Большая Советская энциклопедия

    метод получения температур ниже 1 К путём адиабатического размагничивания парамагнитных веществ. Предложен П. Дебаем (См. Дебай)и американским физиком У. Джиоком (1926); впервые осуществлен в 1933. М. о. — один из двух практически применяемых методов получения температур ниже 0,3 К (другим методом является растворение жидкого гелия 3He в жидком 4He).

    Для М. о. применяют соли редкоземельных элементов (например, сульфат гадолиния), хромокалиевые, железоаммониевые, хромометиламмониевые квасцы и ряд других парамагнитных веществ. Кристаллическая решётка этих веществ содержит ионы Fe, Cr, Gd с недостроенными электронными оболочками и отличным от нуля собственным магнитным моментом (Спином). Парамагнитные ионы разделены в кристаллической решётке большим числом немагнитных атомов. Это приводит к тому, что магнитное взаимодействие ионов оказывается слабым: даже при низких температурах, когда тепловое движение значительно ослаблено, силы взаимодействия не способны упорядочить систему хаотически ориентированных спинов. В методе М. о. применяется достаточно сильное (Магнитное охлаждение несколько кэ) внешнее магнитное поле, которое, упорядочивая направление спинов, намагничивает парамагнетик. При выключении внешнего поля (размагничивании парамагнетика) спины под действием теплового движения атомов (ионов) кристаллической решётки вновь приобретают хаотическую ориентацию. Если размагничивание осуществляется адиабатически (в условиях теплоизоляции), то температура парамагнетика понижается (см. Магнетокалорический эффект).

    Процесс М. о. принято изображать на термодинамической диаграмме в координатах температура Т — энтропия S (рис. 1). Получение низких температур связано с достижением состояний, в которых вещество обладает малыми значениями энтропии (См. Энтропия).В энтропию кристаллического парамагнетика, характеризующую неупорядоченность его структуры, свою долю вносят тепловые колебания атомов кристаллической решётки («тепловой беспорядок») и разориентированность спинов («магнитный беспорядок»). При Т ® 0 энтропия решётки Speш убывает быстрее энтропии системы спинов Sмагн, так что Speш при температурах Т Sмагн. В этих условиях возникает возможность осуществить М. о.

    Цикл М. о. (рис. 1) состоит из 2 стадий: 1) изотермического намагничивания (линия АБ) и 2) адиабатического размагничивания парамагнетика (линия БВ). Перед намагничиванием температуру парамагнетика при помощи жидкого гелия понижают до Т Магнитное охлаждение 1 К и поддерживают её постоянной на протяжении всей 1-й стадии М. о. Намагничивание сопровождается выделением теплоты и уменьшением энтропии до значения SH. На 2-й стадии М. о. тепловое движение, разрушая упорядоченность спинов, приводит к увеличению Sмагн. Однако в процессе адиабатического размагничивания энтропия парамагнетика в целом не меняется. Увеличение Sмагн компенсируется уменьшением Speш, то есть охлаждением парамагнетика.

    Взаимодействие спинов между собой и с кристаллической решёткой (спин-решёточное взаимодействие) определяет температуру, при которой начинается резкий спад кривой Sмагн при Т ® 0 и становится возможным М. о. Чем слабее взаимодействие спинов, тем более низкие температуры можно получить методом М. о. Парамагнитные соли, применяемые для М о., позволяют достичь температур Магнитное охлаждение 10-3 К.

