Большая Советская энциклопедия

    тепловой закон Нернста (Нернста теорема), закон термодинамики, согласно которому Энтропия S любой системы стремится к конечному для неё пределу, не зависящему от давления, плотности или фазы, при стремлении температуры (Т) к абсолютному нулю (В. Нернст, 1906). Т. н. т. позволяет находить абсолютное значения энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S0, что практически не мешает большинству термодинамических исследований, так как реально измеряется разность энтропий (S0) в различных состояниях. Согласно Т. н. т., при Т → 0 значение ΔS → 0.

    В 1911 М. Планк сформулировал Т. н. т. как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю:S0 = 0, что даёт возможность определять абсолютное значения энтропии и др. потенциалов термодинамических (См. Потенциалы термодинамические). Формулировка Планка соответствует определению энтропии в статистической физике (См. Статистическая физика) через термодинамическую вероятность (W) состояния системы S = klnW (см. Больцмана принцип). При абсолютном нуле температуры система находится в основном квантово-механическом состоянии, если оно невырождено, для которого W = 1 (состояние реализуется единственным микрораспределением). Следовательно, энтропия S при Т = 0 равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем может стать существенной при T → 0 дискретность квантовых уровней макроскопической системы, приводящая к явлениям квантового вырождения.

    Из Т. н. т. следует, что абсолютного нуля температуры нельзя достигнуть ни в каком конечном процессе, связанном с изменением энтропии, к нему можно лишь асимптотически приближаться, поэтому Т. н. т. иногда формулируют как принцип недостижимости абсолютного нуля температуры. Из Т. н. т. вытекает ряд термодинамических следствий: при T → 0 должны стремиться к нулю теплоёмкости при постоянном давлении и при постоянном объёме, коэффициенты теплового расширения и некоторые аналогичные величины. Справедливость Т. н. т. одно время подвергалась сомнению, но позже было выяснено, что все кажущиеся противоречия (ненулевое значение энтропии у ряда веществ при Т = 0) связаны с метастабильными состояниями (См. Метастабильное состояние) вещества, которые нельзя считать термодинамически равновесными.

    Лит.: Клейн М., Законы термодинамики, в сборнике: Термодинамика необратимых процессов. Лекции в летней международной школе физики им. Э. Ферми, пер. с англ., М., 1962. См. также лит. при статьях Термодинамика и Статистическая физика.

    Д. Н. Зубарев.

  1. Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.



  2. Большой энциклопедический словарь

    ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ (Нернста теорема) - устанавливает, что энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной. М. Планк дополнил теорему Нернста гипотезой, что энтропия всех тел при абсолютном нуле температуры равна нулю. Из третьего начала термодинамики вытекают важные следствия о свойствах веществ вблизи абсолютного нуля. Так, обращаются в нуль: удельные теплоемкости при постоянном объеме (Сv) и при постоянном давлении (Сp), термический коэффициент расширения и давления. Из третьего начала термодинамики следует также недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов.

  3. Источник: Большой Энциклопедический словарь. 2000.



  4. Физическая энциклопедия

    ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ

    (Нернста теорема), закон термодинамики, согласно к-рому энтропия S любой системы стремится к конечному пределу, не зависящему от давления, плотности или фазы, при стремлении темп-ры Т к абс. нулю (нем. физико-химик В. Нернст, 1906). В классич. термодинамике (на основе 1-го и 2-го начал термодинамики) энтропию можно определить лишь с точностью до произвольной аддитивной постоянной (S0), что практически не мешает большинству термодинамич. исследований, т. к. реально измеряется разность энтропии (DS) в разл. состояниях. Согласно Т. н. т., при Т ®0 значение DS®0.

    В 1911 нем. физик М. Планк сформулировал Т. н. т. как условие обращения в нуль энтропии всех тел при стремлении темп-ры к абс. нулю: limS=0. Отсюда S0=0, что даёт Т®0 возможность определять абс. значения энтропии и потенциалов термодинамических. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамич. вероятность W (статистич. вес) состояния системы: S=klnW (Больцмана принцип). При Т=0 система находится в основном квантовомеханич. состоянии (если оно невырождено), для к-рого W=1 (состояние реализуется единств. микрораспределением). Следовательно, энтропия при Т=0 равна нулю. В действительности при всех измерениях энтропия начинает стремиться к нулю значительно раньше, чем может стать существенной при Т ®0 дискретность квант. уровней макроскопич. системы. Это стремление энтропии к нулю вызвано явлениями квант. вырождения.

    Из Т. н. т. следует, что абс. нуля темп-ры нельзя достигнуть ни в каком конечном процессе, связанном с изменением энтропии: к абс. нулю можно лишь асимптотически приближаться, поэтому Т. н. т. иногда формулируют как принцип недостижимости абс. нуля темп-ры.

    Из Т. н. т. вытекает ряд термодинамич. следствий: при Т ®0 должны стремиться к нулю теплоёмкости при пост. давлении и при пост. объёме, коэфф. теплового расширения и нек-рые др. величины.

    Справедливость Т. н. т. подвергалась сомнению, но позже было выяснено, что кажущиеся противоречия (сохранение конечного значения энтропии у ряда в-в при Т ®0) связаны с метастабильными состояниями в-в, к-рые не являются термодинамически равновесными.

  5. Источник: Физическая энциклопедия



  6. Физическая энциклопедия

    ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ

    (Нернста теорема)- закон термодинамики, согласно к-рому энтропия S равновесной системы стремится к конечному пределу, не зависящему от давления, плотности, др. термодинамич. параметров или фазы, при стремлении темп-ры к абс. нулю. Установлено экспериментально В. Нернстом (W. Nernst 1906). Т к. т. справедливо, напр., для всех чистых кристаллич. веществ, квантовых жидкостей и газов. Согласно второму началу термодинамики, энтропия определяется лишь с точностью до постоянного слагаемого So В 1911 М. Плате (М. Plank) предложил принять состояние при О К за начальное и считать, что 5031-21.jpg т. с. S0 = 0. Тогда энтропия любого состояния определяется однозначно как а б с о л ю т н а я э н т р о п и я. Определение Планка удобно с точки зрения квантовой механики, к-рая тогда позволяет однозначно определить значения хим. констант (константы равновесия хим. реакций), что выходит за пределы формальной термодинамики.

    5031-30.jpg

    Температурная зависимость разностей энтальпии DH свободной энергии DG и теплоёмкостей С Р, С V.

    Нернст установил свою теорему, используя теорию хим. сродства к хим констант (см. Химическая термодинамика). Хим. сродство определяется макс. работой 5031-22.jpg где DG -разность Гиббса энергий (ф-ций темп-ры и давления) реагирующих веществ и удовлетворяет термодинамич. соотношению

    5031-23.jpg

    где DH -разность энтальпий реагирующих веществ. Член TDS при низких темп-pax очень мал, особенно в реакциях с участием конденсированных фаз. На этом основано п р а в и л о Б е р т л о, согласно к-рому теплота реакций, идущих самопроизвольно, положительна. Однако когда преобладает член TDS это правило несправедливо и реакция может быть эндотермической. Теорема Нернста состоит в предположении, что при стремлении абс. темп-ры к нулю обращается в нуль не только TDS, но и DS. Отсюда с использованием Гиббса - Гельмгольца уравнения следует, что обращаются в нуль теплоёмкости при пост. давлении С Р и пост. объёме Cv;

    5031-24.jpg

    Из Т, к. т. следует, что кривые 5031-25.jpg должны иметь горизонтальную касательную при 5031-26.jpg (рис.).

    Т. к. из второго начала термодинамики следует 5031-27.jpg, а, согласно Т. н. т., 5031-28.jpg то при 5031-29.jpgкоэф. теплового расширения 5031-31.jpg и изохорный коэф. давления 5031-32.jpg стремятся к нулю. Т. н. т. не применимо к веществам, к-рые не находятся в состоянии полного статистич. равновесия, напр. к аморфным телам (см. Аморфное состояние )или неупорядоченным сплавам, к-рые могут существовать и при очень низких темп-pax как "замороженные" метастабильные состояния с очень большим временем жизни. Сомнения в справедливости Т. н. т. высказывались в связи с его неприменимостью к подобным веществам. Статистич. механика квантовых систем проясняет физ. смысл теоремы Нернста. П р и н ц и п Б о л ь ц м а н а в формулировке Планка связывает энтропию со статистическим весом состояния W соотношением

    5031-33.jpg

    При 5031-34.jpg

    5031-35.jpg

    если осн. состояние невырождено, то 5031-36.jpg

    Однако, как показано X. Крамерсом (Н. A. Kramers) и X. Казимиром (Н. В. Casimir), дискретность уровней лишь косвенно связана со стремлением энтропии к нулю. Даже если осн. уровень вырожден и 5031-37.jpg но термодинамический предел5031-38.jpgто можно считать, что S0 = 0.

    Для макроскопич. тел квантовые уровни расположены чрезвычайно плотно и расстояние между ними стремится к нулю в термодинамич. пределе. Влияние дискретности квантовых уровней на поведение энтропии при стремлении темп-р к нулю могло бы быть обнаружено лишь при очень низких темп-pax, не достижимых экспериментально. Наблюдаемое поведение энтропии проявляется при гораздо более высоких темп-pax (когда длина волны де Бройля, соответствующая энергии ср. теплового движения частиц, становится сравнимой со ср. расстоянием между ними) и связано с явлением квантового вырождения газов и жидкостей (см. Вырожденный газ, Вырождения температура).

    Темп-pa Q1 (в энергетич. единицах), при к-рой начала бы сказываться дискретность уровней, равна разности энергий первого возбуждённого уровня 5031-39.jpg и осн. уровня 5031-40.jpg т. е. 5031-41.jpg а поскольку спектр макроскопич. тел практически непрерывен, это очень низкие ненаблюдаемые темп-ры. Напр., для идеального газа из атомов с массой т в объёме V=L3

    5031-42.jpg

    где 5031-43.jpg -мин. значение волнового вектора. Для кристаллич. решётки

    5031-44.jpg

    где us - скорость звука в среде.

    В действительности поведение энтропии, требуемое Т. <н. т., начинает проявляться при значительно более высоких темп-pax. Для идеального бозе-газа соответствующее поведение энтропии начинает проявляться при темп-рах порядка темп-ры вырождения:

    5031-45.jpg

    а для идеального ферми-газа - при темп-pax, соответствующих макс. энергии частиц при абс. нуле темп-ры ( ферми-энергии); величина этой темп-ры определяется тем же выражением (7), но для электронов в металле 5031-46.jpgможет быть очень большой (~104 К) из-за малости их эффективных масс.

    Для кристаллич. решёток Т. н. т. начинает проявляться при темп-pax порядка Дебая температуры:

    5031-47.jpg

    Пропорциональность темп-ры вырождения постоянной Планка показывает, что Т. н. т. связано с квантовыми свойствами системы.

    В отличие от первого и второго начал термодинамики, нет общего доказательства Т. н. т. на основе статистич. механики. Для того чтобы обосновать Т. н. т. для общего случая, нужно было бы исследовать распределение собственных значений гамильтониана системы вблизи осн. уровня. Во всех случаях, когда ниж. часть спектра можно представить в виде идеального газа квазичастиц (ферми-или бозе-типа), Т. н. т. оказывается выполненным.

    Лит.:1) Ван-дер-Ваальс И. Д., Констамм Ф., Курс термостатики, пер. с нем., ч. 1, М., 1936, гл. 2; 2) Хаар Д., Верге-ланд Г., Элементарная термодинамика, пер. с англ., М., 1968; 3) Кубо Р., Термодинамика, пер. с англ., М., 1970; 4) Wilks J., The Third law of thermodynamics, Oxf., 1961; 5) Клейн М., Законы термодинамики, в сб.: Термодинамика необратимых процессов, пер. с англ., М., 1962; 6) Зубарев Д. Н., Неравновесная статистическая термодинамика, М., 1971, p 11; 7) Casimir H. В., Uber die statistische Begriinding des nernstchen Warmetheorems, "Z. Phys.", 1963, Bd 171, S. 246. Д. Н. Зубарев.

  7. Источник: Физическая энциклопедия



  8. Химическая энциклопедия

    то же, что тепловая теорема.

  9. Источник: Химическая энциклопедия



  10. Энциклопедический словарь

    тре́тье нача́ло термодина́мики

    (Нернста теорема), утверждает, что энтропия физической системы стремится к конечному пределу, не зависящему от давления, плотности или фазы, при стремлении температуры к абсолютному нулю. Установлено экспериментально В. Нернстом в 1906. М. Планк (1911) дополнил теорему Нернста гипотезой, что энтропия всех тел при абсолютном нуле температуры равна нулю. Из третьего начала термодинамики вытекает ряд термодинамических следствий: при абсолютном нуле температуры обращаются в нуль теплоёмкости при постоянном объёме и при постоянном давлении, коэффициент теплового расширения и некоторые другие величины. Из третьего начала термодинамики следует также недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов.

    * * *

    ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ

    ТРЕ́ТЬЕ НАЧА́ЛО ТЕРМОДИНА́МИКИ (Нернста теорема), устанавливает, что энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной. М. Планк дополнил теорему Нернста гипотезой, что энтропия всех тел при абсолютном нуле температуры равна нулю. Из третьего начала термодинамики вытекают важные следствия о свойствах веществ вблизи абсолютного нуля. Так, обращаются в нуль: удельные теплоемкости при постоянном объеме (Сv) и при постоянном давлении (Сp), термический коэффициент расширения и давления. Из третьего начала термодинамики следует также недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов.

  11. Источник: Энциклопедический словарь



  12. Большой энциклопедический политехнический словарь

    Нернста теорема, - одно из осн. положений термодинамики, согласно к-рому энтропия S твёрдого или жидкого тела в состоянии равновесия термодинамического стремится к нулю при стремлении к _ нулю термодинамической температуры Т: limT->0 S = 0. Из Т. н. т. вытекает ряд важных выводов: о недостижимости абс. нуля; о стремлении теплоёмкости, коэфф. теплового расширения и температурного коэфф. давления к нулю при Т - > О, Т. н. т. играет важную роль в физ. химии, например для расчёта хим. равновесия.

  13. Источник: Большой энциклопедический политехнический словарь



  14. Естествознание. Энциклопедический словарь

    (Нернста теорема), утверждает, что энтропия физ. системы стремится к конечному пределу, не зависящему от давления, плотности или фазы, при стремлении темп-ры к абс. нулю. Установлено экспериментально В. Нернстом в 1906. М. Планк (1911) дополнил теорему Нернста гипотезой, что энтропия всех тел при абс. нуле темп-ры равна нулю. Из Т.н.т. вытекает ряд термодинамич. следствий: при абс. нуле темп-ры обращаются в нуль теплоёмкости при пост. объёме и при пост. давлении, коэф. теплового расширения и нек-рые др. величины. Из Т. н. т. следует также недостижимость абс. нуля темп-ры при конечной последовательности термодинамич. процессов.

  15. Источник: Естествознание. Энциклопедический словарь



  16. Большой Энциклопедический словарь

    ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ
    ТРЕТЬЕ НАЧАЛО ТЕРМОДИНАМИКИ (Нернста теорема) - устанавливает, что энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной. М. Планк дополнил теорему Нернста гипотезой, что энтропия всех тел при абсолютном нуле температуры равна нулю. Из третьего начала термодинамики вытекают важные следствия о свойствах веществ вблизи абсолютного нуля. Так, обращаются в нуль: удельные теплоемкости при постоянном объеме (Сv) и при постоянном давлении (Сp), термический коэффициент расширения и давления. Из третьего начала термодинамики следует также недостижимость абсолютного нуля температуры при конечной последовательности термодинамических процессов.

    Большой Энциклопедический словарь. 2000.

  17. Источник: