лит.:[1] Данфорд Н., Шварц Дж., Линейные операторы, пер. с англ., ч. 2 - Спектральная теория, М., 1966; [2] Ахиезер Н. И., Глазман И. М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966.

    В. С. Шулъман.

  7. Источник: Математическая энциклопедия



  8. Dictionnaire technique russo-italien

    decomposizione spettrale

  9. Источник: Dictionnaire technique russo-italien



  10. Русско-украинский политехнический словарь

    спектра́льне розклада́ння

  11. Источник: Русско-украинский политехнический словарь



  12. Русско-украинский политехнический словарь

    спектра́льне розклада́ння

  13. Источник: Русско-украинский политехнический словарь