    Значительно более низких температур удалось достигнуть, используя парамагнетизм уже не атомов (ионов), а атомных ядер. Магнитные моменты ядер примерно в тысячу раз меньше спиновых магнитных моментов электронов, определяющих моменты парамагнитных ионов. Поэтому взаимодействие ядерных магнитных моментов значительно слабее взаимодействия моментов ионов. Для намагничивания до насыщения системы ядерных магнитных моментов даже при Т = 1 K требуются сильные магнитные поля (Магнитное охлаждение 107э).Практически применяют поля 105 э, но тогда необходимы более низкие температуры (Магнитное охлаждение 0,01 К). При исходной температуре Магнитное охлаждение 0,01 K адиабатическим размагничиванием системы ядерных спинов (например, в образце меди) удаётся достигнуть температуры 10-5—10-6 К. До этой температуры охлаждается не весь образец. Полученная температура (её называют спиновой) характеризует интенсивность теплового движения в системе ядерных спинов сразу после размагничивания. Электроны же и кристаллическая решётка остаются после размагничивания при исходной температуре Магнитное охлаждение 0,01 К. Последующий обмен энергией между системами ядерных и электронных спинов (посредством спин-спинового взаимодействия (См. Спин-спиновое взаимодействие)) может привести к кратковременному охлаждению всего вещества до Т Магнитное охлаждение 10-4 К. Измеряют низкие температуры (Магнитное охлаждение 10-2 К и ниже) методами магнитной термометрии (См. Магнитная термометрия). Практически М. о. осуществляют следующим способом (рис. 2, а). Блок парамагнитной соли С помещается на подвесках из материала с малым коэффициентом теплопроводности внутри камеры 1, которая погружена в Криостат2с жидким гелием 4He. Откачкой паров гелия температура в криостате поддерживается на уровне 1,0—1,2 К (применение жидкого 3He позволяет снизить исходную температуру до Магнитное охлаждение 0,3 К). Теплота, выделяющаяся в соли во время намагничивания, отводится к жидкому гелию газом, заполняющим камеру 1. Перед выключением магнитного поля газ из камеры 1 откачивают через кран 4 и таким образом блок соли С теплоизолируют от жидкого гелия. После размагничивания температура соли понижается и может достигнуть нескольких тысячных долей градуса. Запрессовывая в блок соли какое-либо вещество или соединяя вещество с блоком соли пучком тонких медных проволочек, можно охладить вещество практически до тех же температур. Наиболее низкие температуры получают методом двухступенчатого М. о. (рис. 2, б).Сначала производят адиабатическое размагничивание соли С и через тепловой ключ (теплопроводящую перемычку) К охлаждают предварительно намагниченную соль D. Затем, после размыкания ключа К, размагничивают соль D, которая при этом охлаждается до температуры существенно более низкой, чем была получена в блоке соли С. Тепловым ключом в установках описанного типа обычно служит проволочка из сверхпроводящего вещества, теплопроводность которой в нормальном и сверхпроводящем состояниях при Т Магнитное охлаждение 0,1 К различается во много раз. По схеме рис. 2, б осуществляют и ядерное размагничивание с тем отличием, что соль D заменяют образцом (например, меди), для намагничивания которого применяется поле напряжённостью в несколько десятков кэ.

    М. о. широко применяется при изучении низкотемпературных свойств жидкого гелия (сверхтекучести (См. Сверхтекучесть) и других), квантовых явлений в твёрдых телах (например, сверхпроводимости (См. Сверхпроводимость)), явлений ядерной физики и т.д.

    Лит.: Вонсовский С. В., Магнетизм, М., 1971, с. 368—382; Физика низких температур, под общей редакцией А. И. Шальникова, перевод с английского, М., 1959, с. 421—610; Мендельсон К., На пути к абсолютному нулю, перевод с английского, М., 1971; Амблер Е. и Хадсон Р. П., Магнитное охлаждение, «Успехи физических наук»,1959, т. 67, в. 3.

    А. Б. Фрадков.

    Рис. 1. Энтропийная диаграмма процесса магнитного охлаждения (S — энтропия, Т — температура). Кривая S0 — изменение энтропии рабочего вещества с температурой без магнитного поля; Sн — изменение энтропии вещества в поле напряжённостью Н; Sрeш — энтропия кристаллической решётки (Speш Магнитное охлаждение Т3): Ткон — конечная температура в цикле магнитного охлаждения.

    Рис. 2. Схемы установок для магнитного охлаждения: а — одноступенчатого (N, S — полюсы электромагнита), б — двухступенчатого.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    МАГНИТНОЕ ОХЛАЖДЕНИЕ (адиабатическое размагничивание) - понижение температуры парамагнетиков, находящихся в сильном магнитном поле, при быстром выключении поля (см. Магнетокалорический эффект); происходит в результате затраты внутренней энергии парамагнетика на дезориентацию магнитных моментов микрочастиц. В парамагнитных солях магнитное охлаждение позволяет достичь температуры ~10-3К, в системах ядерных магнитных моментов 10-5 - 10-6К.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    МАГНИТНОЕ ОХЛАЖДЕНИЕ

    метод получения темп-р ниже 1 К путём адиабатич. размагничивания парамагн. в-в. Предложен П. Дебаем и амер. физиком У. Джиоком (1926); впервые осуществлён в 1933. М. о.— один из двух практически применяемых методов получения темп-р ниже 0,3 К (другим методом явл. растворение жидкого гелия 3Не в жидком 4Не).

    Для М. о. применяют соли редкоземельных элементов (напр., сульфат гадолиния), хромокалиевые, железоаммониевые, хромометиламмониевые квасцы и ряд др. парамагн. в-в. Крист. решётка этих в-в содержит парамагн. ионы Fe, Cr, Gd, к-рые разделены в крист. решётке большим числом немагн. ионов и поэтому взаимодействуют между собой слабо: даже при низких темп-pax, когда тепловое движение значительно ослаблено, силы магн. вз-ствия не способны упорядочить систему хаотически ориентированных спинов. В методе М. о. применяется достаточно сильное (= неск. десятков кЭ) внеш. магн. поле, к-рое, упорядочивая направление спинов, намагничивает парамагнетик. При выключении внеш. поля (размагничивании парамагнетика) спины под действием теплового движения атомов (ионов) крист. решётки вновь приобретают хаотич. ориентацию. Если размагничивание осуществляется адиабатически (в условиях теплоизоляции), то темп-ра парамагнетика понижается (см. МАГНЕТОКАЛОРИЧЕСКИЙ ЭФФЕКТ).

    Процесс М. о. принято изображать на термодинамич. диаграмме в координатах: темп-pa Т — энтропия S (рис. 1).

    МАГНИТНОЕ ОХЛАЖДЕНИЕ1

    Рис. 1. Энтропийная диаграмма процесса магн. охлаждения (S — энтропия, Т — темп-ра). Кривая S0— изменение энтропии рабочего в-ва с темп-рой без магн. поля; SH— изменение энтропии в-ва в поле напряжённостью Н; Sреш — энтропия кристаллич. <решётки (Sреш=T3); Tкон — конечная темп-ра в цикле магн. охлаждения.

    Получение низких темп-р связано с достижением состояний, в к-рых в-во обладает малыми значениями энтропии. В энтропию кристаллич. парамагнетика, характеризующую неупорядоченность его структуры, свою долю вносят тепловые колебания атомов крист. решётки («тепловой беспорядок») и разориентированность спинов («магнитный беспорядок»). При Т ®0 энтропия решётки Sреш убывает быстрее энтропии системы спинов Sмагн, так что Sреш при темп-рах Т?1 К становится исчезающе малой по сравнению с Sмагн. В этих условиях возникает возможность осуществить М. о.

    Цикл М. о. (рис. 1) состоит из двух стадий:

    1) изотермич. намагничивания линия АБ) и

    2) адиабатич. размагничивания парамагнетика (линия БВ).

    Перед намагничиванием темп-ру парамагнетика при помощи жидкого гелия понижают до Т=1 К и поддерживают её постоянной на протяжении всей первой стадии М. о. Намагничивание сопровождается выделением теплоты и уменьшением энтропии до значения SН. На второй стадии I. о. в процессе адиабатич. размагничивания энтропия парамагнетика остаётся постоянной и его темп-pa понижается (линия БВ).

    Вз-ствие спинов между собой и с крист. решёткой определяет темп-ру, при к-рой начинается резкий спад кривой Sмагн при Т ®0. Чем слабее:1-ствие спинов, тем более низкие темп-ры можно получить методом М. о. парамагн. соли позволяют достичь темп-р = 5
    • 10-3 К.

    Значительно более низких темп-р удалось достигнуть, используя ядерный парамагнетизм. Вз-ствие ядерных магн. моментов значительно слабее вз-ствия магн. моментов ионов. Для намагничивания до насыщения системы ядерных магн. моментов даже при T=1 К требуются очень сильные магн. поля (=107 Э). При применяемых полях = 105 Э намагничивание до насыщения возможно при темп-рах =0,01 К. При исходной темп-ре =0,01 К адиабатич. размагничивание системы яд. спинов (напр., в образце меди) удаётся достигнуть темп-ры 10-5—10-6 К. До этой темп-ры охлаждается не весь образец. Полученная темп-pa (её называют спиновой) характеризует интенсивность теплового движения в системе яд. спинов сразу после размагничивания. Эл-ны же и крист. решётка остаются после размагничивания при исходной темп-ре = 0,01 К. Последующий обмен энергией между системами яд. и электронных спинов (посредством спин-спинового взаимодействия) может привести к кратковрем. охлаждению всего в-ва до T=10-4 К (измеряют такие темп-ры методами магнитной термометрии). Практически М. о. осуществляют следующим способом. Блок парамагн. соли С помещается на подвесках из материала с малым коэфф. теплопроводности внутри камеры 1, к-рая погружена в криостат 2 с жидким 4Не (рис. 2, а).

    МАГНИТНОЕ ОХЛАЖДЕНИЕ2

    Рис. 2. Схемы установок для магн. охлаждения: а — одноступенчатого (N, S — полюсы электромагнита), б — двухступенчатого.

    Откачкой паров гелия через кран 3 темп-pa в криостате поддерживается на уровне 1,0—1,2 К (применение жидкого 3Не позволяет снизить исходную темп-ру до =0,3 К). Теплота, выделяющаяся в соли во время намагничивания, отводится к жидкому гелию газом, заполняющим камеру 7. Перед выключением магн. поля газ из камеры 1 откачивают через кран 4 и т. о. блок парамагн. соли С теплоизолируют от жидкого гелия. После размагничивания темп-pa соли понижается и может достигнуть неск. тысячных К. Запрессовывая в блок соли к.-л. в-во или соединяя в-во с блоком соли пучком тонких медных проволочек, можно охладить в-во практически до тех же темп-р. Наиболее низкие темп-ры получают методом двухступенчатого М. о. (рис. 2, б). Сначала производят адиабатич. размагничивание соли С и через тепловой ключ (теплопроводящую перемычку) К охлаждают предварительно намагниченную соль D. Затем, после размыкания ключа K, размагничивают соль D, к-рая при этом охлаждается до темп-ры, существенно более низкой, чем была получена в блоке соли С. Тепловым ключом в установках описанного типа обычно служит проволочка из сверхпроводящего в-ва, теплопроводности к-рой в норм. и сверхпроводящем состояниях при T=0,1 К сильно отличаются (во много раз). По схеме рис. 2, б осуществляют и яд. размагничивание с тем отличием, что соль D заменяют образцом (напр., меди), для намагничивания к-рого применяется поле напряжённостью в неск. десятков кЭ.

    М. о. широко используется при изучении низкотемпературных св-в жидкого 3Не (сверхтекучести и др.), квант. явлений в тв. телах (напр., сверхпроводимости), св-в ат. ядер и т. д.

  5. Источник: Физическая энциклопедия



  6. Энциклопедический словарь

    магни́тное охлажде́ние

    (адиабатическое размагничивание), понижение температуры парамагнетиков, находящихся в сильном магнитном поле, при быстром выключении поля (см. Магнетокалорический эффект); происходит в результате затраты внутренней энергии парамагнетика на дезориентацию магнитных моментов микрочастиц. В парамагнитных солях магнитное охлаждение позволяет достичь температуры магни́тное охлажде́ние10-3К, в системах ядерных магнитных моментов 10-5—10-6К.

    * * *

    МАГНИТНОЕ ОХЛАЖДЕНИЕ

    МАГНИ́ТНОЕ ОХЛАЖДЕ́НИЕ (адиабатическое размагничивание), понижение температуры парамагнетиков, находящихся в сильном магнитном поле, при быстром выключении поля (см. Магнетокалорический эффект(см. МАГНЕТОКАЛОРИЧЕСКИЙ ЭФФЕКТ)); происходит в результате затраты внутренней энергии парамагнетика на дезориентацию магнитных моментов микрочастиц. В парамагнитных солях магнитное охлаждение позволяет достичь температуры МАГНИТНОЕ ОХЛАЖДЕНИЕ10-3К, в системах ядерных магнитных моментов 10-5 — 10-6К.

  7. Источник: Энциклопедический словарь



  8. Русско-украинский политехнический словарь

    магне́тне охоло́дження

  9. Источник: Русско-украинский политехнический словарь



  10. Русско-украинский политехнический словарь

    магне́тне охоло́дження

  11. Источник: Русско-украинский политехнический словарь



  12. Естествознание. Энциклопедический словарь

    (адиабатическое размагничивание), понижение темп-ры парамагнетиков, находящихся в сильном магн. поле, при быстром выключении поля (см. Магни-токалорический эффект); происходит в результате затраты внутр. энергии парамагнетика на дезориентацию магн. моментов микрочастиц. В парамагн. солях М.о. позволяет достичь темп-ры ~ 10-3 К, в системах ядерных магн. моментов 10-5 - 10-6К.

  13. Источник: Естествознание. Энциклопедический словарь



  14. Большой Энциклопедический словарь

  15. Источник: