Большая Советская энциклопедия

    теория рассеяния, процесс столкновения частиц, в результате которого меняются импульсы частиц (упругое рассеяние) или наряду с изменением импульсов меняются также их внутреннего состояния либо образуются др. частицы (неупругое рассеяние).

    Одна из основных количественных характеристик как упругого рассеяния, так и неупругих процессов, — Эффективное поперечное сечение процесса (называемое обычно просто сечением) — величина, пропорциональная вероятности процесса и имеющая размерность площади (см2). Измерение сечений процессов позволяет изучать законы взаимодействия частиц, исследовать структуру частиц. Например, классическими опытами Э. Резерфорда по рассеянию α-частиц атомами было установлено существование атомных ядер (см. Резерфорда формула); из опытов по рассеянию электронов большой энергии на протонах и нейтронах (нуклонах) получают информацию о структуре нуклонов; эксперименты по упругому рассеянию нейтронов и протонов протонами позволяют детально исследовать ядерные силы и т.д. (О столкновениях атомов и ядер см. Столкновения атомные,Ядерные реакции.)

    Классическая теория рассеяния. Согласно законам классической (нерелятивистской) механики, задачу рассеяния двух частиц с массами m1 и m2 можно свести переходом к системе центра инерции (См. Центр инерции) сталкивающихся частиц (системе, в которой покоится центр инерции частиц, т. е. суммарный импульс частиц равен нулю) к задаче рассеяния одной частицы с приведённой массой μ =m1m2/(m1 + m2)на неподвижном силовом центре. В силовом поле (с центром О) траектория частицы искривляется — происходит рассеяние. Угол между начальным (рнач) и конечным (ркон) импульсами рассеиваемой частицы называется углом рассеяния. Угол рассеяния ϑ зависит от взаимодействия между частицами и от т. н. прицельного параметра ρ — расстояния, на котором частица пролетела бы от силового центра, если бы взаимодействие отсутствовало (рис. 1). Классическая механика устанавливает следующую связь между прицельным параметром и углом рассеяния:

    где U(r)— потенциальная энергия взаимодействия, r — расстояние до силового центра (rмин — минимальное расстояние), Е= р2нач/2μ — энергия частицы.

    На опыте обычно не измеряют рассеяние индивидуальной частицы, а направляют на мишень из исследуемого вещества пучок одинаковых частиц, имеющих одинаковую энергию, и измеряют количество частиц, рассеянных под данным углом. Число частиц dN, рассеянных в единицу времени на углы, лежащие в интервале ϑ, ϑ + dϑ, равно числу частиц, проходящих в единицу времени через кольцо 2πρdρ․n. Если n — плотность потока падающих частиц (число частиц, проходящих в единицу времени через единичную площадку, перпендикулярную направлению движения частиц в пучке), то dN= 2πρdρ․n, а сечение упругого рассеяния dσ определяется как отношение dN /n и равно

    (т. е., как уже отмечалось, сечение имеет размерность площади). Сечение рассеяния на все углы — полное сечение рассеяния — получается интегрированием (2) по всем прицельным параметрам. Если а — минимальный прицельный параметр, при котором ϑ = 0 (т. е. частица проходит без отклонения), то полное сечение рассеяния σ=πa2.

    Квантовая теория рассеяния.В квантовой теории процессы упругого рассеяния и неупругие процессы описываются амплитудами рассеяния — комплексными величинами, квадрат модуля которых пропорционален сечениям соответствующих процессов. В 1943 В. Гейзенберг для описания процессов рассеяния ввёл т. н. S-матрицу, или матрицу рассеяния (См. Матрица рассеяния). Её матричные элементы определяют амплитуды различных процессов. Через матричные элементы S-матрицы выражаются физические величины, непосредственно измеряемые на опыте: сечение, поляризация частиц (среднее значение оператора спина), асимметрия, возникающая при рассеянии на поляризованной мишени и др. С др. стороны, матричные элементы S-матрицы могут быть вычислены при определённых предположениях о виде взаимодействия. Сравнение результатов опыта с предсказаниями теории позволяет проверить теорию.

    Общие принципы инвариантности (инвариантность относительно вращений, из которой вытекает сохранение момента количества движения, отражений — сохранение чёткости, обращения времени (См. Обращение времени) и др.) существенно ограничивают возможный вид матричных элементов S-матрицы и позволяют получить проверяемые на опыте соотношения. Например, из закона сохранения чётности следует, что поляризация конечной частицы при столкновении неполяризованных частиц направлена по нормали к плоскости рассеяния (плоскости, проходящей через начальный и конечный импульсы частицы). Измеряя направление вектора поляризации, можно выяснить, сохраняется ли чётность во взаимодействии, обусловливающем процесс. Изотопическая инвариантность сильных взаимодействий приводит к соотношениям между сечениями различных процессов, а также к запрету некоторых процессов. В частности, из изотопической инвариантности следует, что при столкновении двух дейтронов не могут образоваться α-частица и π°-мезон. Исследование этого процесса на опыте подтвердило справедливость изотопической инвариантности.

    Условие унитарности S-матрицы, являющееся следствием сохранения полной вероятности (суммарная вероятность рассеяния по всем возможным каналам реакции должна равняться 1), также накладывает ограничения на матричные элементы процессов. Одно из важных соотношений, вытекающих из этого условия, — Оптическая теорема, связывающая амплитуду упругого рассеяния на угол 0° с полным сечением (суммой сечений упругого рассеяния и сечений всех возможных неупругих процессов).

    Из общих принципов квантовой теории (микропричинности условия (См. Микропричинности условие),релятивистской инвариантности (См. Релятивистская инвариантность) и др.) следует, что матричные элементы S-матрицы являются аналитическими функциями (См. Аналитические функции)в некоторых областях комплексных переменных. Аналитические свойства матричных элементов S-матрицы позволяют получить ряд соотношений между определяемыми из опыта величинами — т. н. дисперсионные соотношения (см. Сильные взаимодействия),Померанчука теорему (См. Померанчука теорема)и др.

    В случае упругого рассеяния бесспиновых частиц асимптотика волновой функции Ψ(r), являющейся решением Шрёдингера уравнения (См. Шрёдингера уравнение), имеет вид:

    Здесь r — расстояние между частицами, k=p/ħ — волновой вектор, р — импульс в системе центра инерции (с. ц. и.) сталкивающихся частиц, ħ — постоянная Планка, ϑ— угол рассеяния, f(ϑ)—амплитуда рассеяния, зависящая от угла рассеяния и энергии сталкивающихся частиц. Первый член в этом выражении описывает свободные частицы с импульсом р=ħ k (падающая волна), второй — частицы, идущие от центра (рассеянная волна). Дифференциальное сечение рассеяния определяется как отношение числа частиц, рассеянных за единицу времени в элемент телесного угла dΩ, к плотности потока падающих частиц. Сечение рассеяния на угол ϑ (в с. ц. и.) в единичный телесный угол равно:

    Для амплитуды рассеяния имеет место следующее разложение по парциальным волнам (волнам с определённым орбитальным моментом l):

    Здесь Pl (cosϑ) — Лежандра многочлен (См. Лежандра многочлены), Sl— коэффициенты разложения, которые зависят от характера взаимодействия и являются матричными элементами S-матрицы (в представлении, в котором она диагональна по энергии, моменту количества движения и проекции момента). Если число падающих на центр частиц с моментом l равно числу идущих от центра частиц с тем же моментом (случай упругого рассеяния), то ISll = 1. В общем случае lSll ≤ 1. Эти условия являются следствием условия унитарности S-матрицы. Если возможно только упругое рассеяние, то Sl может быть представлено в виде: Sl = e2iδl , где δl — вещественные величины, называемые фазами рассеяния. Если δl =0 при некотором l, то рассеяние в состояние с орбитальным моментом l отсутствует.

    Полное сечение упругого рассеяния равно:

    где l, ƛ= 1/k — длина Волны де Бройля частицы. При Sl = —1

    при этом δl = π/2 (резонанс в рассеянии). Т. о., при резонансе сечение процесса определяется де-бройлевской длиной волны ƛ и для медленных частиц, для которых ƛ >> R0, где R0— радиус действия сил, намного превосходит величину πR02 (классическое сечение рассеяния). Этот факт (непонятный с точки зрения классической теории рассеяния) является следствием волновой природы микрочастиц.

    Поведение сечения рассеяния вблизи резонанса определяется формулой Брейта — Вигнера:

    где E0— энергия, при которой сечение достигает максимума (положение резонанса), а Г— ширина резонанса. При Е=E0 ± 1/2Γ сечение σl равно 1/2 . Полное сечение всех неупругих процессов равно:

    Условие унитарности ограничивает величину парциального сечения для неупругих процессов:

    Для короткодействующих потенциалов взаимодействия основную роль играют фазы рассеяния с lb/k, где b — радиус действия сил. Это условие можно переписать следующим образом: l/kb; величина l/k определяет минимальное расстояние, на которое может приблизиться к центру сил свободная частица с моментом l (прицельный параметр в квантовой теории). При bk1 (малые энергии) следует учитывать только S-волну (парциальную волну с l= 0). Амплитуда рассеяния в этом случае равна:

    и сечение рассеяния не зависит от угла (рассеяние сферически симметрично). При малых энергиях имеет место разложение:

    Параметры а и r0 называются соответственно длиной рассеяния и эффективным радиусом рассеяния. Эти величины определяются из опыта и являются важными характеристиками сил, действующих между частицами. Длина рассеяния равна по величине и противоположна по знаку амплитуде рассеяния при k= 0. Полное сечение рассеяния в точке k= 0 равно σ0 = 4πa2.

    Если у частиц имеется Связанное состояние с малой энергией связи, то рассеяние таких частиц при kbJ = 1; в этом состоянии у системы нейтрон — протон имеется уровень, соответствующий связанному состоянию — дейтрону). Сечение рассеяния в этом случае зависит только от энергии связи.

    Если параметр kb невелик, фазы рассеяния могут быть найдены из измеренных на опыте значений сечения и др. величин. Эта процедура называется фазовым анализом. Найденные путём фазового анализа фазы рассеяния сравниваются с предсказаниями теории и позволяют, т. о., получить важную информацию о характере взаимодействия.

    Один из основных приближённых методов теории рассеяния — теория возмущений (метод решения, основанный на разложении в ряд по малому параметру). Если падающая плоская волна, описывающая начальные частицы, слабо возмущается потенциалом взаимодействия, то применимо т. н. борновское приближение (первый член ряда теории возмущений). Амплитуда упругого рассеяния в борновском приближении равна:

    где q = 2ksin (ϑ/2), V(r) — потенциал взаимодействия, μ = m1m2/(m1+m2)—приведённая масса (m1 и m2— массы частиц).

    Для описания процессов рассеяния при высоких энергиях используются методы квантовой теории поля (См. Квантовая теория поля). Например, упругое рассеяние электронов (е) протонами (р) в низшем порядке теории возмущений (применимость теории возмущений в данном случае основывается на малости постоянной тонкой структуры α — 1/137, характеризующей «силу» электромагнитного взаимодействия) обусловлено обменом фотоном между электроном и протоном (Фейнмана диаграмма (См. Фейнмана диаграммы), рис. 2). В выражение для сечения этого процесса входят зарядовый (электрический) и магнитный Формфакторыпротона — величины, характеризующие распределение электрического заряда и магнитного момента протона (электромагнитную структуру протона). Информация об этих важнейших характеристиках протона может быть получена, следовательно, непосредственно из измеренных на опыте значений сечения упругого рассеяния электронов протонами. При достаточно высоких энергиях наряду с упругим ер-рассеянием становятся возможными неупругие процессы образования частиц. Если на опыте регистрируются только электроны, то тем самым измеряется сумма сечений всех возможных процессов.

    Лит.: Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 3 изд., М., 1974 (Теоретическая физика, т. 3); Давыдов А. С., Квантовая механика, 2 изд., М., 1973; Гольдбергер М., Ватсон К., Теория столкновений, пер. с англ., М., 1967; Мотт Н., Месс и Г., Теория атомных столкновений, пер. с англ., М., 1951; Ситенко А. Г., Лекции по теории рассеяния, К., 1971.

    С. М. Биленький.

    Рис. 1. к ст. Рассеяние микрочастиц.

    Рис. 2. к ст. Рассеяние микрочастиц.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    РАССЕЯНИЕ МИКРОЧАСТИЦ - процесс столкновения частиц. Различают упругое и неупругое рассеяние.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    РАССЕЯНИЕ МИКРОЧАСТИЦ

    процесс столкновения ч-ц, в результате к-рого меняются импульсы ч-ц (у п р у г о е р а с с е я н и е) или наряду с изменением импульсов меняются также внутр. состояния ч-ц (к в а з и- у п р у г и е п р о ц е с с ы) либо образуются др. ч-цы (н е у п р у г и е п р о ц е с с ы).

    Одна из осн. количеств. хар-к как упр. рассеяния, так и неупр. процессов, — эффективное сечение процесса — величина, пропорциональная вероятности процесса. Измерение сечений процессов позволяет изучать законы вз-ствия ч-ц, исследовать их структуру.

    Классическая теория рассеяния. Согласно законам классич. нерелятив. механики, задачу рассеяния двух ч-ц с массами m1 и m2 можно свести путём перехода к системе центра инерции (с. ц. и.) сталкивающихся ч-ц к задаче рассеяния одной ч-цы с приведённой массой m=m1m2/(m1+m2) на неподвижном силовом центре. Траектория ч-цы, проходящей через силовое поле (с центром О), искривляется — происходит рассеяние. Угол между нач. (pнач) и конечным (pкон) импульсами рассеиваемой ч-цы наз. у г л о м р а с с е я н и я. Угол рассеяния зависит от вз-ствия между ч-цами и от прицельного параметра r — расстояния, на к-ром ч-ца пролетала бы от силового центра, если бы вз-ствие отсутствовало (рис. 1).

    На опыте обычно направляют на Мишень из исследуемого в-ва пучок ч-ц. Число ч-ц dN, рассеянных в ед. времени на углы, лежащие в интервале q, q+dq, равно числу ч-ц, проходящих в ед. времени через кольцо с площадью,2prdr. Если n — плотность потока падающих ч-ц, то dN=2prdr
    • n, а сечение упр. рассеяния da определяется как отношение dNln и равно:

    РАССЕЯНИЕ МИКРОЧАСТИЦ1

    Полное сечение рассеяния 0 получается интегрированием (1) по всем прицельным параметрам. Если а — миним. прицельный параметр, при к-ром ч-ца не рассеивается, то s=pа2.

    РАССЕЯНИЕ МИКРОЧАСТИЦ2

    Квантовая теория рассеяния.

    В квант. теории упр. рассеяние и неупр. процессы описываются матричными элементами S-матрицы, или матрицы рассеяния (амплитудами процессов),— комплексными величинами, квадраты модуля к-рых пропорц. сечениям соответств. процессов. Через матричные элементы S-матрицы выражаются физ. величины, непосредственно измеряемые на опыте: сечение, поляризация частиц, асимметрия, компоненты тензора корреляции поляризаций и т. д. С др. стороны, эти матричные элементы могут быть вычислены при определённых предположениях о виде вз-ствия. Сравнение результатов опыта с теор. предсказаниями позволяет проверить теорию.

    Общие принципы инвариантности (инвариантность относительно вращений, пространственной инверсии, обращения времени и др.) существенно ограничивают возможный вид матричных элементов процессов и позволяют получить проверяемые на опыте соотношения. Напр., из инвариантности относительно вращений и пространств. инверсии, к-рым отвечают законы сохранения момента кол-ва движения и чётности, следует, что поляризация конечной ч-цы, возникающая при рассеянии неполяризованных ч-ц, направлена по нормали к плоскости рассеяния (плоскости, проходящей через нач. и конечный импульсы ч-цы). Т. о., измеряя направление вектора поляризации, можно выяснить, сохраняется ли чётность во вз-ствии, обусловливающем процесс. Изотопическая инвариантность сильного вз-ствия приводит к соотношениям между сечениями разл. процессов, а также к запрету нек-рых процессов. Напр., при столкновении двух дейтронов не могут образоваться a-ч-ца и p°-мезон. Эксп. исследование этого процесса подтвердило справедливость изотопич. инвариантности.

    Условие унитарности S-матрицы, являющееся следствием сохранения полной вероятности, также накладывает ограничения на матричные элементы процессов. Так, из этого условия вытекает оптическая теорема.

    Из общих принципов квант. теории (микропричинности условия, релятивистской инвариантности и др.) следует, что элементы S-матрицы — аналитич. ф-ции в нек-рых областях комплексных переменных. Аналитичность S-матрицы позволяет получить I ряд соотношений между определяемыми из опыта величинами — дисперсионные соотношения, Померанчука теорему и др.

    В случае упр. рассеяния бесспиновых ч-ц решение Шрёдингера уравнения для волн. ф-ции y(r) при r®? имеет вид:

    РАССЕЯНИЕ МИКРОЧАСТИЦ3

    Здесь r — расстояние между ч-цами, k=plћ — волновой вектор, р — импульс в с. ц. и. сталкивающихся ч-ц, q — угол рассеяния, f(q) — амплитуда рассеяния, зависящая от угла рассеяния и энергии столкновения. Первый член в этом выражении описывает падающие ч-цы, второй — рассеянные. Дифф. сечение рассеяния определяется как отношение числа ч-ц, рассеянных за ед. времени в элемент телесного угла dW, к плотности потока падающих ч-ц. Сечение рассеяния на угол q (в с. ц. и.) в единичный телесный угол равно:

    ds/dW=?f(q)?2. (3)

    Амплитуду рассеяния обычно разлагают в ряд по п а р ц и а л ь н ы м в о л н а м — состояниям с определённым орбит. моментом l:

    РАССЕЯНИЕ МИКРОЧАСТИЦ4

    Здесь Plcos(q) — полином Лежандра, Sl — комплексные ф-ции энергии, зависящие от хар-ра вз-ствия и явл. элементами S-матрицы (в представлении, в к-ром диагональны энергия, момент импульса и его проекция). Если число падающих на центр ч-ц с моментом l равно числу идущих от центра ч-ц с тем же моментом (упр. рассеяние), то?Sl?=1. В общем случае|Sl|?1. Эти условия — следствие условия унитарности S-матрицы. Если возможно только упр. рассеяние, то Sl=e2idl и рассеяние в состояние с данным l характеризуется только одним веществ. параметром dl — ф а з о й р а с с е я н и я. Если dl=0 при нек-ром l, то рассеяние в состояние с орбит. моментом l отсутствует. Полное сечение упр. рассеяния равно:

    РАССЕЯНИЕ МИКРОЧАСТИЦ5

    где slупр — парц. сечение упр. рассеяния ч-ц с орбит. моментом l, l=1/k — дл. волны де Бройля ч-цы. При Sl=-1 сечение slупр достигает максимума и равно:

    РАССЕЯНИЕ МИКРОЧАСТИЦ6

    при этом dl=p/2 (резонанс в рассеянии). Т. о., при резонансе сечение процесса определяется де-бройлевской длиной волны l и для медл. ч-ц, для к-рых l->R0, где R0—радиус действия сил, намного превосходит величину pR20 (классич. сечение рассеяния). Это явление (необъяснимое с точки зрения классич. теории рассеяния) обусловлено волн. природой микрочастиц.

    Др. проявлением волн. природы микрочастиц явл. д и ф р а к ц и о н н о е р а с с е я н и е — упр. рассеяние быстрых ч-ц на малые углы q=l/R0 (при l<-R0), обусловленное отклонением де-бройлевских волн налетающих ч-ц в область геом. тени, возникающей за рассеивающей ч-цей (см. рис. в ст. (см. СЕЧЕНИЕ)). Т. о., дифракц. рассеяние аналогично явлению дифракции света.

    Зависимость сечения рассеяния от энергии вблизи резонанса определяется ф-лой Брейта — Вигнера:

    РАССЕЯНИЕ МИКРОЧАСТИЦ7

    где Е0 — энергия, при к-рой сечение достигает максимума (положение резонанса), а Г — ширина резонанса. При E=E0+1/2Г сечение sl равно 1/2slмакс.

    Полное сечение всех неупр. процессов равно:

    sнеупр=S?l=0slнеупр, (9)

    slнеупр=pl2(2l+1)(1-| Sl|2). (10)

    Условие унитарности ограничивает величину парц. сечения для неупр. процессов:

    slнеупр?pl2(2l+1). (11)

    Для короткодействующих потенциалов вз-ствия осн. роль играют фазы рассеяния с /l?R0/l, где R0 — радиус действия сил; величина /Я определяет миним. расстояние, на к-рое может приблизиться к центру сил свободная ч-ца с моментом l (прицельный параметр в квант. теории). При R0/l<-1 (малые энергии) следует учитывать только парц. волну с l=0 (S-волну). Амплитуда рассеяния в этом случае равна,:

    РАССЕЯНИЕ МИКРОЧАСТИЦ8

    и сечение рассеяния не зависит от q — рассеяние сферически симметрично. При малых энергиях

    kctgd0 »-1/a+1/2r0k2. (13)

    Параметры а и r0 наз. соотв. д л и н о й р а с с е я н и я и эффективным радиусом рассеяния. Их находят из опыта, и они явл. важными хар-ками сил, действующих между ч-цами. Длина рассеяния равна по величине и противоположна по знаку амплитуде рассеяния при k=0. Полное сечение рассеяния при k=0 равно: s0=4pа2.

    Если у ч-ц имеется связ. состояние с малой энергией связи, то их рассеяние при R0/l<-1 носит резонансный хар-р. Типичный пример — рассеяние нейтронов протонами в состоянии с полным спином /=1, в к-ром система нейтрон — протон имеет связ. состояние (дейтрон). В этом случае длина рассеяния а отрицательна, а сечение рассеяния зависит только от энергии связи.

    Если параметр R0/l невелик, фазы рассеяния могут быть получены из измеряемых на опыте сечений, поляризаций и др. величин. Эта процедура наз. ф а з о в ы м а н а л и з о м. Найденные фазы рассеяния сравниваются с предсказаниями теории и позволяют получить важную информацию о хар-ре вз-ствия.

    Один из осн. приближённых методов теории рассеяния — возмущений теория. Если падающая плоская волна, описывающая нач. ч-цы, слабо возмущается потенциалом вз-ствия, то применимо т. н. б о р н о в с к о е п р и б л и ж е н и е (первый член ряда теории возмущений). Амплитуда упр. рассеяния в борновском приближении равна:

    РАССЕЯНИЕ МИКРОЧАСТИЦ9

    где q=2ksin(q/2), V(r) — потенциал вз-ствия.

    Для описания процессов рассеяния при высоких энергиях используются методы квант. теории поля, в частности метод Фейнмана диаграмм. Напр., упр. рассеяние эл-нов (е-) протонами (р) в низшем порядке теории возмущений обусловлено обменом фотоном между эл-ном и протоном (диаграмма Фейнмана, рис. 2). В выражении для сечения этого процесса входят зарядовый и магнитный формфакторы протона — величины, характеризующие распределение электрич. заряда и магн. момента протона. Информация о них может быть получена непосредственно из эксп. значений сечения упр. рассеяния эл-нов протонами. При достаточно высоких энергиях наряду с упругим е-р-рассеянием становятся возможными неупр. процессы образования адронов. Если на опыте регистрируются только рассеянные эл-ны, то тем самым измеряется сумма сечений всех возможных процессов е-+р®е++Х (сечение инклюзивного процесса), где X — любая возможная совокупность образующихся в реакции адронов. Эти опыты позволили получить важную информацию о структуре нуклона.

  5. Источник: Физическая энциклопедия



  6. Энциклопедический словарь

    рассе́яние микрочасти́ц

    процесс столкновения частиц. Различают упругое и неупругое рассеяние.

    * * *

    РАССЕЯНИЕ МИКРОЧАСТИЦ

    РАССЕ́ЯНИЕ МИКРОЧАСТИ́Ц, процесс столкновения частиц. Различают упругое и неупругое рассеяние.

  7. Источник: Энциклопедический словарь



  8. Естествознание. Энциклопедический словарь

    процесс столкновения частиц. Различают упругое и неупругое рассеяние.

  9. Источник: Естествознание. Энциклопедический словарь



  10. Большой Энциклопедический словарь

    РАССЕЯНИЕ МИКРОЧАСТИЦ
    РАССЕЯНИЕ МИКРОЧАСТИЦ - процесс столкновения частиц. Различают упругое и неупругое рассеяние.

    Большой Энциклопедический словарь. 2000.

  11. Источник: